Abstract
Angiotensin (Ang) II and Ang III are two peptide effectors of the brain renin-angiotensin system that participate in the control of blood pressure and increase water consumption and vasopressin release. In an attempt to delineate the respective roles of these peptides in the regulation of vasopressin secretion, their metabolic pathways and their effects on vasopressin release were identified in vivo. For this purpose, we used recently developed selective inhibitors of aminopeptidase A (APA) and aminopeptidase N (APN), two enzymes that are believed to be responsible for the N-terminal cleavage of Ang II and Ang III, respectively. Mice received [3H]Ang II intracerebroventricularly (i.c.v.) in the presence or absence of the APN inhibitor, EC33 (3-amino-4-thio-butyl sulfonate) of the APN inhibitor, EC27 (2-amino-pentan-1,5-dithiol). [3H]Ang II and [3H]Ang III levels were evaluated from hypothalamus homogenates by HPLC. EC33 increased the half-life of [3H]Ang II 2.6-fold and completely blocked the formation of [3H]Ang III, whereas EC27 increased the half-life of [3H]Ang III 2.3-fold. In addition, the effects of EC33 and EC27 on Ang-induced vasopressin release were studied in mice. Ang II was injected i.c.v. in the presence or absence of EC33, and plasma vasopressin levels were estimated by RIA. While vasopressin levels were increased 2-fold by Ang II (5 ng), EC33 inhibited Ang II-induced vasopressin release in a dose-dependent manner. In contrast, EC27 injected alone increased in a dose-dependent manner vasopressin levels. The EC27-induced vasopressin release was completely blocked by the coadministration of the Ang receptor antagonist (Sar1-Ala8) Ang II. These results demonstrate for the first time that (i) APA and APN are involved in vivo in the metabolism of brain Ang II and Ang III, respectively, and that (ii) the action of Ang II on vasopressin release depends upon the prior conversion of Ang II to Ang III. This shows that Ang III behaves as one of the main effector peptides of the brain renin-angiotensin system in the control of vasopressin release.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abhold R. H., Sullivan M. J., Wright J. W., Harding J. W. Binding, degradation and pressor activity of angiotensins II and III after aminopeptidase inhibition with amastatin and bestatin. J Pharmacol Exp Ther. 1987 Sep;242(3):957–962. [PubMed] [Google Scholar]
- Ahmad S., Ward P. E. Role of aminopeptidase activity in the regulation of the pressor activity of circulating angiotensins. J Pharmacol Exp Ther. 1990 Feb;252(2):643–650. [PubMed] [Google Scholar]
- Bains J. S., Ferguson A. V. Paraventricular nucleus neurons projecting to the spinal cord receive excitatory input from the subfornical organ. Am J Physiol. 1995 Mar;268(3 Pt 2):R625–R633. doi: 10.1152/ajpregu.1995.268.3.R625. [DOI] [PubMed] [Google Scholar]
- Bausback H. H., Churchill L., Ward P. E. Angiotensin metabolism by cerebral microvascular aminopeptidase A. Biochem Pharmacol. 1988 Jan 15;37(2):155–160. doi: 10.1016/0006-2952(88)90712-5. [DOI] [PubMed] [Google Scholar]
- Bennett J. P., Jr, Snyder S. H. Receptor binding interactions of the angiotensin II antagonist, 125I-[sarcosine1,leucine8]angiotensin II, with mammalian brain and peripheral tissues. Eur J Pharmacol. 1980 Oct 3;67(1):11–25. doi: 10.1016/0014-2999(80)90003-5. [DOI] [PubMed] [Google Scholar]
