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Abstract
This review outlines the recent progress made in developing more accurate and efficient solutions
to model electrostatics in systems comprised of bio-macromolecules and nano-objects, the last one
referring to objects that do not have biological function themselves but nowadays are frequently
used in biophysical and medical approaches in conjunction with bio-macromolecules. The
problem of modeling macromolecular electrostatics is reviewed from two different angles: as a
mathematical task provided the specific definition of the system to be modeled and as a physical
problem aiming to better capture the phenomena occurring in the real experiments. In addition,
specific attention is paid to methods to extend the capabilities of the existing solvers to model
large systems toward applications of calculations of the electrostatic potential and energies in
molecular motors, mitochondria complex, photosynthetic machinery and systems involving large
nano-objects.
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Introduction
The macromolecular stability, dynamics and interactions are governed by a precise balance
of various forces among which the electrostatics plays a prominent role. The reason for that
is the fact that practically all atoms carry partial charge and the distance between atoms are
of the order of several angstroms. At such conditions, the magnitude of the electrostatic
force is comparable to and even exceeds some of the other components. In addition, the
main difference between electrostatics and other effects and energies is that pH- and salt-
dependent effects are primarily electrostatics in origin. Taking all these facts together,
indeed modeling of electrostatics is must for understanding the effects in molecular
biophysics[14, 15, 87, 97, 164, 173, 184]. A collection of relevant papers can be found in the
special issues of the journal Communications in Computational
Physics[118, 121, 127, 148, 156, 183], where various methods for modeling electrostatics and
their applications in molecular biology are presented.

However, while the modeling of electrostatic potential and the corresponding energies is an
important task, accomplishing the task is not trivial. In explicit-solvent models the difficulty
comes from the large number of atoms (macromolecular and water atoms) which have to be

*) corresponding author: ealexov@clemson.edu.
Chuan Li: chuanli@clemson.edu
Lin Li: lli5@clemson.edu
Marharyta Petukh: mpetukh@clemson.edu

NIH Public Access
Author Manuscript
Mol Based Math Biol. Author manuscript; available in PMC 2013 November 04.

Published in final edited form as:
Mol Based Math Biol. 2013 March 1; 1: . doi:10.2478/mlbmb-2013-0002.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



simulated while computing their mutual interactions at each step of the simulation. Having
in mind the long-range effect of electrostatic interactions, many existing modeling packages
apply a cut-off for electrostatic interactions to speed up the calculations or utilize Particle-
Mesh-Ewald (PME)[1, 39, 140] and fast multipole methods (FMM)[12] to account for it.
Combining this with the potential problems of reaching convergence as the size of the
system gets large, modeling large systems with explicit methods is still a challenge[99],
although significant progress has been made in developing fast molecular dynamics
packages such as NAMD[91, 132, 170], GROMACS[137, 161] and the development made by
D.E. Shaw's group[62, 133, 138], just to mention some. On the other side of the spectrum are
methods utilizing continuum electrostatics, which generally consider the water as continuum
medium with a high dielectric constant, while the macromolecule(s) is treaded as a cavity
with a low dielectric constant[15, 22, 87]. These approaches have the advantages of modeling
the system at equilibrium, so convergence is not an issue, and are much faster than the
explicit methods. However, it comes with the price of losing most of the atomic details,
which in cases involving specific macromolecular-water molecules interactions may lead to
significant error. Hybrid methods do exist as well, but the main problem arises in modeling
the interface and interactions between the explicit and implicit phases[65].

In this review we will focus on a particular subset of continuum electrostatic approaches,
namely the approaches utilizing the Poisson-Boltzmann equation (PBE) to deliver the
electrostatic potential and energies (see the recent excellent review[118]). The popularity of
PBE in macromolecular electrostatics is due to the fact that it is a solution of a well-defined
physical problem and that there are many computational techniques to obtain the solution of
the PBE for irregularly shaped objects. Combined with the ever increasing capabilities of
modern computers and computer clusters, the methods based on the PBE enjoy a huge user
base and are used in many biophysical applications. Such a demand prompted many groups
to develop software and web-based resources to utilize PBE method[144, 153, 160].

In our opinion, the methods utilizing PBE and the efforts in developing new or improving
existing solutions can be roughly grouped into two main categories: (a) mathematical and
computational developments to improve the PBE solution provided a well-defined system
made of two or more dielectric regions and (b) physics-based approaches to better capture
the affects originating from atomistic nature of the macromolecule(s) and water phase.
Although these groups of methods share the common ultimate goal to better model
macromolecular electrostatics, they differ in their emphases and approaches and will be
outlined in separate sections of the review.

This review will also outline the progress made in developing faster PBE solvers capable to
handling large systems[17, 106] (larger than thousands of Angstroms). Such a development
was inspired by the availability of atomic structures of large macromolecular assemblages
typically obtained via combined efforts of X-ray crystallography and electron microscopy.
Thus, recently large assemblages of mitochondria complex[8], photosynthetic
machinery[2, 66], ribosome complex[67, 73, 155] and many others [41, 53] were obtained.
Frequently such complexes are involved in electron or proton transfer via long and complex
pathways, the revealing of which requires precise calculations of the global electrostatic map
and energy components.

