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The ability of sulfate aerosols to reflect solar radiation and simul-
taneously act as cloud condensation nuclei renders them central
players in the global climate system. The oxidation of S(IV) com-
pounds and their transport as stable S(VI) in the Earth’s system are
intricately linked to planetary scale processes, and precise charac-
terization of the overall process requires a detailed understanding
of the linkage between climate dynamics and the chemistry lead-
ing to the product sulfate. This paper reports a high-resolution, 22-y
(1980–2002) record of the oxygen-triple isotopic composition of
sulfate (SO4) aerosols retrieved from a snow pit at the South
Pole. Observed variation in the O-isotopic anomaly of SO4 aerosol
is linked to the ozone variation in the tropical upper troposphere/
lower stratosphere via the Ozone El-Niño Southern Oscillations
(ENSO) Index (OEI). Higher Δ17O values (3.3‰, 4.5‰, and 4.2‰)
were observed during the three largest ENSO events of the past
2 decades. Volcanic events inject significant quantities of SO4 aero-
sol into the stratosphere, which are known to affect ENSO
strength by modulating stratospheric ozone levels (OEI = 6 and
Δ17O = 3.3‰, OEI = 11 and Δ17O = 4.5‰) and normal oxidative
pathways. Our high-resolution data indicated that Δ17O of sulfate
aerosols can record extreme phases of naturally occurring climate
cycles, such as ENSOs, which couple variations in the ozone levels
in the atmosphere and the hydrosphere via temperature driven
changes in relative humidity levels. A longer term, higher resolu-
tion oxygen-triple isotope analysis of sulfate aerosols from ice
cores, encompassing more ENSO periods, is required to reconstruct
paleo-ENSO events and paleotropical ozone variations.
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Sulfate aerosols affect climate systems by altering radiation
balance, temperature, precipitation, and atmospheric dy-

namics (1, 2). The overall effect of sulfate aerosols on the climate
is estimated to be net cooling (−2.0± 0.2Wm−2) (3). According to
the Intergovernmental Panel on Climate Change fourth assess-
ment report, aerosols are one of the largest sources of uncer-
tainties in climate prediction models due to their temporal and
spatial variability (4). Globally, anthropogenic sulfur exceeds
natural sources by a factor of 3 to 4 (35 Tg·y−1 vs. 10 Tg·y−1 from
1990 to 2000) (5–8). Occasionally, volcanoes emit large quantities
of sulfur dioxide (SO2) directly into the atmosphere. Pinatubo, for
example, released ∼30 Tg of SO2 (5). In the troposphere, SO2 has
an atmospheric residence time of ∼2–3 d, and it is oxidized to
SO4

2− by homogeneous and heterogeneous pathways and re-
moved via wet and dry deposition (9). Gas phase oxidation of SO2
by OH and subsequent reactions with water vapor yield sulfuric
acid vapor [H2SO4(g)] (10). The oxidation of aqueous SO2 by O3
and H2O2 far exceeds gas phase rates and is pH-dependent (11,
12). The oxygen-triple isotopic composition of sulfate aerosols has
been demonstrated to be a useful diagnostic tool to distinguish
and quantify reaction pathways and to determine the paleoox-
idant levels on centennial to millennium (glacial period) time
scales to present-day environments (13–18). Tropospheric SO2
has a mass-dependent oxygen isotopic composition (δ17O ≈ 0.52
δ18O) due to rapid isotopic equilibration with water vapor (19),
which erases the source-derived oxygen isotopic signature. [The
delta (δ) values denote the relative deviation of the isotope ra-
tios 17R= (17O/16O) and 18R = (18O/16O) in a sample (Rs) with

respect to standard material (Rst) in permill (‰) (e.g., δ17O
[‰] = [17Rs/

17Rst −1] * 1,000). Isotope abundance or depletion
is measured with reference to a standard material (e.g., for oxygen
isotopes, referencematerial is Vienna StandardMeanOceanWater
[VSMOW]).] S(IV) species (SO2aq, HSO3