- Chauvel E. N., Coric P., Llorens-Cortès C., Wilk S., Roques B. P., Fournié-Zaluski M. C. Investigation of the active site of aminopeptidase A using a series of new thiol-containing inhibitors. J Med Chem. 1994 Apr 29;37(9):1339–1346. doi: 10.1021/jm00035a014. [DOI] [PubMed] [Google Scholar]
- Chauvel E. N., Llorens-Cortès C., Coric P., Wilk S., Roques B. P., Fournié-Zaluski M. C. Differential inhibition of aminopeptidase A and aminopeptidase N by new beta-amino thiols. J Med Chem. 1994 Sep 2;37(18):2950–2957. doi: 10.1021/jm00044a016. [DOI] [PubMed] [Google Scholar]
- Devault A., Nault C., Zollinger M., Fournie-Zaluski M. C., Roques B. P., Crine P., Boileau G. Expression of neutral endopeptidase (enkephalinase) in heterologous COS-1 cells. Characterization of the recombinant enzyme and evidence for a glutamic acid residue at the active site. J Biol Chem. 1988 Mar 15;263(8):4033–4040. [PubMed] [Google Scholar]
- Dewey A. L., Wright J. W., Hanesworth J. M., Harding J. W. Effects of aminopeptidase inhibition on the half-lives of [125I]angiotensins in the cerebroventricles of the rat. Brain Res. 1988 May 17;448(2):369–372. doi: 10.1016/0006-8993(88)91279-6. [DOI] [PubMed] [Google Scholar]
- Felix D., Harding J. W. Manipulation of aminopeptidase activities: differential effects on iontophoretically applied angiotensins in rat brain. J Hypertens Suppl. 1986 Dec;4(6):S398–S401. [PubMed] [Google Scholar]
- Fink G. D., Bruner C. A. Hypertension during chronic peripheral and central infusion of angiotensin III. Am J Physiol. 1985 Aug;249(2 Pt 1):E201–E208. doi: 10.1152/ajpendo.1985.249.2.E201. [DOI] [PubMed] [Google Scholar]
- Ganong W. F. Blood, pituitary, and brain renin-angiotensin systems and regulation of secretion of anterior pituitary gland. Front Neuroendocrinol. 1993 Jul;14(3):233–249. doi: 10.1006/frne.1993.1008. [DOI] [PubMed] [Google Scholar]
- HALEY T. J., MCCORMICK W. G. Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Br J Pharmacol Chemother. 1957 Mar;12(1):12–15. doi: 10.1111/j.1476-5381.1957.tb01354.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harding J. W., Felix D. Angiotensin-sensitive neurons in the rat paraventricular nucleus: relative potencies of angiotensin II and angiotensin III. Brain Res. 1987 Apr 28;410(1):130–134. doi: 10.1016/s0006-8993(87)80033-1. [DOI] [PubMed] [Google Scholar]
- Harding J. W., Felix D. The effects of the aminopeptidase inhibitors amastatin and bestatin on angiotensin-evoked neuronal activity in rat brain. Brain Res. 1987 Oct 27;424(2):299–304. doi: 10.1016/0006-8993(87)91474-0. [DOI] [PubMed] [Google Scholar]
- Harding J. W., Jensen L. L., Hanesworth J. M., Roberts K. A., Page T. A., Wright J. W. Release of angiotensins in paraventricular nucleus of rat in response to physiological and chemical stimuli. Am J Physiol. 1992 Jan;262(1 Pt 2):F17–F23. doi: 10.1152/ajprenal.1992.262.1.F17. [DOI] [PubMed] [Google Scholar]
- Healy D. P., Wilk S. Localization of immunoreactive glutamyl aminopeptidase in rat brain. II. Distribution and correlation with angiotensin II. Brain Res. 1993 Mar 26;606(2):295–303. doi: 10.1016/0006-8993(93)90997-2. [DOI] [PubMed] [Google Scholar]
