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Abstract
Purpose—To carry out an integrative profile of human pancreatic ductal adenocarcinoma
(PDAC) to identify prognosis-significant genes and their related pathways.

Experimental Design—A concordant survival-based whole genome in silico array analysis of
DNA copy number, and mRNA and miRNA expression in 25 early-stage PDAC was carried out.
A novel composite score simultaneously integrated gene expression with regulatory mechanisms
to identify the signature genes with the most levels of prognosis-significant evidence. The
predominant signaling pathways were determined via a pathway-based approach. Independent
patient cohorts (n = 148 and 42) were then used as in vitro validation of the array findings.

Results—The composite score identified 171 genes in which expressions were able to define two
prognosis subgroups (P = 3.8e-5). Eighty-eight percent (151 of 171) of the genes were regulated
by prognosis-significant miRNAs. The phosphoinositide 3-kinase/AKT pathway and SRC
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signaling were densely populated by prognosis-significant genes and driven by genomic
amplification of SRC and miRNA regulation of p85α and CBL. On tissue microarray validation (n
= 148), p85α protein expression was associated with improved survival for all patients (P = 0.02),
and activated P-SRC (Y418) was associated shorter survival for patients with low-grade histology
tumors (P = 0.04). Interacting P-SRC and p85α revealed that they define two distinct PDAC
patient subgroups (P = 0.0066). Furthering the importance of these pathways, CBL protein
expression was associated with improved survival (P = 0.03) on a separate cohort (n = 42).

Conclusions—These pathways and related genes may represent putative clinical biomarkers
and possible targets of individualized therapy in the distinct patient subgroups they define.

Introduction
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related
deaths in the United States (1) and has an extremely poor overall 5-year survival rate of only
4%. Most patients present with advanced stage disease and have a median survival of less
than 1 year (2). Cytotoxic chemotherapy is marginally effective with standard gemcitabine-
or 5-fluorouracil–based regimens increasing PDAC median survival by less than 2 months
in advanced disease (3–5). Published phase III clinical trials of targeted molecular agents in
unselected PDAC populations have also not shown robust survival benefits (6–10).
Ultimately, our evolving understanding of significant genomic diversity in PDAC must be
used to better inform targeted drug design and delivery.

Recent in-depth exome sequencing showed individual PDAC tumors average more than 60
distinct alterations, the majority of which occur at low frequencies across all tumors. Only a
few high prevalence genomic changes were detected, including expected mutations in
KRAS and loss or inactivation of known tumor suppressor genes (e.g., TP53 and SMAD4).
Despite this genomic heterogeneity, all tumors had genetic alterations that were linked to 12
core signaling pathways (11). Follow-up work comparing patient-matched primary PDAC
tumors and subsequent metastases revealed acquisition of further mutations that varied by
metastatic site. Strikingly, founder mutations of each metastatic subclone could be traced
back to sequenced geographic subregions of the primary tumor (12, 13), providing new
insights into the genetic events and timing of PDAC initiation and malignant phenotype.
Notably, SMAD4 deletion has been the only genetic alteration from this work that has been
linked to patient survival (14).

Others have used gene expression microarray analyses to define molecular signatures
associated with PDAC disease progression. Stratford and colleagues (15) identified a 6 gene
signature in primary tumors that was associated with metastatic disease and predicted
shorter survival in an independent set of 67 patients. Collisson and colleagues (16) analyzed
primary PDAC from cell lines and a combination of clinical data sets to classify 3 distinct
PDAC molecular subtypes that were able to predict clinical survival, as well as response to
therapy in experimental models. Although such molecular profiling has provided valuable
information, the remarkable genomic diversity of PDAC and the small size of most patient
cohorts has clearly hindered the discovery of additionally biologically important molecular
changes.

As a means to effectively study diverse genomic alterations in a small patient data set, we
hypothesized that the identification and refinement of prognosis-related genes in PDAC
should be improved by increasing the depth of analysis for each tumor using multiple array
platforms. The potential for this type of multidimensional analysis was shown in a recent
prostate cancer study in which several pathways of known prognostic significance were
validated and new ones were additionally implicated (17). For our own survival-based
analysis of PDAC, individual gene expression changes associated with survival were
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matched to potential genomic or epigenetic modes of regulation by integrating microarray
results of mRNA expression with DNA copy number variation and miRNA levels. This
approach validated pathways implicated in pancreatic tumorigenesis and uncovered
previously unrecognized molecular events associated with poor prognosis. The expressions
of many identified genes were found to have associated miRNA alterations linked to
survival. These genes and their regulatory mechanisms represent promising candidates for
future studies addressing their function and evaluating their efficacy as predictive
biomarkers and/or targets for molecular-based therapies.