Mathematical and computational developments
In order to proceed with this section, we need first to define the framework of the problem.
Typically it is defined as the two dielectric media problem (Figure 1)[118], where the
macromolecule is consider to be a low dielectric cavity and the water phase to be a
homogeneous high dielectric medium. The goal is to develop methods and computer code to
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deliver more accurate solution in shorter execution time. By more accurate solution one
means that the numerical solution is very close to the analytical one in cases of simple
geometry, when analytical solution can be obtained[109]. It is assumed that if this is
achieved, the corresponding method will be accurate even for cases for which analytical
solution does not exist. Another way of defining the accuracy is as the mathematical
approach that suffers the fewest assumptions. Alternatively, one can argue that if the results
at various levels of resolution converge quickly to a particular value, the corresponding
method is accurate[42, 187]. The execution time strongly depends on the size of the system to
be modeling and required resolution to achieve accurate results. For relatively small
biological macromolecules of size smaller than one hundred Angstroms and resolution of
about 0.5Å or 0.25Å, most existing software for solving PBE are capable of delivering the
results in minute-time scale. One can argue that such a speed is sufficient even in the case of
computing a large number of cases, because the jobs can be submitted in parallel over
multiple processors within a computer cluster, a computational resource which nowadays is
abundant. However, in cases of large systems (larger than 500Å) and the same resolution as
above, the computational time can be prohibitively large which combined with the memory
requirements prompts developing new computational approaches for solving the PBE.

We will begin this section by outlining the most popular methods for solving the PBE for
irregularly shaped dielectric cavities (macromolecules) immersed in a water phase. By doing
so, we will omit the details of mathematical derivation of the corresponding equations and
formulae, and will skip the discussion about the boundary conditions at the interface
macromolecule-water while focusing on the basis principles of each of the methods, recent
developments, and describing their capabilities. Readers interested in more detailed
discussion about the boundary conditions and formulation of the corresponding equations
should be directed to a recent excellent review[118].

1. The Poisson-Boltzmann equation
The PBE is a nonlinear elliptic partial differential equation taking the form of[58, 85, 87]

(1)

where ϕ is the electrostatic potential, ε is the spatial dielectric function, k is a modified
Debye-Huckel parameter, and ρ is the charge distribution function. Eqn. (1) is simplified and
linearized by approximatingsinh(ϕ) ≈ ϕ when the atoms are not highly charged. Eqn. (1)
takes different forms in different space domains indicated in Figure 1.

The ultimate goal is to obtain the ϕ throughout the space and then to deliver the
corresponding electrostatic energy. The electrostatic energy then can be further broken into
components such as Coulomb and solvation energies and the energy of interactions between
ions and permanent charges[141]. Below we describe the basic concepts of several popular
numerical approaches of solving the PBE.

2. Finite difference
Finite difference (FD) methods for solving PBE are more intuitive when comparing to others
(finite element, boundary element methods, etc.). They are based on superimposition of
regular rectangular Cartesian mesh over the system where the PBE will be solved.
Following the standard Finite volume approach, one can deliver a formula to calculate the
potential of eqn. (1) at each grid point[36]
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(2)

where ε's are the dielectric constants at neighboring mid points, h is the uniform grid spacing
in x-, y-and z- direction and qi, j,k, is the total charge within the cubic volume centered at
grid (i, j, k). One should iterate eqn. (2) over all grid points until desired criterion is
achieved. We should mention that there are many alternative formulations of eqn. (2),
depending on the approximations made. For more details interested readers are advised to
see Ref[36].

The obvious advantage of Cartesian grid method is that there is practically no computational
cost for the grid generation. However, the major disadvantage is the charge distribution
singularities and the artificial component of the grid energy originating from interactions
between grid points carrying partial charges from the same atomic charge. However, these
problems can be avoided by utilizing energy decomposition method[141], instead of dealing
with the grid energy itself.

There are various solvers that utilize FD schemes for solving the PBE, among them
PBSA[36, 168],MEAD[21], MIBPB[42], PBEQ[92], UHBD[122], ZAP[134], DELPHI[109], and
many others (Table 1). Below we will briefly outline several particular implementations,
which are currently among the most popular software used in the computational community.

Most of the recent developments in the area of Finite Difference Poisson-Boltzmann
(FDPB) method were done by Luo and co-workers (readers interested in earlier
developments are advised to check the works due to Honig, Nicholls, Sharp and
Gilson[70, 128, 146] and McCammon group[56, 57, 120]). It is outside the scope of this review to
describe all contributions made by Luo's lab, since it will require writing a separate paper.
Currently, the PBSA is one of the most popular PBE solvers and is incorporated into the
Amber package[36, 168]. Both linear and non-linear forms of PBE are supported. Among
linear PBE solvers users can choose between conjugate gradient, modified incomplete
Cholesky conjugate gradient (ICCG), geometric multigrid, and successive over-relaxation
methods (SOR)[167]; to solve a non-linear equation one can select either the Inexact Newton
(NT) method in conjunction with modified ICCG or geometric multigrid, conjugate
gradient, SOR, adaptive SOR and damped SOR[36]. In addition to the traditional
methods[166], which were shown to yield a very high degree of consistency with
DELPHI[142], a new discretization method, the Immersed Interface method (IIM), was
developed and implemented in the PBSA[165]. In IIM the standard FD scheme is used for
regular grid points, which are far from the interface. The linear equations on the irregular
grid point (close to the interface) involve 27 grid points and are constructed by minimization
of the local truncation error magnitude[165]. Many other features are currently available in
the PBSA as separate treatments of attractive and repulsive components to determine non-
polar solvation energy[157] and polarizable force field[158].

The ZAP software developed by Nicholls and co-workers is part of the OpenEye library[72].
Perhaps the most distinctive feature that makes ZAP unique among all FDPB methods is the
presentation of the atoms within the macromolecule. In ZAP, the density of atom is treated
as Gaussian density function, instead of more commonly used van der Waals spheres:
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(3)

where pA, k and σA are parameters of Gaussian function and rA is the radial distance from
atom A.