−, and SO3
−2) are oxi-

dized to stable sulfate [S(VI)] via OH radicals, H2O2 and O3 (19,
20). The ozone molecule is a unique quantitative tracer of oxi-
dation reactions because it possesses the highest enrichment in
the heavier isotopes of oxygen (70–120‰) and oxygen isotope
anomaly (Δ17O = 25–30‰). The anomalous oxygen isotopic dis-
tribution of ozone has been shown to be transferred to oxygen-
carrying molecules, such as SOx-NOx-ClOx-HOx (21–25) (Δ17O ≈
δ17O − 0.52 δ18O, a mass-dependent process, has Δ17O = 0; mass-
independent processes have Δ17O ≠ 0). The positive Δ17O of sulfate
derives from aqueous phase oxidation of SO2 by H2O2 and O3 via
Reaction 2–Reaction 3 and involves transfer of the isotopic anomaly
from the oxidant to the product sulfate (12, 26). All other sulfate
sources, including gas-phase oxidation by OH in the troposphere via
Reaction 1a and metal-catalyzed oxidation by atmospheric O2,
possess mass-dependent signatures, as verified by laboratory and
field measurements (12, 14, 27, 28). However, OH in the strato-
sphere has been suggested to possess an O-isotopic anomaly (28,
29), which can be transferred to sulfate produced in the stratosphere
via Reaction 1b. The magnitude of the transfer of the Δ17O depends
on the relative contribution (Reaction 1–Reaction 3):

ðSO2 +OHÞtroposphere →HSO-
3

�
Δ17O= 0 ‰

�
[Reaction 1a]

ðSO2 +OHÞstratosphere +M→HSO-
3 +M

�
Δ17O≠ 0 ‰

�

[Reaction 1b]

HSO−
3 +H2O2 →H2SO4

�
Δ17O= 0:5− 1 ‰

�
+H2O

[Reaction 2]

SO2−
3 +O3 → SO2−

4

�
Δ17O= 8− 9 ‰

�
+O2 [Reaction 3]

Tropospheric S(IV) oxidation by O3 (Reaction 3) is the only
significant mechanism producing sulfate Δ17O values >1‰,
therefore, Δ17O values greater than 1‰ quantitatively reflect
the relative contribution of O3 during sulfate formation (12).
S(IV) oxidized in the stratosphere acquires an anomalous sig-
nature via Reaction 1 to Reaction 3 (30). Once sulfate is formed,
the isotopic signature is stable and permanently preserved in the
aerosol. In addition to defining reaction pathways, both S and O
isotopic anomalies of sulfate aerosols may determine paleo-
volcanic activities and reflect their upper atmospheric chemistry
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(28, 31, 32). It is argued that large volcanic eruptions in the
Anthropocene era are depleting stratospheric ozone by providing
surfaces for heterogeneous chemical reactions (33). These varia-
tions in O3 can modulate the dynamic of the tropical stratosphere
(quasibiennial oscillations); thus, volcanoes are considered re-
sponsible for the strongest El-Niño Southern Oscillations (ENSOs)
(34). In this work, we investigate whether oxygen-triple isotopic
composition of sulfate aerosols may serve as a unique fingerprint
of ozone chemistry to parse out the effect of volcanoes and ENSO
events based on their differing oxidative pathways. The polar ice
caps are nature’s best archive of Earth’s atmospheric history and
preserve a record of paleovolcanic activities (30, 35). A high-
resolution seasonal record of sulfate aerosols is used to reconstruct
atmospheric history on annual and decadal time scales. The
oxygen-triple isotope data of sulfate aerosols from Greenland
(monthly samples from July 1999–June 2000) have demonstrated
its potential to constrain the transport and oxidation history of
sulfate aerosols to polar regions (14). Here, we present a 22-y
seasonally resolved profile of major ions and oxygen-triple isotope
data of sulfate aerosols obtained from surface snow sampled in
a snow pit (1 m × 1 m) at the South Pole to help elucidate the
processes determining the observed global variation in sulfate
aerosol from 1980 to 2002, as well as the oxidation history of
S(IV), its transport to the South Pole, and its linkage with the
dynamics of the upper atmosphere. Our data on the oxygen-triple
isotope measurements of sulfate aerosol encompass three major
volcanic events of the century [El-Chichόn (17.3° N, 93.2° W,
1,205 m), Pinatubo (15.13° N, 120.35° E, 1,745 m), and Cerro
Hudson (45° S, 72° W, 1,905 m)] and three major ENSO events
(1982–1983, 1991–1992, and 1997–1998).