Materials and Methods
Patients and samples

All work was carried out with University of California, Los Angeles (UCLA) Institutional
Review Board approval. Three independent, nonoverlapping patient cohorts were used in
this study. The initial test cohort of 42 PDAC tumors and 7 nonmalignant pancreas samples
snap frozen at the time of surgery were used for microarrays. Of these, only samples with
tumor cell content more than 30% were chosen for final multiplatform analysis (n = 25) as
determined on representative hematoxylin and eosin (H&E) sections by a practicing
gastrointestinal pathologist (DWD). The second patient cohort (n = 42) was tumors isolated
from formalin fixed paraffin-embedded (FFPE) tissue blocks and used as a validation cohort
for quantitative PCR (qPCR). The third patient data set (n = 148) was tumors on a TMA
used as an immunohistochemistry (IHC) validation cohort. All clinicopathologic and
survival information for each patient cohort were extracted from a prospectively maintained
UCLA surgical database of pancreatic patients. Disease recurrence was assessed based on
biopsy, radiographic evidence, or death. The electronic medical record was used to
determine associated clinical and pathologic features, as well as disease-free and disease-
specific survival (DSS). Search of the Social Security Death Index was used to determine
overall survival. Survival analysis of the tissue microarray (TMA) cohort was limited to
overall survival. Disease-free, disease-specific and overall survival times were examined for
the microarray and qPCR validation cohorts. Survival intervals were calculated from date of
surgery to date of confirmed death or last patient contact.

Gene expression analysis
The gene expression was investigated by Affymetrix HGU133 Plus 2 Array on which
multiple probe sets might be used to measure expression of a single gene. Therefore, we
analyzed the data based on probe set IDs and used the highest absolute value/score among
multiple probe sets for the gene-based interpretation. Details of the array procedure and
normalization and filtering are detailed in the Supplementary Information. In brief, GCRMA
was used for normalization, and probe sets having presence calls in less than 30% of
samples were eliminated before further analyses. Cox scores (18) were used to determine the
correlation between individual probe set–based expression and disease-free survival (DFS)
time. Probe sets were then sorted based on the absolute values of their Cox scores.
Prediction analysis for microarrays (19), implemented by Bioconductor pamr package, was
then used to determine (i) if expression of the top-ranked probe sets could be used to predict
the sample outcome and (ii) the minimal probe sets to define 2 prognosis groups with the
highest statistical significance.

miRNA expression analysis
The Exiqon miRNA arrays (miRCURY LNA microRNA Array v.11.0 -hsa, mmu & rno)
were used for measuring genome miRNA expression. Array intensities were adjusted and
normalized by variance stabilizing transformation implemented in the Bioconductor vsn
packages. The expression profile of each miRNA was represented by the average expression
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of its multiple spots on the array. Statistical analyses for the association between miRNAs
and survival was conducted as detailed for gene expression analysis.

DNA copy number analysis
Affymetrix SNP 6.0 arrays were used to detect copy number aberrations (CNA) in tumor
samples. CEL files produced by Affymetrix GeneChip Command Console (AGCC) software
were imported into Affymetrix GTC 3.0.1 and analyzed by the Copy Number Analysis
workflow with HapMap270 as the reference model. Regions with CNAs were then
annotated with gene symbols base on the annotation file from the UCSC genome browser
(build hg18). Only those genes in which loci had CNA present in at least 20% of the tumors
were included for survival analysis in which Cox proportional hazards model was used to
determine whether the group with CNA at a given locus was at higher risk than the group
without CNA.

Integrating multiple dimension data to identify signature genes with multiple levels of
evidence

In this meta-analysis, a composite score was generated to quantitatively measure gene
prognosis significance based on the multiple array platforms and is described in detail in the
Supplementary Information. In brief, the composite score was developed based on the
assumptions that besides being correlated to survival, expression of the gene of interest is (i)
correlated to its copy number, (ii) anticorrelated to its regulating miRNA, and (iii) such
changes in copy number and miRNA expression are also associated with prognosis.
Mathematically, the operators of the survival-based composite score for each gene included
the following: (i) rank of gene expression Cox score; (ii) binary CNA score (0 or 1)
requiring both a HR P < 0.2 and concordance with gene expression change; (iii) rank of
miRNA Cox score with required anticoncordance between miRNA and corresponding gene
expression. The miRNA operator was further strengthened if a prognosis-significant CNA
overlapped with the miRNA coding region.