The delivered density is then used for dielectric mapping and molecular surface assignment.
It is emphasized that such an approach results in a smooth change of dielectric constant
between solute and solvent areas. Later, in 2004, the ZAP algorithm was incorporated in the
CHARMM[34] package, providing a fast and stable smooth permittivity model for implicit
salvation energy calculations in molecular dynamics simulations[135]. Furthermore, in order
to increase the speed of calculations, a modified ZAP (CHARMM-ZAPI model) was
introduced as a hybrid implicit solvent model[134]. In this model, the solute-solvent area is
described by the mean of two-zone model, where the non-polar effect of the water molecules
is treated implicitly with the accessible area model; electrostatic is calculated with
previously described smooth permittivity based FD model for solving PBE when close to the
solute and by Coulombic model when far from the solute; ions in solution and the
macromolecule itself are treated explicitly with a Langevin dynamics. In comparison with
totally explicit-solvent model, the two zone one, presented in ZAP, shows significant
reduction in computational time, while retaining an accurate treatment of the electrostatics
near the solute. At the same time, ZAP-based algorithm for predicting pKa's was used in
pKa-cooperative[5, 129] and it was demonstrated that it delivers accurate predictions[174].

Matched interface and boundary method (MIB), developed by Wei and co-authors, is
another novel method for delivering solution of the PBE in conjunction with the FD
scheme[69, 180, 188, 189]. The MIB, in addition to the standard scheme, allows for special
treatment of the solute-solvent interface jump condition, which makes the original PBE
well-posed at for sharp solvent-solute interfaces[42, 69]. The basic idea of the MIB scheme is
to define sets of regular and irregular grid points near the interface, according to the desired
convergence order. Irregular grid points near the interface are calculated by applying a
smooth extended potential function according to the need of a high order discretization
scheme by the iterative use of lowest order jump conditions. A subgrid information given by
interface and mesh intersecting position, fictitious values determined by interface, and
values of function in regular grid points are implemented in finite-difference central scheme.
Fictitious values of the potential function guarantee the smooth change of parameters on the
solute-solvent interface, and eliminate dielectric constant discontinuity and molecular
surface shape singularity. The charge source term singularity (delta function) is removed by
decomposition of PBE into regular and singular part (Dirichlet to Neumann mapping
method)[180]. The MIB performance was shown to be impressive resulting in short
computational time and high accuracy at a given mesh size[42, 69, 180]. The MIB is the first
and still the only known second-order convergent FD PB solver tested on singular protein
surfaces generated by the MSMS software package[187], although other methods such as
curved boundary method[20] and fast multipole boundary element[11] were reported to
achieve similar or even better convergence on the spherical geometry (Kirkwood model), for
which the MIB method achieves six order convergence[181].

DelPhi, originally developed in Honig lab and currently maintained in Alexov's lab,
provides a numerical solution for PBE based on the finite-difference scheme coupled with
unique implementations of Gauss-Seidel and SOR iterations[109]. Among the unique DelPhi
features are the abilities to assign different dielectric constants to multiple regions, to treat
mixed ions with various valence[141] and to generate the molecular surface by utilizing
marching cube algorithm[142]. Perhaps the most unique feature of DelPhi is the capability to
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handle geometrical objects[142]. Recently it was extended to an atomic-style presentation of
the geometrical figures along with visualizing and manipulating the sizes and shapes of the
geometrical objects[152]. As output files, the DelPhi allows for calculating not only
electrostatic potential map, but also dielectric constant and ion concentration maps. Recently
a parallelized DelPhi was reported which allows calculating the electrostatics of large
supramolecular structures[106, 107].

It should be mentioned that DelPhi was implemented into DelPhi web server (http://
compbio.clemson.edu/sapp/delphi_webserver/). It calculates electrostatic energies,
electrostatic potential, ions, and dielectric maps for given macromolecule[172]. The extra
features implemented in the web server allow for fixing structural defects of the molecule
and placing the missing hydrogen atoms with selected force field parameters before DelPhi
calculations. The DelPhi web server utilizes Jmol viewer[77] to visualize the corresponding
structural file and, if requested, electrostatic potential can be mapped onto a molecular
surface[144]. Furthermore, the server was upgraded to generate atomic-style geometrical
figures such as Parallelepiped, Sphere, Cylinder, Cone, as well as more complicated
geometric objects[153]. The position and size of the object can be manipulated by the user in
real time.

3. Finite element
The Finite Element Method (FEM) is another popular mathematical technique for finding
numerical approximation to the solutions of differential/integral equations by discretizing
the bounded problem domain into a number of subdomains, called the finite elements, over
which the solutions are approximated by local basis functions, usually low-order
polynomials. This method is enjoying increasing attention from many research areas due to
its capabilities of solving nonlinear equations, adaptively refining local meshes, providing
rigorous convergence analysis and delivering highly accurate approximations to the exact
solutions of the original equations. Following the Galerkin approach, the FEM approximates

the exact solution ϕ of eqn. (1) by , a linear combination of the basis functions uh of a

subspace Vh of the Sobolev space , such that

(4)

provided  is an approximation to the boundary condition ,  and f is a sum of
square integrable functions approximating the right-hand side of eqn. (1).

One FEM approach to solve the PBE can be traced back to Bowen and Sharif's work[33] and
further improved by Holst and co-workers[13, 79, 80]. In their work, piecewise linear finite
elements over a simplex tessellation of a truncated solvent-filled sphere around the
biomolecule, as well as a posteriori error estimation for adaptive mesh refinement, was
used[80]. The FEM, coupled with the inexact-Newton-multilevel methods[82, 84, 86], was
implemented in the software Manifold Code (MC) aiming at solving a general class of
nonlinear elliptic equations, including PBE, in 2- and 3-dimensional spaces[78]. It wasn't
until recently that the first rigorous a priori error estimate for a Galerkin-based FEM applied
to solve the PBE and corresponding approximation theory were established in[3, 44, 81] and
briefed in[83]. These developments are expected lead to another major improvement of FEM
PBE solvers.

Motivated by the success of the MC package, the numerical routines for solving the PBE in
MC libraries, as well as other algorithms developed by Baker and co-workers, were
implemented in the Adaptive Poisson-Boltzmann Solver (APBS)[17] and reported in[13]
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(Table 1). The APBS now has become one of the most popular FEM solvers for PBE. Other
recent developments of APBS include a) parallel computing of the PBE on massively
parallel computers[16, 17] by the parallel refinement techniques introduced in[18], b) a Java-
based graphical user interface (GUI) for electrostatic calculations at the membrane with
APBS as a back-end for solving the PBE[38], c) web servers and services for electrostatic
calculations using APBS and PBD2PQR[160], and d) a modular programmatic interface to
the APBS library of electrostatic calculation routines[96].