Results
A high-resolution temporal record (1980–2002) of sulfate aerosols
extracted from the snow pit at the South Pole and the associated
oxygen isotopic composition (δ17O, δ18O, and Δ17O) are given in
Fig. 1 and Table S1. The sulfate concentration in composite sam-
ples (details provided inMaterials and Methods) ranged from 36 to
165 parts per billion (ppb). The highest sulfate concentration was
observed in ice layers deposited in 1991 and 1992 (Fig. 1A). The
single oxygen isotope ratio of sulfate aerosol showed significant
variation, ranging from 1980 to 2002 (δ18O = −2 to +12‰).
Increases in sulfate concentrations due to volcanic activities show
a corresponding decrease in δ18O (average δ18O = 3.1‰ and
2.3‰ in 1983 and 1992, respectively). The oxygen isotopic anomaly
(Δ17O) varied from 0.4 to 4.5‰ (Fig. 1B). A high-resolution con-
centration profile of sulfate aerosols indicated that volcanic sulfate
layers from Pinatubo and Cerro Hudson eruptions were deposited
from 1991–1992 (36) and El-Chichón from 1982–1983 with corre-
sponding oxygen isotope anomaly of 4.5‰ and 3.3‰. The oxygen
isotopic anomaly in sulfate aerosols observed during three major
El-Nino events (ENSO-I = 1982–1983, ENSO-II = 1991–1992,
ENSO-III 1997–1998) and a moderate event (ENSO-IV = 1986–
1987) track the Ozone ENSO Index (OEI; Fig. 1B). An unusually
high enrichment in oxygen-triple isotopic composition (δ18O
=12‰, Δ17O = 4.1‰), along with a higher OEI of 6 is observed
in 1990 and labeled as an unknown event in Fig. 1A.
A plot of Δ17O vs. δ18O indicated a very weak (r2 = 0.2) inverse

correlation (Fig. 2). In Fig. 2, the maximum Δ17O achievable via
tropospheric ozone and peroxide aqueous phase oxidation is
represented by red and green rectangles and gas phase oxidation
via stratospheric OH/HO2 is shown in blue. A high-resolution
(∼1-cm sampling interval) concentration measurement of major
ions [sulfate, methane sulfonic acid (MSA), nitrate, and chloride]
obtained from the snow pit indicated no significant relation to the
sulfate concentration (Fig. S1). A higher resolution sulfate con-
centration profile revealed two distinct peaks 1 and 2 (Fig. 3) with
a fivefold and 3.6-fold increase, respectively, in sulfate (SO4) con-
centration in ice layers deposited during 1992. Peak 3 appeared
during a volcanically quiescent period (1990) and showed an ap-
proximately fourfold increase in sulfate concentration (190 ppb)
compared with an average background value of 50 ppb observed in

this study. The persistent background during the study period is
defined as the time period when natural and anthropogenic emis-
sions of S compounds are maintained at a relatively quasi-steady
state (1999–2002). Sulfate from the El-Chichόn volcanic activity
indicated as peak 4 (1982–1983) did not appear as a sharp peak;
rather, it is more spread out in time. In the high-resolution profile,
an increase in non-sea salt (nss) SO4 (peak 3 in 1990) is potentially
associated with a significant increase inMSA, although they are not
temporally identical. MSA concentrations varied from 2 to 50 ppb,
with a maximum increase in1985–1986 and 1990 (Fig. 3).

Discussion
The dataset presented here is the longest (1980–2002) and maxi-
mum time-resolved record of chemical and isotopic composition
of sulfate aerosols retrieved at the South Pole, and it encom-
passes three major volcanic events (El-Chichόn, Pinatubo, and
Cerro Hudson eruptions in April 1982, June 1991, and October
1991, respectively). These volcanic activities introduced significant
quantities of SO2 (Pinatubo = 30 Tg SO2, Cerro Hudson = 10 Tg
SO2, and El-Chichόn = 7 Tg SO2) (5, 37, 38) into the stratosphere,
which can be observed as distinct sulfate peaks as labeled in Figs.
1A and 3. The volcanic sulfate aerosol showed less enrichment in