Pathway and gene ontology analysis
Survival signature genes were annotated by databases in the public domain: the KEGG and
Molecular Signatures Databases (20). Significant enrichment of pathway/gene set was
determined by Fisher exact test.

Validation with TMA
The PDAC TMA has been previously detailed (21) and represents a totally separate,
nonoverlapping cohort of patients. Immunohistochemistry was visualized with the
VECTASTAIN ABC Elite Kit (Vector Laboratories) following heat-induced antigen
retrieval (0.01mol/L citric acid buffer, pH 6.0) and overnight incubation with primary
antibodies (1:100 dilution), including P-SRC (Y418; Abcam, ab47411) or p85α (Epitomics,
catalog: 1675-1). Three separate 1.0 mm cores for each tumor in the TMA were
independently scored by 2 blinded observers using semiquantitative histoscores (range 0–
300). Histoscores were the product of staining intensity (0–3) and percentage of tumor cells
staining at that intensity (0–100). If any core’s histoscore differed by more than 30 points
between observers, a revised score was assigned by consensus evaluation. Median histoscore
of both observers was used for analysis.

Real-time qPCR of pancreatic cancer resection samples
For qPCR validation, H&E slides from a separate nonoverlapping cohort of 42 additional
PDAC patients resected at UCLA between 2002 and 2009 were reviewed by a practicing
gastrointestinal pathologist (DWD) to target the extraction of three 3 mm cores from areas
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of viable tumor in the corresponding FFPE blocks. RNA was isolated with the Recover All
Total Nucleic Acid Isolation Kit for FFPE (Ambion). Total RNA was reverse-transcribed by
random hexamer primers (High Capacity cDNA Reverse Transcription Kit; Ambion). SYBR
green real-time qPCR assays were conducted on generated cDNA using a Roche
LightCycler 480 Real-Time PCR System. Reaction parameters and primers sequences are
available upon request and were optimized for FFPE-derived cDNA based on the use of
short (<90 bp), intron-spanning amplicons. Relative gene expression was normalized to
ACTB as housekeeping gene.

Statistical analysis
Survival estimate for each subgroup was generated by the Kaplan–Meier method. Log-rank
test was used to compare Kaplan–Meier curves. Multivariate Cox proportional hazards
models were used to test statistical independence and significance of multiple predictors.

Results
Survival-based integrated genomic and gene expression analyses

The overall strategy of our survival-based study is outlined in Supplementary Fig. S1.
Integrative multiplatform array analysis was used to simultaneously examine gene
expression and regulatory mechanisms from an initial cohort of 25 patients to identify and
refine genes and pathways with biologic significance. Array analysis was conducted on
snap-frozen primary patient tissue samples to directly link gene expression to genomic and
epigenomic changes in the in situ context of primary tumor and to extract a sufficient source
of high quality nucleic acid for simultaneous mRNA, miRNA, and SNP microarray analysis.
As our goal was to identify genomic alterations and expression changes in neoplastic ductal
epithelial cells, we limited our analysis to primary tumor samples in which estimated tumor
cell content exceeded 30% (median 60%, ranging from 35%–90%). This cutoff was chosen
after initial unsupervised clustering of microarrays comparing mRNA expression from
normal pancreas, chronic pancreatitis, and pancreas tumor samples showed tumors with low
tumor cell content (<30%) more frequently clustered with normal and chronic pancreatitis
controls (data not shown), consistent with previous work showing a large stromal content
can confound array readouts in PDAC (22). Specific molecular alterations identified through
this integrated genomic analysis were then independently validated in separate,
nonoverlapping patient cohorts by immunohistochemistry (n = 148) or qPCR (n = 42), in
which clinicopathologic characteristics and survival outcomes largely overlap
(Supplementary Table S1 and Supplementary Fig. S2).

Table 1 provides the clinical and histopathologic parameters for the 25 patients. All patients
had early-stage PDAC and received adjuvant chemotherapy after surgery. At the time of
analysis, 16 patients had recurrent disease with a median DFS of 13.3 months, and 10 of
them had died of disease with a median DSS of 20.6 months. Given the number of deaths
and relatively short follow-up time (median 12.4 months for survivors) in our cohort, DFS
was chosen as the outcome measure for our analysis. DFS is considered an accurate metric
of survival outcome, as most patients with recurrent PDAC will succumb to disease. The
clinicopathologic characteristics and survival outcomes of our cohort was similar to other
published large cohorts of early-stage PDAC (23).