A newly developed weighted adaptive Least-Squares FEM, also known as the first-order
system least-squares (FOSLS) FEM, proposed by Olson and co-workers[23, 40] for solving
linear Regularized PBE (RPBE) can be viewed as an alternative to traditional Galerkin and
mixed Galerkin FEMs and are worth being mentioned here. In this method, the linear RPBE
is reformulated into a system of first-order equations. A quadratic functional based on the
residual of the system of equations is constructed. Minimizing the functional provides a
posteriori error estimation for adaptive mesh refinement. This approach, when comparing to
other FEMs, delivers optimal convergence for both the potential and its gradient field,
yielding accurate calculations of solvation free energy and other physical quantities[40].

Other variations of the FEM and acceleration techniques are available[118]. Such methods
include the FEM developed by Friesner and co-worker[51], the FEM using Newton-Krylov
iterations developed by Noy and co-workers[147], and a mortar FEM developed by Zhou and
co-workers[175]. These methods could lead to new numerical approaches for interested
readers and thereby are listed here for the completeness of this section.

4. Boundary element
Since a biological molecule in water can be considered as a low dielectric media immersed
in a high dielectric media, the boundary of these two different mediums is the surface of the
molecule, termed S (solid curve in Figure 1). Thus the entire space is divided into two
different regions (note the difference with respect to the three regions shown in Figure 1:
1)Ω1, the region inside the molecule with dielectric constant ε1; and 2)Ω2 and Ω3, the regions
outside the molecule with dielectric constant ε2. In water phase, ε1 < ε2, and one can define

the dielectric ratio, .

Using Green's theorem, Boundary Element Method (BEM) converts the volume integral of
the entire space into a surface integral on the boundary S. The electrostatic potential at

position  can be obtained via the following equations (for more detail and the
corresponding derivation see Refs.[31, 68, 93, 111, 112, 116, 143, 182]:

(5)

(6)
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where  is the normalized charge, n is the normal directed from Ω1 to Ω2, 

denotes the Debye-Huckel screening parameter, and  is the

fundamental solution of the linear PBE such that  (where κ = 0) represents the
fundamental solution of the Poisson equation.

By converting the volume integral into a surface integral, the number of points concerned is
reduced. However, the accuracy of the surface representation is extremely important for this
method. Although lots of works used different definitions of the surfaces, such as van der
Waals[131], solvent-accessible[102], or solvent-excluded surfaces[50], there is no clear
conclusion indicating which definition is the best.

In order to make BEM suitable for electrostatic calculations for biological macromolecules,
many groups have made improvements[20, 93, 111, 136, 163, 185] into the original BEM
work[182] and developed different solvers (Table 1). To accelerate the Boundary Element
Method, different techniques have been implemented, such as fast multipole
method[10, 24, 31, 74, 113], fast Fourier transform (FFT) method[35, 98], and other
methods[75, 114, 159]. The largest BEM calculation for biomolecules on a serial platform was
performed on a ribosome complex, which contains about 500K atoms[45]; while the largest
BEM calculation on parallel (GPU) platform was performed on multi-million atom
systems[179].

McCammon and co-workers developed a BEM solver called AFMPB[114], which
implements various techniques to accelerate calculations. At the surface generating stage,
the traditional BEM discretizes the surface into triangular elements and the number of
unknowns is equal to the number of triangular elements. In AFMPB, a “node-patch”
approach is developed to reduce the number of unknowns on the surface, thus the
calculation time is reduced as well. The idea of “node-patch” is to construct a “working”
patch around each node, using the centroids of adjacent elements and midpoints of
surrounding edges, and assume the unknowns are constants on each new “node-patch”.
Therefore, the charge on the patch is approximated by the product of the unknown at the
node and the total area of the node-patch for far-field integration, while normal quadrature
method is used as in the constant or linear element method for near-field integration. After
discretizing the surface in a “node-patch” way, adaptive fast multipole method and Krylov
subspace method are used to speed up the iterations.

The FFTSVD is another fast BE solver[9], developed by White and co-workers, which is
aimed at modeling electrostatics problems in bio-microelectromechanical systems (bio-
MEMS). The main feature of FFTSVD is that the calculation of total actions is done via a
fast multiscale algorithm. This algorithm calculates the actions at different length scales
separately, and then combines them together at the end. In order to calculate the long-range
interactions, a FFT method is implemented to project the sources onto grids and then
interpolate the results back from the grids.

The BEM section will not be completed without mentioning the contributions made by
Fenley and Boschitsch. Their fast multipole linear PBE is described in series of papers[31].
Further, they developed a nonlinear PBE solver that combines boundary element and finite
difference to solve the nonlinear PBE[28, 31]. Special attention was paid on the boundary
formulation[29, 30]. These methods were applied to solve various problems in molecular
biology[76, 95, 176, 177].

Li et al. Page 8

Mol Based Math Biol. Author manuscript; available in PMC 2013 November 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



It should be mentioned as well that polarizable continuum models (PCMs) are another group
of widely used implicit solvent models based on reaction-field theory and boundary-element
discretization of the solute/continuum interface[100]. Typically in these methods one forces
the integral equation to be satisfied exactly at a set of discrete points on the boundary,
utilizing various techniques[19]. In addition, the PCM was used to develop various models as
SMD, a continuum solvation model based on the quantum mechanical charge density of a
solute molecule interacting with a continuum description of the solvent[124]; a Debye-
Hückel-like screening model (DESMO)[101]; and to calculate hydration free energies of
small molecules[126].