Fig. 1. (A) Oxygen isotopic composition (brown squares) and sulfate con-
centration profile (green diamonds) of composite aerosol sulfate samples
extracted from the snow pit (6 m high) at the South Pole, Antarctica. The
increase in sulfate concentration due to El-Chichón and Pinatubo + Cerro
Hudson is also shown. UE, unknown event. (B) Comparison of oxygen iso-
tope anomaly (red lines) and OEI (blue lines) obtained by Ziemke et al. (65)
from the deseasonalized trend in total O3 column measured at the equa-
torial Eastern and Western Pacific, an El-Niño region. Violet bars indicate
three major ENSO events: ENSO-I (1982–1983), ENSO-II (1991–1992), and
ENSO-III (1997–1998). A moderate event, ENSO-IV (1986–1987), is also shown.
(The scale of ENSO events is defined by the National Oceanic and Atmo-
spheric Administration and is available at www.cpc.noaa.gov/products/analysis_
monitoring/ensostuff/ensoyears.shtml).
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the heavy isotopes of oxygen (δ18Oaverage = 2.6 ± 1‰) but pos-
sesses a mass-independent anomaly (El-Chichόn: Δ17O =3.3 ‰
and Pinatubo+CerroHudson: Δ17O = 4.5‰). The oxygen isotope
anomaly reported here for the composite Pinatubo and Cerro
Hudson sulfate sample in 1992 is similar to the previously reported
higher resolution signal for Pinatubo (δ18O = 5.1–9.5‰, Δ17O =
3.8–4.7‰) (28). Higher Δ17O values (3.3–4.5‰) of volcanic sul-
fate and nonvolcanic ENSO events (3.8–4.2 ‰) compared with
the lower tropospheric Δ17O values (0.4–1.6‰) (13, 18) indicate
the predominant role of stratospheric OH and HO2 radicals (30,
39). The concentration of these radicals in the stratosphere
depends on ozone, water vapor, CH4, and NOx concentrations
(40), and it is suggested to be 1.5 ± 0.3 × 106 molecules per cubic
centimeter in the tropics using the global chemistry transport
model (41). Numeric simulations have also indicated that the OH
in the stratosphere acquires an oxygen isotope anomaly (Δ17O= 2–
40‰) by means of exchange with NOx (39, 42). The anomalous
signal of OH andHO2 in the stratosphere is preserved (39, 42) due

to the extremely lowwater content in the stratosphere (∼5–10 ppm
by volume) (43, 44), which is normally erased in the troposphere
due to rapid isotope exchange with water vapor (∼3% in the
tropics to 0.1% in the cold polar regions) (20).
The most striking feature of the present data (Fig. 1B) is that