Copy number variations and mRNA and miRNA expression alterations as predictors of
PDAC survival

We first individually analyzed mRNA expression, miRNA expression, and DNA copy
number to determine DFS-associated changes in each microarray platform. For mRNA
analysis, we used a nongrouping-based approach addressing survival as a continuous
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variable. The advantage of this approach over a grouping-based approach is that it does not
set an arbitrary survival time threshold for dichotomization and thus better accounts for
tumors with a continuum of clinical behavior (18). A semisupervised clustering
methodology was used whereby a Cox score was first generated for each gene based on a
direct correlation between its expression and DFS. Signature genes were then prioritized and
selected based on the absolute value of their Cox scores. Using this method, the most
accurate gene set is selected from a series of prediction analyses whereby different cutoff
points are iterated to establish an optimal panel of genes accurately separating different
prognosis subgroups. The top 500 scored probe sets (Supplementary Table S2) from this
approach included 186 upregulated and 314 down-regulated transcripts able to segregate 2
highly significant and distinct prognosis groups (median DFS = 7.7 vs. 25.3 months; log-
rank test P = 0.000038; Fig. 1A). The nongrouping approach was also used for separate
miRNA microarray analysis, which yielded a panel of 31 miRNAs (1.8% of the total) able to
robustly segregate 2 prognosis groups (median DFS = 9 vs. >36 months; P = 0.00047; Fig.
1B and Supplementary Table S3).

For survival-based analysis of DNA CNAs, CNAs for each tumor were determined by
comparing Affymetrix SNP microarray to the human HapMap reference model using
Affymetric GTC software. CNAs were then mapped to specific gene loci using UCSC
genome build hg18. Because of the size of our cohort, we focused on CNAs occurring at
higher frequency (≥20% of the samples) and relaxed the cutoff to include Cox values
approaching significance (P < 0.2). High frequency CNAs were clustered on chromosomes
1, 7, 8, and 20 for amplifications and chromosomes 6, 9, 17, and 18 for deletions (Fig. 1C,
top). However, among them, the prognosis-significant CNAs (Fig. 1C, bottom) were located
on specific loci, including amplifications on chromosomes 7, 11, 19, 20, and 22, and
deletions on chromosomes 6 and 9. We identified CNAs associated with a total of 68 genes
that optimally segregated patients into 2 statistically significant prognosis groups (median
DFS = 9.7 vs. 25.0 months, log-rank test P = 0.0063, Fig. 1D and Supplementary Table S4).

Integrated molecular analyses further refines genes of prognostic importance in PDAC
Although our initial analysis showed a large number and variety of molecular alterations
correlated with DFS in PDAC, it was less clear which alterations mechanistically link to the
malignant phenotype or represent clinically useful biomarkers. Although analysis of larger
patient data sets can help address these questions, the cost and availability of large PDAC
patient data sets are limiting. As an alternative, we hypothesized that relevant associations
could be strengthened and refined in our cohort through an integrated assessment of gene
expression in conjunction with concordant changes in genetic and epigenetic regulation.

We merged results from all 3 microarray platforms to generate a single composite score that
integrates CNA and levels of mRNA and miRNA expression (see Supplementary Fig. S1
and Supplementary Information). To associate genes with miRNAs, a list of 2.1 million
potential miRNA–mRNA seed-match pairs were first generated from data in the public
domain, including experimental evidence in TarBase (24) and predictive sequence analysis
using TargetScanS (25) and miRbase (26). Next, each component in the composite score
was given a weight based on its ability to independently identify 2 prognosis groups.
Individually, mRNA expression was the most robust predictor of DFS in our analysis,
followed by miRNA expression and CNA changes, as determined by the log-rank P values
generated from each platform (Fig. 1).The log10 transformations of theseP values were used
to weight each platform’s contribution to survival in the final composite score calculation
for each gene, whereby a gene’s mRNA expression was weighted most heavily, followed by
its linked miRNA alterations and finally CNA (see Supplementary Methods). The composite
score also took into account whether there was concordance between CNA gene expression
(e.g., amplification associated with higher gene expression) or anticoncordance between
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miRNA gene expression (e.g., as miRNAs predominantly will repress target gene
expression). If these conditions were not met, the component was not included. Based on
these criteria, our integrated composite score yielded a refined list of 171 signature genes
(represented by 200 probe sets) that accurately segregated patients into 2 statistically
significant prognostic groups (median DFS = 8.6 vs. 20.6, P = 0.001, Fig. 2A and B and
Supplementary Table S5). From this list, 134 genes had corresponding changes in miRNA
expression, 20 genes had corresponding changes in CNA, and 17 genes shared
corresponding changes in both miRNA expression and CNA (Fig. 2C). Importantly, these
results highlight a strong link between miRNAs regulated mechanism and survival outcome
in PDAC.