Other methods—Besides the three primary classes of methods mentioned above, there is
another category of methods, termed the indirect approaches[118], to achieve the numerical
solution of the PBE by approximating the solutions of other equations or systems of
equations in the equilibrium state, which solve the PBE as well.

One such indirect approach was introduced by Ortoleva and co-workers[145]. A vibrational
functional £ is defined as

(7)

and the PBE can be obtained by minimizing the functional (7) with respect to ϕ, provided
that ϕ and its derivatives vanishes on the boundaries of the domain Ω.

Using a Largevin steepest descent approach with friction coefficient ε−1

(8)

to minimize the function £ yields an advection-diffusion equation

(9)

where t is a pseudo time variable.

The Parabolic eqn (9) is solved by an operator splitting scheme, the 3D Douglas alternating
direction method (ADI)[61], such that the advection and nonlinear terms are calculated
explicitly, while the diffusion term is computed implicitly with modifications described
in[55] for fast convergence and unconditional stability. The steady-state solution to eqn. (9)
agrees with the solution to the PBE due to the existence and uniqueness of the solution to the
PBE.

The pseudo-time indirect method described above provides a new insight and points out a
new direction of numerical methods development to solve the PBE. However, the
intermediate potentials obtained while the pseudo-time t evolves do not possess clear
physical meaning. It is the reason that, in this method, the time increment Δt is preferred to
be chosen to be as large as possible without considering the accuracy of the computed
intermediate values as long as the steady state can be reached. It has been shown that
extremely large Δt could be used for particular runs[147].

Another real-time indirect method introduced by recent work of Lu, Zhou and co-workers
relates the PBE to the system of Poisson-Nernst-Planck equations (PNP)[119]
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(10)

(11)

where pi(r, t) is the density distribution function of the diffusing particles of the ith species
with diffusion coefficient Di(r), ρi is the fixed source charge distribution, k is the number of
species, β = 1/kBT is the inverse Boltzmann energy, and ΩS is the solvent region consisting
of one or multiple diffusive species, such as mobile ions and small diffusing molecules. It is
easy to see that eqn. (11) is reduced to the PBE when assuming 1:1 ionic solution and no
other diffusing species except mobile ions. Solving the PNP equation is out of the scope of
this work. Interested readers are directed to[105, 115, 117, 119] for more details.

The solution of the PBE can also be achieved by solving the coupled system of PNP
equations at the equilibrium state

(12)

(13)

Eqn (12–13) extends the PBE to include more physical effects that could affect diffusion
and electrostatics, and can be solved by previously described numerical methods, such as the
Gauss-Seidel iteration method[118, 119].

A stochastic approach utilizing Monte Carlo methods for solving the PBE was developed by
Mascagni, Fenley and co-workers and was shown that the stochastic based linear 3D PBE
solvers have very low memory demands[64, 121, 125, 150]. It was demonstrated that by
applying series of numerical optimizations one can make the computational time of these
Monte Carlo LPBE solvers competitive with deterministic methods.

Physics based approaches
At atomistic level of detail, a system made up of macromolecules immersed in water can be
considered as a multitude of atoms: atoms of water molecules and amino acids (nucleic
acids). The goal of physics based continuum electrostatics is to capture (or mimic) as many
atomic details as possible into the continuum model. In doing so, several considerations
should be made as described below (see Figure 2). Thus, water molecules in the bulk are
relatively free to move and reorient, although there is a tendency of forming dynamic water
clusters. However, near to the macromolecular surface, water molecules may be involved in
specific interactions with protein moiety either via hydrogen bonds or van der Walls
interaction. If such interactions cannot be formed, the water molecules are considered to lose
their flexibility (cannot flip among alternative hydrogen bonds). Because of that the
biophysical properties of the bulk water and the shell of water molecules surrounding the
macromolecule are different, especially in terms of their ability to reorient in response to the
local electrostatic field, which in turn reflects their rotational polarizability. The
polarizability of bulk water results in a dielectric constant of about 80, while the dielectric
constant of the water shell should be lower, due to the restricted orientational and
translational motions (Figure 2). Frequently small or large cavities and channels can be seen
inside the macromolecule. Some of them can be filled with “crystallographic” water, i.e.
water molecules with large residential time and low flexibility that can be seen in the X-ray
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experiment. Other cavities may appear empty either because they are filled with transient
water or they may be really empty. How to treat such cavities and channels in the continuum
electrostatics is the second important question that physics based approaches must address.
Obviously several water molecules, either with restricted flexibility or being transient, will
not have the bulk water dielectric properties, but rather should be modeled with a low
dielectric constant (Figure 2). Finally, the amino acids (or nuclei acids) making up the
macromolecule interior, have different polarity and different flexibility. The amino acids in
the hydrophobic core are well packed and their atoms do not carry much partial charge.
Thus their ability to reduce the local electrostatic field is very limited which in terms of
continuum electrostatic is described as low dielectric constant. In contrast, at the
macromolecular surface or around co-factors binding sites, the amino acids may not be
tightly packed and may be quite polar. Because of that they are capable of responding to the
local electrostatic field and such a response results in a high dielectric constant (Figure 2).
These thoughts indicate that in order to mimic the effects occurring in atomistic models into
the continuum models, the two dielectric-constant approaches are not sufficient and more
sophisticated models are needed. In addition, the presence of mobile ions in the water phase
deserves special attention and will be discussed further below.

1. Treating the water shell around macromolecule
Significant efforts were invested to reveal the importance of water molecules in the first
level of water shell in various reactions[49, 52, 171, 178]. It was demonstrated that the water
molecules which are most tightly bound to the biomolecules have significantly different
features as compared to the bulk water, indicating that the surface-bound water molecules
need to be treated differently from the bulk phase. This prompted development of hybrid
methods which combine the implicit solvent model with explicit solvent model to improve
the PB calculations[54, 103]. In this approach, the surface-bound water molecules are
explicitly treated into the PB equation in the same manner as the macromolecule, while the
rest of the water phase is considered to be continuum high dielectric medium. As alternative,
from the angle of continuum electrostatics, the specific dielectric properties of the water
shell surrounding the macromolecule can be modeled (a) with dielectric constant (or
function) different from the bulk one or (b) the effect can be mimicked with specific
definition of molecular surface.