variables OEI and Δ17O of sulfate aerosol track each other during
the strong El- Niño events of 1982–1983 (ENSO-I), 1991–1992
(ENSO-II), and 1997–1998 (ENSO-III) as well as during the
moderate event of 1986–1987 (ENSO-IV). These ENSO time
periods are defined according to the National Oceanic and Atmo-
spheric Administration as sea surface temperature anomalies (El-
Niño=warm and La-Niña= cool) in the tropical Pacific (5° N–5° S,
120°–170° W) (www.cpc.noaa.gov/products/analysis_monitoring/
ensostuff/ensoyears.shtml). The OEI plotted in Fig. 1B, as dis-
cussed, is obtained from variation in ozone concentrations at
tropical latitudes. The OEI and Δ17O data in Fig. 1B track each
other but are slightly shifted, which may derive from two factors.
First, the necessity to combine samples for the nitrate (45) and
sulfate measurements introduces a modest time uncertainty. The
average of the combined depth is used to specify sample time and
assumes a uniform sulfate distribution throughout that time period.
Consequently, there is an uncertainty in time of the sulfate peak,
which, at maximum, is a few months. Second, there are different
indices used to capture El-Niño events [e.g., OEI, Oceanic Niño
Index (ONI)], which use a variety of differing geophysical obser-
vations to document El-Niño events, and they are not necessarily
exactly temporally equivalent to one another. The comparison of
the oxygen isotopic anomaly of sulfate aerosols with theOEI reveals
that higher Δ17O values are associated with elevated ozone column
densities measured by different satellites. The ENSO signal during
two earlier events, ENSO-I [1982–1983 (El Chichόn: OEI = 6.5,
Δ17O = 3.3‰)] and ENSO-II [1991–1992 (Pinatubo and Cerro
Hudson: OEI= 6,Δ17O= 4.5‰)], may have been confounded due
to the intense volcanic activities, which introduced, in addition to
the SO2, significant amounts of sulfate oxidized in the troposphere
with less Δ17O, thus diluting the higher Δ17O signal of S(IV)
oxidation in the stratosphere via OH radicals. The Δ17O of sulfate
and OEI track each other fairly well despite higher concentrations
of volcanic sulfate. The ENSO events in volcanically quiescent
periods manifested a higher O-isotopic anomaly and OEI [stron-
gest ENSO-III (1997–1998): OEI = 10.8, Δ17O= 4.2‰; moderate
ENSO-IV (1986–1987): OEI = 5, Δ17O= 3.8‰]. A significant in-
crease of total ozone during ENSO-III (1997–1998) was accom-
panied by decreased precipitation, producing extensive forest fires
in Indonesia, Australia, and South America (46, 47). The influence
of ENSOs on total columnar ozone has been attributed to the
variation in the tropopause height driven by changes of tropical
deep convection and alteration of Brewer–Dobson circulation (14,
48). These observations suggest that the Δ17O of sulfate aerosols
can be used to track moderate to strong ENSO events and the
variation in ozone concentration. To develop this possibility, the
following points must be addressed: Where does ozone-driven ox-
idation of S(IV) occur, and how is the observed variation in the
tropical upper tropospheric O3 (OEI) and ENSOs chemically as-
sociated withΔ17O of sulfate aerosols? It is known that tropospheric
air enters the stratosphere principally in the tropics within the In-
tertropical Convergence Zone (ITCZ, a thin and dynamic region
along the equator separating tradewinds between the Southern and
Northern Hemispheres) and transports poleward in the strato-
sphere as shown in Fig. 4 (11). The ITCZ thus links the troposphere
to the stratosphere and is an important corridor for the transport of
aerosol and trace gases to the stratosphere (49). The maximum
transport of water vapor also occurs in the ITCZ (44) in the vicinity
of the ENSO region, which also corresponds to the region of the
OEI measurements used in Fig. 1B. A comparison between
stratospheric water vapor and tropical sea surface temperatures
has demonstrated a strong correlation and an impact on the
strength of El-Niño (49). The influence of ENSOs on the total
column of ozone is also linked to the variation in the tropopause
height. Tropical deep convection and changes in Brewer–Dobson
circulation may account for the observed ozone enhancement

Fig. 2. Four-isotope plot shows Δ17O and δ18O of sulfate aerosols extracted
from the snow pit at the South Pole. A weak observed correlation indicates
mixing of various sulfates from different sources. Red and green rectangles
display variation in δ18O and Δ17O sources of sulfate. The blue rectangle is an
oxidation source with stratospheric (Strat.) OH/HO2 radicals (28, 39). The green
rectangle shows the range of pure hydrogenperoxideoxidation. The red square
denotes the value of atmospheric (Atm.) oxygen. Max., maximum. Primary
sulfate produced during fossil fuel combustion at high temperature has been
shown to possess δ18O values close to the atmospheric oxygen (51); however,
sulfate produced during biomass burning showed a range of δ18O values (50)
depending on biomass type. The observed dataset reflects the range of pro-
cesses contributing to the observed oxygen isotopic composition of sulfate.
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during ENSO periods (14, 48). Cumulatively, all components
needed to provide ENSO-related Δ17O enrichments are present.
There is coexistence of increased ozone and water content and
a dynamic mechanism of transport of aerosol into the strato-
sphere with poleward migration. The ozone-induced oxidation of
S(IV) via OH radicals is likely stratospheric and occurs during
transport (Fig. 4). In this model, large sulfate concentrations are
not required, simply a preferential ozone oxidation channel that
provides the heavy isotope-enriched sulfate. A detailed model
and discussion are far beyond the scope of this paper, but the
isotope measurements suggest that such experiments are war-
ranted. Our data indicate that the O-isotope anomaly of sulfate is
sensitive to changes in atmospheric dynamics and is faithfully
preserved in this record. A quasibiennial oscillation signal in the
Δ17O of nitrate extracted from the same set of aerosol samples
from the South Pole has shown a similar linkage (45).
In the coordinate system of Fig. 2, a source of sulfate with higher