Pathway-based analysis of signature genes links PDAC survival to PI3K and SRC
signaling pathways

We next carried out survival-based pathway and gene ontology analyses of our integrated
composite gene signature. Pathways most highly populated with survival correlated genes
included ERBB signaling, apoptosis, purine metabolism, focal adhesion and insulin
signaling (Supplementary Table S6). Therefore, our data offers survival-based correlations
to support an existing literature that links these pathways to pancreatic tumorigenesis (27–
31). Our data also offer potential insights into novel mechanisms regulating these pathways
and their relationship to clinical disease progression. Several survival-correlated genes in
our integrated composite signature uniformly link poor prognosis to changes that will result
in upregulation of PI3K/AKT/mTOR and SRC signaling (Fig. 3). For instance, the
expression of EGFR, a potential activator of both AKT and SRC signaling, was associated
with worse prognosis in our analysis (Cox score +2.77), whereas that of CBL, a ubiquitin
ligase able to negatively impact EGFR (32) or SRC (33) expression, correlated with
improved survival in our analysis (Cox score −2.4). PIK3R1, which encodes the class Ia
PI3K regulatory subunit p85α that antagonizes PI3K/AKT signaling, also correlated with
improved survival (Cox score −2.5). Prognosis-linked changes in gene expression were
more frequently correlated with prognosis-significant miRNA changes, implicating miRNAs
as a critical factor in the malignant phenotype of PDAC (see Supplementary Table S3). For
example, our data suggested prognosis-linked expression PIK3R1/p85α mRNA could be
mediated by miRNA 519d, which is (i) broadly conserved among vertebrates, (ii) predicted
to bind to the 3′ untranslated region of PI3KR1, (iii) inversely correlated with PIK3R1
expression in our analysis, and (iv) an independent predictor shorter DFS (miRNA
expression Cox score +2.42).

Highlighting the value of the integrated composite score over gene expression alone, SRC
was not identified on independent mRNA array analysis, as it showed only a weak
nonsignificant trend toward worse prognosis (Cox expression score +1.22). However, SRC
was subsequently captured as a high ranking gene (#21) in our integrated composite
signature when its prognosis-significant (Cox HR=4.1, P=0.016) genomic amplification was
considered with mRNA expression. Prognosis-related dysregulation of SRC was also
inferred from our subsequent pathway analysis. SRC activation can occur through integrin-
FAK–dependent (34, 35) or FAK-independent (36) mechanisms facilitated by PTPRA,
which was associated with worse prognosis in our integrated composite signature (Cox score
+2.24). ARFGAP1, which also correlated with worse prognosis in our analysis (Cox Score
+1.62), has been shown to potentate SRC downstream signaling via its regulation of the
actin cytoskeleton and, leading to enhanced cell motility (37). Interestingly, SRC, PTPRA,
and ARFGAP1 are all located on chromosome 20. Although SRC is regulated by
amplification, both PTPRA and ARFGAP1 can be regulated by amplification and by
miR541, which was inversely correlated with DFS (Cox score −3.12), again revealing the
strength of our integrated approach.
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Validation of molecular signatures
To validate the predictive value of genes in our integrated composite signature, we chose to
focus on SRC and the PI3K/AKT signaling given that (i) they were populated with centrally
located prognosis-significant genes, (ii) they are known to be dysregulated in human PDAC
(35, 38), and (iii) clinically available small-molecule inhibitors targeting each have shown
promise in preclinical models and phase I and II clinical trials (39, 40). For validation, we
carried out IHC to determine levels of p85α and activated SRC phosphorylated at tyrosine
position (Y419) using a TMA consisting of a separate large cohort (n = 148) of treatment-
naïve, resected stages I and II PDACs. This TMA is previously detailed (21) and is similar
to other large patient cohorts of early-stage PDAC in which pathologic stage, lymph node
status, and histologic tumor grade were each significantly correlated with survival. The
overall survival of patients in this cohort is similar to those in the in silico analysis (median
24.2 vs. 19.8 months, respectively), given the difference in follow-up times (Table 1 and
Supplementary Table S1). IHC staining for each tumor was determined semiquantitatively
by histoscore, with a broad staining distribution seen for each antibody across the TMA
(Fig. 4B and C). For each IHC marker, patients were dichotomized on a histoscore cutoff
value of 150, chosen to identify groups sufficiently populated for statistical power analysis
and that minimized the chance of assigning patients with small differences to opposite
groups. Neither P-SRC nor p85α expression was associated with various clinicopathologic
factors, with the exception that low (includes well and moderately differentiated) histologic
grade tumors have high p85α protein expression (P = 0.00062, χ2 test).