In terms of a continuum description of the surface-bound waters, there are currently only a
few existing solutions. Beginning with macromolecule interior and moving toward the
macromolecular surface and further into the water phase, the ability of the corresponding
medium to respond to local electrostatic field constantly increases[151]. This suggests that an
appropriate continuum dielectric function would be able to provide a “correct” description
of the dielectric property of the system. Such an approach was recently taken and
implemented in DelPhi[108]. This development is based on the original work of Nicholls and
co-worker[72], but uses different formalism to convert atomic densities into local dielectric
constant and does not flatten out the dielectric distribution inside the macromolecule. As a
result, the dielectric constant smoothly increases from the protein interior to the water phase,
and the surface-bound water shell is described with a dielectric constant larger than the
protein and lower than the bulk water (Fig. 3). An alternative approach was developed by
Wei and co-workers[43, 186] where the dielectric jump at the interface solute-solvent is
replaced by interpolation function in MIBPB. With this regard, Luo and co-workers
introduced a computation of dielectric boundary force based on the definition of the
Maxwell stress tensor. This is followed by a new formulation of the dielectric boundary
force suitable for the finite-difference Poisson-Boltzmann methods[37].

As mentioned above, the molecular surface definition is another important step in any PB
algorithm, either from a geometrical perspective or for mimicking the effects of surface-
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bound water molecules. The most commonly used definitions of boundary macromolecule-
water are the solvent accessible surface (ASA) definition[102] and the solvent excluded
surface[50] definition, which is also well known as molecular surface (MS surface). Other
definitions were also used including van der Waals surface[131], Gaussian surface[71], spline
surface[90], geometric flow surface[46], blobby and skin surfaces[59]. Depending on the task
and the problem studied, different surface definitions are preferred. For example, in the last
round of pKa-cooperative, the best results of ZAP were reported for MS definition at epsilon
of protein equal to 8.0.

2. Treating cavities and channels inside macromolecule
Another important consideration is the treatment of cavities and channels inside
biomolecules. Almost all existing PBE solvers treat the macromolecular interior as a
homogeneous medium and small water cavities are deleted. One plausible solution was
suggested by Zhou and co-workers to use a zero probe radius in calculating epsilon
map[131]. It results in many mid grid points being assigned the high dielectric constant of
water[4, 60]. However, small cavities filled with a few water molecules do not have a
dielectric constant of bulk water. The water molecules flexibility is much restricted and such
cavities should be assigned dielectric constant higher than that of the macromolecule but
lower than that of the bulk water. Based on these considerations, it seems to us, the smooth
Gaussian-based dielectric constant approach is the best suited to the task. Indeed, it is
currently implemented in DelPhi and provides physically adequate dielectric description of
the internal macromolecular cavities (Fig. 3)[108].

3. Treating macromolecule inhomogeneous dielectric response
Biomolecules are inhomogeneous objects, which are quite polar but not very polarizable.
The polarizability and the dielectric response are not uniform and vary within the structure
of the molecule[6, 7]. To address this, DelPhi allows the users to assign multiple dielectric
constants throughout the molecule[141]. This feature was shown be successful for solvation
energy calculation[141, 169]. In principle, ZAP Gaussian function is used to assign different
dielectric constant for molecules, however, in the original description of the method, the
dielectric function was flattened inside the macromolecule resulting in an almost
homogeneous dielectric distribution[72]. The current Gaussian-based smooth dielectric
constant function implemented in DelPhi assigns different dielectric constant at each mid
grid point as can be seen in Figure 3 showing the dielectric constant distribution for a
protein and water phase[108]. Besides the two popular PB solvers mentioned above, there are
other methods developed for modeling the inhomogeneous dielectric property of
biomolecules[130, 154, 162].

4. Treating mobile ions in the water phase
The PBE is a continuum mean-field approach assuming point-charge ions in thermodynamic
equilibrium and neglecting ion-ion correlations and fluctuations. Because of that, PBE is
capable of describing only non-specific interactions between solvent and solute and may not
be applicable for cases where more detailed interactions are important (highly charged
macromolecule, strong coordination between solvent molecules, and specific solute-solvent
interactions). For example, in the case of a highly charged surface area of a macromolecule
which attracts counterions from the solvent, the calculated ionic concentration close to the
surface could be non-physically large, resulting in ion packing which is physically
impossible due to the finite size of ions.

Two main directions of PBE modification were undertaken: (a) explicitly include
empirically calculated sizes of ions in PBE; and (b) incorporate non-electrostatic interactions
in interaction potential by applying liquid-state theory[63], which automatically accounts for

Li et al. Page 12

Mol Based Math Biol. Author manuscript; available in PMC 2013 November 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



ion size and includes ion correlations and electrostatic fluctuations. The main advantage of
the first type approach is its simplicity, but the appropriate size of ions should be known a
priori. The second approach describes the system in more detail but is more complicated and
computationally expensive.

More physically reasonable ion treatment in PBE is developed throughout size modified PB
theory (SMPBE) which accounts for the entropic penalty cost due to the volume exclusion
and is described as “lattice-gas model”[26, 27]. In this model each ion occupies a certain
volume and its interactions are dictated only by non-bonded potential energy functions. The
non-electrostatic (Lennard-Jones potential) interactions among the ions are modeled with a
hard-wall potential energy function so that the ions cannot overlap each other. It was
shown[27] that at high ion densities located close to the surface, the short range ion–ion
interactions become comparable to the Coulomb interactions and can no longer be
neglected. In particular, the ion density is bounded by the maximum value which is obtained
when the ions are closely packed. The standard way of including the finite size of the ions in
the Poisson–Boltzmann approach is to define a narrow layer close to the surface as
impenetrable to the ions. This layer is usually referred to as the Stern layer and its width is
equal to the ion radius. Outside this layer the regular Poisson–Boltzmann equation is
implemented. Inside the layer, the modified PBE is used instead:

(14)

where a is the size of the ions (for simplicity it was assumed that positively and negatively
charged ions are of the same size), μi is the chemical potential of ith ion, and β is 1/kT.
Notice that the only difference between eqn. (14) and eqn. (1) is the 2nd term on the left-
hand side.