δ18O and low Δ17O is required. An ozone-rich source would have
high δ18O values and also high Δ17O values. Various oxidants of
different oxygen isotopic composition (OH, HO2, H2O2, and O3)
can oxidize SO2 to SO4 (Fig. 2, red and green rectangles are
guidelines to demonstrate variations in δ18O with the maximal
Δ17O obtainable via aqueous phase O3 and H2O2 oxidation, and
the blue rectangle indicates stratospheric OH and HO2 radical
reactions, as well as the associated maximum isotopic anomaly).
Fig. 2 requires the presence of a specific source, but it must be
of higher δ18O and low Δ17O. Laboratory experiments, field
observations, and numeric simulation of sulfur oxidation (14, 28,
50, 51) have shown that the δ18O of sulfate coupled withΔ17O can be
used to distinguish between primary and secondary sulfates. Pri-
mary sulfate [i.e., S(VI) produced at the emission source] exhibits
a higher enrichment in δ18O = 20–45‰ and Δ17O = 0 (50–52).
Secondary sulfate is formed when SO2 is oxidized in the atmo-
sphere via homogeneous and heterogeneous pathways (51).
The δ18O of secondary sulfate thus represents a juxtaposition
of the highly variable water isotopic signature derived during SO2
oxidation processes at varying latitudes and altitudes (10, 53, 54).
A moderate correlation between δ18O of rainwater and δ18O(SO4)
(55) also indicated the complexity of using δ18O to predict sources

of sulfate in rainwater. Most primary sulfate is removed via wet
and dry deposition in the free troposphere; however, a fraction of
S(IV), carbonyl sulfide (OCS), and traces of S(VI) are transported to
the stratosphere from the ITCZ and at midlatitudes via deep
convection (7, 56), thus permitting gas phase oxidation via OH/
HO2 radicals in the stratosphere (30).
An unusual increase in SO4 concentration (∼100 ppb) and

oxygen isotope enrichment (δ18O ∼12‰ and Δ17O ∼3.7‰)
in 1990 are immediately followed by an increase in MSA (Fig. 3).
To explain this peak, we consider two possible scenarios. The
first is stratospheric volcanic emissions due to the presence of
a higher oxygen isotope anomaly in the sulfate. Total ozone map-
ping spectrometer (TOMS) and stratospheric aerosol and gas
experiment (SAGE) satellite data indicated no significant in-
crease in the global inventory of stratospheric aerosols loading
during 1989–1990 (57), ruling out stratospheric volcanic emis-
sions, and this leaves us with one option, a local sulfate source
such as Mount Erebus (167° 25′ E, 77° 30′ S). The Smithsonian
database reports a significant increase in SO2 emissions, up to
100 t/d during this period, which could be a potential source of
SO4 peak (www.volcano.si.edu/reports/bulletin/contents.cfm?
issue=3609). Volcanic emissions, despite their complexity, change
mostly SO4 concentration (58). The second possible scenario
is that biogenic sources, such as phytoplankton, emit DMS, which,
on oxidation with O3, H2O2, NOx, or ClOx, can produce MSA,
and ultimately an increase in nss-SO4 (59, 60). This observed
spike in MSA temporally followed by an increase in nss-SO4 is
consistent with a biological source. Higher resolution measure-
ments of MSA on the high Antarctic Plateau (61) (both inland
and coastal sites) indicated postdepositional losses of MSA and
nss-SO4 production via MSA oxidation. Future sulfur isotope
measurements of sulfate aerosols in this time period may help to
elucidate and quantify this very specific source and oxidation
process further.