By Kaplan–Meier survival analysis, high p85α protein expression significantly correlated
with better survival in the TMA (median survival 28.7 vs. 19.4 months, log-rank test P =
0.02, Fig. 5A), whereas high P-SRC expression did not significantly correlate with
prognosis (median survival 21.1 vs. 25.6 months, P=0.45). We next examined whether P-
SRC expression significantly correlated with survival in subgroups of patients stratified first
on the strong independent prognostic factors of node status (pN0 or pN1) or tumor grade
(low or high). High P-SRC staining significantly associated with worse survival in the
subgroup of patients with low-grade tumor histology (median survival 23.2 vs. 42.5, P =
0.04, Fig. 5B), but not in the subgroup with high-grade tumor histology or either subgroup
based on node status (data not shown).

We next addressed a potential interaction between p85α and P-SRC status by examining
various combinations of dichotomized groups. Tumors with combined low P-SRC and high
p85α had significantly better survival relative to any of the other paired combinations when
considered individually (Fig. 5C) or in aggregate (median survival = 36.6 vs. 20.4 months, P
= 0.0066, Fig. 5D). Multivariate Cox proportional hazards analyses, controlling for LN and
grade, showed that high p85α was a near significant independent predictor of improved
overall survival (HR 0.690, P = 0.068), while the combination of low P-SRC and high p85α
was a significant independent predictor of improved survival in the TMA (HR = 0.53, P =
0.02; Table 2). Of note, further IHC staining of whole tissue sections of recently resected
PDACs found that either p85α or PTEN loss appeared to correlate with enhanced PI3K/
AKT signaling, as detected by P-AKT and P-S6 (Supplementary Fig. S3). Although in need
of prospective validation and further mechanistic evaluation, these results suggest tumors
with combined lower signaling activity for both SRC (as detected by the surrogate of
reduced P-SRC) and PI3K-AKT (as detected by the surrogate of increased p85α) may define
a subset of patients with more favorable clinical outcome. These or other surrogate markers
of pathway activation may be especially useful in discriminating patients with more or less
aggressive clinical disease and assessing the use of drugs targeting these pathways.

We finally sought to validate the finding that CBL was linked to prognosis in our integrated
composite signature (Fig. 3). In the absence of a reliable IHC assay, we pursued survival-
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based quantitative PCR analysis of CBL normalized to ACTB in a separate cohort of 42
PDAC samples; these patients had a similar DSS with the array and TMA cohorts (25.4 vs.
19.8 vs. 24.2 months, respectively), given the differences in follow-up times (Table 1 and
Supplementary Table 1). Patients were again dichotomized into groups with low versus high
CBL expression, the latter of which significantly correlated with better survival (median
survival 44.3 vs. 20.6, P = 0.03, Fig. 5E).

Discussion
The large number and wide range of genetic alterations that characterize pancreatic cancer
present both significant challenges and opportunities for improving our understanding and
treatment of this highly aggressive and lethal malignancy. Seminal large-scale genomic
sequencing studies of PDAC offer a tantalizing spatial and temporal picture of the genomic
alterations occurring in both primary tumors and metastatic lesions, but must also now be
examined in greater detail to establish their association with the malignant phenotype of
PDAC (11–13). We have adopted an integrative approach to identify and prioritize genes of
potential importance in PDAC. Our survival-based approach involved multidimensional
analysis of gene expression and genomic and epigenomic regulatory mechanisms. This
novel strategy allowed us to identify and refine prognosis-significant genes, some of which
would not have been identified based on expression alone (e.g., SRC). We also highlight
several observations based on our integrated composite gene signature and subsequent
pathway and gene ontology–based analysis.

Many of the pathways enriched for survival-correlated genes in our analysis have already
been implicated in pancreatic cancer including ERBB, focal adhesion, insulin signaling, and
MAPK pathways (Supplementary Table S6). Several of these pathways are linked by EGFR,
which itself seems in our integrated composite signature. This is not unexpected as it has
been shown that EGFR is overexpressed and associated with disease progression and poor
prognosis in PDAC (30, 31). Apart from EGFR, our integrated composite signature
contained several additional prognosis-associated genes linked to both SRC signaling and
the PI3K/AKT pathway. These included SRC, PIK3R1/p85α, and CBL, important
regulatory components that we further linked to PDAC survival in separate validation
cohorts by either protein or gene expression.