In recent work[149], the finite ion size effect upon the electrostatic free energy the ion
SMPBE was tested on the model of a low-dielectric spherical cavity containing a central
charge in an aqueous salt solution. The results were compared with ones obtained by solving
nonlinear PBE. SMPBE showed a very different electrostatic free energy than the nonlinear
PBE due to the additional entropic cost of placing ions in solution. Authors pointed out that
although the energy predictions of the SMPBE can be reproduced by fitting an appropriately
sized Stern layer, or ion-exclusion layer to the nonlinear PBE calculations, the size of the
Stern layer is difficult to estimate a priori.

In 1992 Coalson and Duncan introduced lattice-field theory (LFT)[47], which generalizes the
statistical mechanics of a classical Coulomb gas by treating gas particles of finite size.
Authors suggested that short-range repulsions between pairs of simple ions can be taken into
account by adding an appropriate Yukawa pair potential (VYukawa(r)) to the long-range
Coulomb interactions between particles separated on a distance r in the simple ion gas. That
is,

(15)

where g is a magnitude scaling constant, m is the mass of the affected particle and r is the
distance to the particle. The theory was then generalized to treat gas particles of finite
size[48]. It was shown that the LFT provides a stable, flexible and efficient real-space lattice
algorithm for solving the PB equation.
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Other investigations focused on the importance of nonelectrostatic interactions between
molecules via the excluded-volume interactions, which can be described by the Boublik-
Mansoori-Carnahan-Starling-Leland (BMCSL) equation of state[32, 123]. This approach
accounts not only for the excluded-volume effect but also for the differences between the
anion and the cation diameters. By using different equations of state, it is possible to include
different types of nonelectrostatic interactions between the ions such as dispersion
interactions, quadrupolar interactions, and binding interactions.

Improving the speed of the methods for solving PBE via parallelization
techniques

All existing serial solvers, despite the numerical algorithms implemented, are limited to
solve the PBE for relatively small biomolecules and systems due to high computational
demand (time and memory) when calculating the electrostatics of large systems such as
viruses[104, 139], molecular motors[94], and systems made of nano-objects and
biomolecules[25]. For such large systems, even the fastest solvers, like the DelPhi program,
typically take more than half a day to carry out the calculations at the minimum requirement
of grid resolution in order to deliver accurate results. Obviously significant speedup is
needed to make these serial algorithms applicable to study large macromolecular
assemblages.

Acceleration of calculations can be achieved either by introducing new techniques to
improve the performance of existing numerical algorithms, which is under development in
cooperation with mathematicians in many labs, or by utilizing cutting-edge parallel
computing techniques to make use of the computing power of multiple computing units
(CPU/GPU) to fulfill the computational task in parallel by breaking the task into pieces so
that each of them is carried out on one unit. In this section, we will focus on the second
approach which seems more promising and easier to achieve and thereby attracts more
attention due to current fast development of high performance scientific computing
techniques.

As far as we know, several popular PBE solvers have been parallelized via different
techniques to allow users perform intensive calculations on parallel computers/clusters, such
as APBS, PBSA and DelPhi, and parallelization is taken into consideration and is under
construction in other solvers, such as MIBPB. Here we will describe the parallelization
techniques implemented in PBSA, APBS and DelPhi, as well as another technique
developed recently[89] in order to effectively parallelize specific numerical methods for
solving the PBE.

APBS inherits the parallel refinement technique in MC adaptive multilevel finite element
package, developed by Band and Holst[18], to achieve parallel computing. We summarize
the Bank-Holst parallel refinement technique here. Given P processors, a global (in the
entire problem domain) approximation of the solution to the equation is calculated using an
initially coarse mesh on all processors. Then, the problem domain is partitioned into P
subdomains, each of which is assigned to one processor for local updating, with possible
surrounding overlaps, according to the achieved approximate solution in conjunction with an
a posteriori error estimator. Finally, each processor solves the same equation over the entire
problem domain with the confinement that the adaptive mesh refinement only occurs within
the local subdomain.

APBS extends the usage of the Bank-Holst parallel refinement technique to finite difference
solvers and introduces a new “parallel focusing” algorithm by combining it with the
commonly used electrostatic “focusing” technique. In the “parallel focusing” algorithm, the
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subset of the global mesh surrounding the area of interest is partitioned into P subdomains
with overlap region spanning about 5–10% of the neighboring subdomains. Each subdomain
is given to one processor for fine-scale finite difference calculation but only the results
obtained on the non-overlap regions are used for assembling the fine-scale global solution,
as well as calculating forces and energies[17].

Similarly, Luo and co-workers implemented and evaluated a coarse-grained distributive
method for FDPB calculations of large biomolecular systems. The method is based on the
electrostatic focusing principle of decomposing a large fine-grid FDPB calculation into
multiple independent FDPB calculations, each of which focuses on only a small and a
specific portion (block) of the large fine grid. It was shown that given the proper settings,
the distributive method was able to achieve respectable parallel efficiency with tested
biomolecular systems on a loosely connected computer cluster[88].