Conclusion
The most significant observation of the sulfate multioxygen iso-
topic record reported here is that observed trends in the mass-
independent O-isotopic anomaly are apparently linked to the

Fig. 4. Schematic depicts transport and transformation of sulfur species into the stratosphere and deposition of aged sulfate aerosol in the ice at the South
Pole. The red-shaded area indicates a significant contribution of SO2 and SO4 aerosols to the SSA in the lower stratosphere, whereas the gray-shaded region
represents carbonyl sulfide (OCS) photolysis and contribution to the SSA. The blue area sandwiched between these layers represents the ozone layer. Al-
though O3 production is maximum in the tropics, it is transported to the poles, as shown by the dynamics of the stratosphere with magenta lines. SSA,
stratospheric sulfate aerosols; UT-LS exchange, air mass exchange at midlatitude between the upper troposphere and lower stratosphere.
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ozone variation in the tropical upper troposphere and lower
stratosphere via the OEI and sea surface temperature anomalies
in the El-Niño 3.4 region. The combined enhanced ozone levels
observed by satellites and elevated upward flow of air masses from
the Intertropical Convergence Zone may provide a source of
anomalous sulfate not present in non-ENSO years. The presence
of stratospheric volcanic emissions in two ENSO time slots also
shows that they exert a significant effect on the upper atmospheric
odd oxygen cycle, which our study suggests is captured in the sul-
fate O-isotopic record. Future measurements of different ENSO
periods in volcanically quiescent periods will help to quantify
clearly the unique fingerprints of ENSOs on the sulfate O-isotopic
anomaly. These results provide preliminary insight into ENSO-
driven climate fluctuations on the concentration of ozone and
S(IV) oxidation, and how this transported aerosol captures new
facets of chemical and transport history during moderate and se-
vere ENSO events. Understanding of the ENSO signal and its
frequency is important to understand the perturbation in the
tropical climate and its relevance to the global climate system.
The ENSO-driven climate patterns had a significant impact on the
proliferation and collapse of the Mayan civilization, as inferred
from the rainfall patterns preserved in the δ18O of stalagmites (62).
A higher resolution, multidecadal record of oxygen-triple isotopic
composition of sulfate aerosol is needed to investigate ocean-
atmosphere-biosphere interaction using a global comprehensive
Earth system model. The information can be used to assess so-
cioeconomic costs of climate vulnerabilities and to develop sus-
tainable solutions.

Materials and Methods
The surface snow samples were acquired to analyze oxygen-triple isotope
composition of both nitrate and sulfate [National Science Foundation polar
program, project South Pole Atmospheric Nitrate Isotopic Analysis (SPANIA)]
with the highest resolution (∼1-cm depth interval) from a snow pit (1 m ×
1 m) at the South Pole (45). Organic impurities from each aliquot were re-
moved from the composite samples (∼6-cm depth) by adding 2.0 mL of
peroxide (30% by volume) and further passing through polyvinyl pyrrolidine

C18 (Alltech) resins. Purified SO4 solution was converted to silver sulfate and
pyrolysed at 1,050 °C (14, 63) using a quartz tube. These samples were
combined in a prior study to obtain sufficient sample for the oxygen-triple
isotope measurements of nitrates, and the remaining solution was used for
oxygen-triple isotope analysis of sulfates. Oxygen-triple isotopic composition
was measured using a Thermo Finnigan Mat-253 Isotope Ratio mass spec-
trometer and corrected for high-temperature oxygen-isotope exchange with
quartz (64). The reported sample dates are calculated from an average an-
nual snow accumulation rate; therefore, actual dates in composite samples
may be shifted by ±4 mo, which defines the maximal uncertainty in time.
The oxygen isotopic anomaly is based on the nss-SO4 concentration. The sea
sulfate carries no O-isotopic anomaly (Δ17O = 0), and this component was
removed using sodium concentration as a tracer of sea salt (28). The sea salt
contribution is ∼3–7% at maximum at the South Pole, and the correction
factor is small.

The OEI is obtained by Ziemke et al. (65) from the variation in ozone
concentrations at tropical latitudes (15° S–15° N). The following ozone data
were acquired from four different satellites: TOMS, Earth probe TOMS, solar
backscatter UV, and Aura ozone monitoring instrument. The measured
zonal variability in ozone was verified with the O3 data obtained from the
Goddard Earth Observing System chemistry climate model and from the
microwave limb sounder vertical profile of O3, cloud ice, temperature, and
pressure. This comparison also confirmed that zonal variability in total column
ozone in the tropics is mostly caused by ENSO events and provides a direct
measure of the changes in tropospheric ozone levels (65–67).
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