Abstract
Visual responses of neurons in parietal area 7a are modulated by a combined eye and head position signal in a multiplicative manner. Neurons with multiplicative responses can act as powerful computational elements in neural networks. In the case of parietal cortex, multiplicative gain modulation appears to play a crucial role in the transformation of object locations from retinal to body-centered coordinates. It has proven difficult to uncover single-neuron mechanisms that account for neuronal multiplication. Here we show that multiplicative responses can arise in a network model through population effects. Specifically, neurons in a recurrently connected network with excitatory connections between similarly tuned neurons and inhibitory connections between differently tuned neurons can perform a product operation on additive synaptic inputs. The results suggest that parietal responses may be based on this architecture.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen R. A., Bracewell R. M., Barash S., Gnadt J. W., Fogassi L. Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque. J Neurosci. 1990 Apr;10(4):1176–1196. doi: 10.1523/JNEUROSCI.10-04-01176.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andersen R. A., Essick G. K., Siegel R. M. Encoding of spatial location by posterior parietal neurons. Science. 1985 Oct 25;230(4724):456–458. doi: 10.1126/science.4048942. [DOI] [PubMed] [Google Scholar]
- Andersen R. A., Mountcastle V. B. The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J Neurosci. 1983 Mar;3(3):532–548. doi: 10.1523/JNEUROSCI.03-03-00532.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andersen R. A., Snyder L. H., Li C. S., Stricanne B. Coordinate transformations in the representation of spatial information. Curr Opin Neurobiol. 1993 Apr;3(2):171–176. doi: 10.1016/0959-4388(93)90206-e. [DOI] [PubMed] [Google Scholar]
- Ben-Yishai R., Bar-Or R. L., Sompolinsky H. Theory of orientation tuning in visual cortex. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3844–3848. doi: 10.1073/pnas.92.9.3844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brotchie P. R., Andersen R. A., Snyder L. H., Goodman S. J. Head position signals used by parietal neurons to encode locations of visual stimuli. Nature. 1995 May 18;375(6528):232–235. doi: 10.1038/375232a0. [DOI] [PubMed] [Google Scholar]
- Connor C. E., Gallant J. L., Preddie D. C., Van Essen D. C. Responses in area V4 depend on the spatial relationship between stimulus and attention. J Neurophysiol. 1996 Mar;75(3):1306–1308. doi: 10.1152/jn.1996.75.3.1306. [DOI] [PubMed] [Google Scholar]
- Desimone R., Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18:193–222. doi: 10.1146/annurev.ne.18.030195.001205. [DOI] [PubMed] [Google Scholar]
- Douglas R. J., Koch C., Mahowald M., Martin K. A., Suarez H. H. Recurrent excitation in neocortical circuits. Science. 1995 Aug 18;269(5226):981–985. doi: 10.1126/science.7638624. [DOI] [PubMed] [Google Scholar]
- Felleman D. J., Van Essen D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991 Jan-Feb;1(1):1–47. doi: 10.1093/cercor/1.1.1-a. [DOI] [PubMed] [Google Scholar]
- Hatsopoulos N., Gabbiani F., Laurent G. Elementary computation of object approach by wide-field visual neuron. Science. 1995 Nov 10;270(5238):1000–1003. doi: 10.1126/science.270.5238.1000. [DOI] [PubMed] [Google Scholar]
- Kopecz K. Saccadic reaction times in gap/overlap paradigms: a model based on integration of intentional and visual information on neural, dynamic fields. Vision Res. 1995 Oct;35(20):2911–2925. doi: 10.1016/0042-6989(95)00066-9. [DOI] [PubMed] [Google Scholar]
- Kopecz K., Schöner G. Saccadic motor planning by integrating visual information and pre-information on neural dynamic fields. Biol Cybern. 1995 Jun;73(1):49–60. doi: 10.1007/BF00199055. [DOI] [PubMed] [Google Scholar]
- Maunsell J. H. The brain's visual world: representation of visual targets in cerebral cortex. Science. 1995 Nov 3;270(5237):764–769. doi: 10.1126/science.270.5237.764. [DOI] [PubMed] [Google Scholar]
- Mel B. W. Synaptic integration in an excitable dendritic tree. J Neurophysiol. 1993 Sep;70(3):1086–1101. doi: 10.1152/jn.1993.70.3.1086. [DOI] [PubMed] [Google Scholar]
- Moran J., Desimone R. Selective attention gates visual processing in the extrastriate cortex. Science. 1985 Aug 23;229(4715):782–784. doi: 10.1126/science.4023713. [DOI] [PubMed] [Google Scholar]
- Pouget A., Sejnowski T. J. A neural model of the cortical representation of egocentric distance. Cereb Cortex. 1994 May-Jun;4(3):314–329. doi: 10.1093/cercor/4.3.314. [DOI] [PubMed] [Google Scholar]
- Salinas E., Abbott L. F. Transfer of coded information from sensory to motor networks. J Neurosci. 1995 Oct;15(10):6461–6474. doi: 10.1523/JNEUROSCI.15-10-06461.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somers D. C., Nelson S. B., Sur M. An emergent model of orientation selectivity in cat visual cortical simple cells. J Neurosci. 1995 Aug;15(8):5448–5465. doi: 10.1523/JNEUROSCI.15-08-05448.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stemmler M., Usher M., Niebur E. Lateral interactions in primary visual cortex: a model bridging physiology and psychophysics. Science. 1995 Sep 29;269(5232):1877–1880. doi: 10.1126/science.7569930. [DOI] [PubMed] [Google Scholar]
- Van Opstal A. J., Hepp K., Suzuki Y., Henn V. Influence of eye position on activity in monkey superior colliculus. J Neurophysiol. 1995 Oct;74(4):1593–1610. doi: 10.1152/jn.1995.74.4.1593. [DOI] [PubMed] [Google Scholar]
- Zhang K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J Neurosci. 1996 Mar 15;16(6):2112–2126. doi: 10.1523/JNEUROSCI.16-06-02112.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]