Parallelization of the DelPhi program, on the other hand, is achieved by noticing that the
procedure for calculating electrostatics can be classified into 3 major tasks: determination of
the molecular surface, calculation of the potential, and obtaining the corresponding
electrostatic energies. Specific techniques were applied to parallelize each of the three major
solution steps, which reflect the physical nature of the quantities being modeled. Thus, the
construction of the molecular surface, being a geometrical problem, is parallelized via
geometrical clustering and extended boundaries; the iterations of the electrostatic potential,
being long-range, are parallelized via a combination of numerical techniques and specific
software design, but without any assumptions[106], and finally the calculations of the
corresponding electrostatic energies, being independent of the geometry, are parallelized via
multi-threading[107]. It should be emphasized that the reported parallelization techniques are
equally applicable for solving the linearized and nonlinear PBEs. Moreover, these
techniques are not restricted to the DelPhi program. They can be easily modified and
recruited by other software to parallelize the surface construction, iteration algorithms, and
energy calculations. Performance of this method implemented in parallelized DelPhi is
reported in refs[106, 107].

Recently, Hwang et. al[89] introduced a new fully parallel Newton-Krylov-Schwarz (NKS)
algorithm for finite element discretization of the PBE. The NKS algorithm uses an inexact
Newton method with backtracking (INB) as the nonlinear solver. In each Newton step, a
Krylov subspace method serves as the linear solver for the corresponding Jacobian system,
in conjunction with a parallelized overlapping Schwarz method via domain decomposition
serving as a preconditioner to accelerate the convergence of the linear solver[89]. This
algorithm was tested and benchmarked on examples arising from simulations of colloidal
particle interactions. It was observed that this algorithm, coupled with local mesh refinement
near charged particles, systematically increased the solution accuracy, as well as the
accuracy of other sensitive quantities like the electrostatic force, and obtained 71% or better
efficiency on up to a hundred processors for a 3D problem with 5 million unknowns[89]. The
parallel PBE solver that uses parallel adaptive mesh refinement techniques described in[110]

is under development and is expected to be a powerful and efficient simulation tool for
studying three-dimensional colloidal and interfacial problems in the future.

Conclusion
In this review, current developments in the area of PBE were outlined from two different
perspectives: one was mathematical and the other was physical. It was indicated that
significant efforts are being invested in developing novel mathematical approaches to
provide more efficient methods for solving the PBE via FDM, FEM, BEM and other
numerical algorithms. Hybrid approaches were reported as well. At the same time, relatively
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fewer efforts were invested in better description of the physical effects originating in
systems made of macromolecules immersed in water phase. Perhaps, simultaneous
development reflecting the modern techniques in computer science and mathematics along
with better physical models will be best approach of improving the applicability, accuracy
and scalability of PBE based methods for modeling electrostatics in molecular biology.
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Figure 1.
A two dielectric media problem. The space is divided into 3 regions by the molecular
surface(solid curve) and the ion-exclusion layer (broken curve): Ω1(molecule), Ω2(stern
layer) and Ω3(water environment). Mobile ions, carrying either positive or negative charges,
are only present in the water phase.
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Figure 2.
The continuum electrostatic model for macromolecule immersed in water phase. The water
phase is colored in blue and the molecule is colored in orange. A. the immediate shell of
water molecule surrounding the macromolecule. B. A cavity inside the macromolecule filled
with water. C. The macromolecule interior with inhomogeneous dielectric distribution
indicated with grey color.
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Figure 3.
Dielectric constant distribution map for the reaction center protein calculated with Gaussian
approach implemented in DelPhi. The reaction center protein is in a cartoon presentation; A
plane of dielectric distribution is also shown in this figure.
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Table 1

Existing numerical methods and corresponding solvers for solving PBE

Program name charge Program
available

for
download

URL description

Finite Difference

PBSA (AMBER) Part of
Amber
package

yes http://ambermd.org FD scheme offering
numerous algorithms to
deliver the solution;
polarizable force field

DELPHI No charge
for academia

yes http://compbio.clemson.edu/DelPhi.php FD scheme with the Gauss-
Seidel iteration technique

MEAD No charge yes http://hospital.stjude.org/mead_filerequest/request.html FD algorithm; includes
modeling of a membrane as
a low dielectric slab,
possibly with a water-filled
channel through a protein in
the membrane

MIBPB No charge yes http://www.math.msu.edu/~wei/MIBPB High order discretization
scheme close to the
molecule-solvent interface;
Dirichletto Neumann
mapping method

PBEQ Part of
Charmm
package

yes http://www.charmmgui.org/?doc=input/pbeqsolver Calculates electrostatic
potential and solvation
energy, in both aqueous
solvent and membrane
environments.

UHBD No charge yes http://proiects.hits.org/mcm/projects/afwb2002/uhbd.html Capable of solving the
linear and nonlinear
Poisson-Boltzmann
equation using a finite-
difference method;
performing Brownian
dynamics simulations of the
association of two
molecules and of the
internal dynamics of a
protein.

ZAP commercial yes http://www.eyesopen.com/zaptk Very fast algorithm with
Gaussian representation of
the dielectric constant

Finite element

APBS No charge yes www.poissonboltzmann.org/apbs An adaptive finite element
Poisson–Boltzmann solver

NA NA no NA Numerical solution of the
Poisson–Boltzmann
equation using tetrahedral
finite-element meshes

NA NA no NA FEM using Newton-Krylov
iterations

NA NA no NA A mortar FEM Poisson–
Boltzmann solver

NA NA no NA A first-order system least-
squares FEM for the PBE

Boundary element
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Program name charge Program
available

for
download

URL description

AFMPB NA yes http://cpc.cs.qub.ac.uk/summaries/AEGB v1 0.html An adaptive fast multipole
Poisson–Boltzmann solver

FTWARE NA yes http://cvcweb.ices.utexas.edu/software Derivative boundary
formulation of the problem;
A smooth approximation of
the molecular surface.

FFTSVD NA no NA multiscale algorithm and
FFT method

FPB commercial no http://continuum-dynamics.com/lib-pro-fpb.html A hybrid approach for
solving the nonlinear
Poisson–Boltzmann
equation
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