The PI3K/AKT pathway can promote both PDAC initiation and invasive cancer
progression. AKT activity is enhanced in up to 60% of PDAC tissues and cell lines (38).
More recently, we showed PI3K pathway activation is critical for the onset and acceleration
of tumors in mice with conditional Kras activation and Pten deletion (41). The factors
responsible for PI3K/AKT pathway dysregulation in PDAC remain unresolved. Activating
mutations of the p110 subunit of PI3K are rare in PDAC (42), as are mutations or deletions
of PTEN (43). To address this issue, Ying and colleagues (44) recently found that AKT
activation is increased in 68% of PDAC, but only less than half could be explained by
genomic variation of AKT or PTEN. This leaves open other potential mechanisms of AKT
activation in PDAC. Although its expression may be silenced via DNA methylation (45),
PTEN expression did not correlate with survival in our analysis. Instead, our data offer
potential alternative mechanisms for PI3K/AKT/mTOR dysregulation in PDAC. These
include increased expression of the upstream receptor tyrosine kinase EGFR and
downregulation of the p110 regulatory subunit p85α encoded by PI3KR1, possibly through
silencing mediated by prognostically-linked miR519d. As validation of these observations,
we showed p85α protein expression to be inversely correlated with overall survival in our
large PDAC TMA cohort. Likewise, either p85α or PTEN loss was found to further
correlate with increased P-AKT and P-S6 status as measured in a small cohort of PDAC
tumors by IHC (Supplementary Fig. S3).
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Our findings are consistent with previous studies reporting higher levels of SRC expression
are associated with worse DFS in PDAC (35, 46). SRC is the signature member of a family
of nonreceptor tyrosine kinases able to mediate diverse effects on cellular proliferation,
differentiation, survival, motility, and angiogenesis (47). It is activated through multiple
mechanisms, including via integrins and membrane-bound receptor tyrosine kinases (e.g.,
EGFR; ref. 36). SRC overexpression and its activation (as detected by Y419
phosphorylation) is seen in most PDACs (48, 35). Likewise, mice with conditional Kras
activation and deletion of the SRC inhibitory kinase Csk develop invasive PDAC more
rapidly and at higher prevalence than those with intact Csk (49). Our integrated composite
signature and subsequent IHC validation study of P-SRC identify a potentially important
association between SRC activation and clinical disease progression in PDAC. Our results
here also provide potential mechanisms of SRC dysregulation in PDAC. Genomic
amplification of the SRC locus on chromosome 20 was found in 6 of the 25 patients (25%)
and was independently correlated with worse prognosis (HR = 4.1, P = 0.016). In addition to
genomic amplification or its possible activation by EGFR, SRC signaling could presumably
be dysregulated in PDAC via changes in CBL (Fig. 3), which was correlated with better
prognosis in both our initial analysis and separate validation cohort. Although our data are
correlative at this point, it raises the intriguing possibility that CBL may act as linchpin
molecule regulating SRC and/or PI3K/AKT signaling based on its ability to act as ubiquitin
ligase targeting both EGFR and SRC (32, 33).

To our knowledge, this represents the first survival-based integrated analysis of molecular
changes in PDAC that considers the multiple dimensions of mRNA, miRNA, and CNA. Our
approach offers a paradigm for future larger and more complex multidimensional studies
seeking to link clinical phenotype with the highly diverse molecular alterations that define
PDAC or other cancer types. Although our study is a preliminary and retrospective analysis
of PDAC patients with resected disease, it provides several candidate biomarkers with the
potential to stratify risk for disease progression or predict response to molecular targeted
therapy. Further prospective and mechanistic studies are not only needed to validate the
prognostic or predictive value of these markers following surgical resection, but also to
establish their potential use in the nonoperative or neoadjuvant setting. Regardless, we have
provided multiple lines of correlative data showing that dysregulation of the PI3K/AKT
pathway and SRC signaling are linked to PDAC clinical disease progression. These data are
strong rationale for future studies seeking to link prognostically significant signature genes
mechanistically to PI3K/AKT or SRC dysregulation and explore their utility as predictive
biomarkers and targets of molecular therapy in the subsets of PDAC patients they define.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance

Despite evidence of the heterogeneous genomic and molecular changes associated with
pancreatic ductal adenocarcinoma (PDAC) tumorigenesis, little is known about biologic
subsets of tumors to guide patient stratification and individualized therapies. Recent
phase III trials with molecular agents have neither resulted in robust survival benefits nor
attempted to stratify patients prior to randomization. We use a novel integrative survival–
based genomic and molecular array analysis of human PDACs to derive a composite
score that ranks genes based on expression and regulatory mechanisms. We find that
miRNA regulation plays a critical role in the malignant phenotype of PDAC. This
approach shows that dysregulated phosphoinositide 3-kinase/AKT or SRC signaling is
significantly associated with distinct patient subgroups with more aggressive disease.
These pathway-specific genes and miRNAs represent potentially useful clinical
biomarkers and targets of individualized therapy for well-defined patient subgroups.
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Figure 1.
Independent mRNA, miRNA, and SNP array analyses reveal signature sets predicting
prognosis. Heat map and Kaplan–Meier (KM) survival curves of stratified subgroups based
on mRNA expression of 500 transcripts (A) and 31 miRNA with highest absolute Cox
scores (B). C, genomic location of high (>20% of patients) frequency CNAs (top) and the
subset also associated with prognosis (HR P < 0.2; bottom). Heat map and survival curves
for subgroups defined by an unsupervised clustering approach of signature CNAs (encoding
68 genes) using Ward's method for agglomeration and Manhattan function for distance
metric.
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Figure 2.
Unsupervised classification of the top 171 genes from the integrated composite score
significantly predicts survival. A, Heat map of gene expression, their regulating miRNA,
and CNA of local loci. The 2-mean method was used to stratify patients based on gene
expression. B, Kaplan–Meier survival curves of the 2 stratified groups (LRT P: 1e-3). C,
Venn diagram illustrating the distribution of regulatory mechanisms (CNA and miRNA)
controlling expression of the 171 composite score genes.
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Figure 3.
Pathway based analysis of high ranking composite score genes reveals key signaling
pathways associated with PDAC clinical progression. The diagram depicts putative
interactions of highly ranked poor (red) and good (green) prognosis-associated genes from
the composite signature in relation to SRC signaling or the PI3K/AKT/mTOR pathway.
Genes not highlighted in green or red are implied.
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Figure 4.
p85α and P-SRC immunohistochemistry of UCLA TMA. A, representative IHC from 3
tumors shows variable positivity for p85α and/or P-SRC. B, cumulative distribution of p85α
and P-SRC histoscores across all tumors.
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Figure 5.
p85α and P-SRC expression predicts PDAC survival in independent validation cohorts.
Kaplan–Meier (KM) curves for dichotomized groups of low (blue) versus high (red) IHC
expression on the TMA for p85α in the full cohort (A) or P-SRC for tumors of low grade
histology (B). KM curves are also shown for various combinations of both markers (C) or
the single group with combined low P-SRC and high p85α versus all other combinations
(D). E, KM curves of dichotomized low (blue) versus high (red) CBL mRNA expression in
a separate qPCR validation cohort of 42 resected PDAC samples.
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Table 1

Clinical, histopathologic, and survival information for the 25 patients used for the in silico array analysis

Factor Subcategory n (%)

Total samples 25

Age, y Median (range) 67 (49–85)

<65 9 (36%)

≥65 16 (64%)

Gender Male 12 (48%)

Female 13 (52%)

Tumor location Head 24 (96%)

Tail 1 (4%)

Operative technique Whipple 22 (92%)

Distal pancreatectomy 1 (4%)

Total 1 (4%)

Tumor diameter, cm Median (range) 3.4 (1.8–5.9)

<2.5 8 (32%)

≥2.5 17 (68%)

T stage 2 2 (8%)

3 23 (92%)

Resection margins Positive 4 (16%)

Negative 21 (84%)

Tumor differentiation Well 1 (4%)

Moderate 13 (52%)

Poor 11 (44%)

Lymph nodes Negative 8 (32%)

Positive 17 (68%)

Lymphovascular invasion Absent 5 (20%)

Present 18 (72%)

Perineural invasion Absent 2 (8%)

Present 21 (84%)

AJCC stage 1 2 (8%)

2 23 (92%)

3 0 (0%)

DFS, months Median 13.2

DSS, months Median 20.6

Follow-up survivors, mo Median (range) 12.4 (3.8–32.5)
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Table 2

Multivariate analysis of p85α and P-SRC protein expression on the UCLA TMA (n = 148)

Parameters p85α based p85α and
P-SRC based

HRa Pb HRa Pb

Positive pN 1.75 0.005 1.6 0.02

High grade 1.73 0.007 1.8 0.003

High p85α 0.69 0.068 — —

High p85α & low P-SRC — — 0.53 0.02

a
HR less than or more than 1 indicates decreased or increased risk of death for the listed variable, respectively.

b
P from the Wald statistic in which null hypothesis is the corresponding coefficient β = 0 (i.e., HR = 1) in Cox proportional hazard model.
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