- Hogarty D. C., Speakman E. A., Puig V., Phillips M. I. The role of angiotensin, AT1 and AT2 receptors in the pressor, drinking and vasopressin responses to central angiotensin. Brain Res. 1992 Jul 24;586(2):289–294. doi: 10.1016/0006-8993(92)91638-u. [DOI] [PubMed] [Google Scholar]
- Jensen L. L., Harding J. W., Wright J. W. Increased blood pressure induced by central application of aminopeptidase inhibitors is angiotensinergic-dependent in normotensive and hypertensive rat strains. Brain Res. 1989 Jun 19;490(1):48–55. doi: 10.1016/0006-8993(89)90429-0. [DOI] [PubMed] [Google Scholar]
- Jhamandas J. H., Lind R. W., Renaud L. P. Angiotensin II may mediate excitatory neurotransmission from the subfornical organ to the hypothalamic supraoptic nucleus: an anatomical and electrophysiological study in the rat. Brain Res. 1989 May 15;487(1):52–61. doi: 10.1016/0006-8993(89)90939-6. [DOI] [PubMed] [Google Scholar]
- Kadekaro M., Summy-Long J. Y., Freeman S., Harris J. S., Terrell M. L., Eisenberg H. M. Cerebral metabolic responses and vasopressin and oxytocin secretions during progressive water deprivation in rats. Am J Physiol. 1992 Feb;262(2 Pt 2):R310–R317. doi: 10.1152/ajpregu.1992.262.2.R310. [DOI] [PubMed] [Google Scholar]
- Kugler P. Aminopeptidase A is angiotensinase A. II. Biochemical studies on aminopeptidase A and M in rat kidney homogenate. Histochemistry. 1982;74(2):247–261. doi: 10.1007/BF00495834. [DOI] [PubMed] [Google Scholar]
- Ledwith B. J., Cahill M. K., Losse L. S., Satiritz S. M., Eydelloth R. S., Dallob A. L., Tanaka W. K., Galloway S. M., Nichols W. W. Measurement of plasma angiotensin II: purification by cation-exchange chromatography. Anal Biochem. 1993 Sep;213(2):349–355. doi: 10.1006/abio.1993.1431. [DOI] [PubMed] [Google Scholar]
- Li C., Hersh L. B. Neprilysin: assay methods, purification, and characterization. Methods Enzymol. 1995;248:253–263. doi: 10.1016/0076-6879(95)48018-8. [DOI] [PubMed] [Google Scholar]
- Palmieri F. E., Bausback H. H., Ward P. E. Metabolism of vasoactive peptides by vascular endothelium and smooth muscle aminopeptidase M. Biochem Pharmacol. 1989 Jan 1;38(1):173–180. doi: 10.1016/0006-2952(89)90165-2. [DOI] [PubMed] [Google Scholar]
- Phillips M. I. Functions of angiotensin in the central nervous system. Annu Rev Physiol. 1987;49:413–435. doi: 10.1146/annurev.ph.49.030187.002213. [DOI] [PubMed] [Google Scholar]
- Qadri F., Edling O., Wolf A., Gohlke P., Culman J., Unger T. Release of angiotensin in the paraventricular nucleus in response to hyperosmotic stimulation in conscious rats: a microdialysis study. Brain Res. 1994 Feb 21;637(1-2):45–49. doi: 10.1016/0006-8993(94)91215-7. [DOI] [PubMed] [Google Scholar]
- Quirk W. S., Harding J. W., Wright J. W. Amastatin and bestatin-induced dipsogenicity in the Sprague-Dawley rat. Brain Res Bull. 1987 Jul;19(1):145–147. doi: 10.1016/0361-9230(87)90178-x. [DOI] [PubMed] [Google Scholar]
- Roques B. P., Noble F., Daugé V., Fournié-Zaluski M. C., Beaumont A. Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol Rev. 1993 Mar;45(1):87–146. [PubMed] [Google Scholar]
- Saavedra J. M. Brain and pituitary angiotensin. Endocr Rev. 1992 May;13(2):329–380. doi: 10.1210/edrv-13-2-329. [DOI] [PubMed] [Google Scholar]
- Schiavone M. T., Santos R. A., Brosnihan K. B., Khosla M. C., Ferrario C. M. Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1-7) heptapeptide. Proc Natl Acad Sci U S A. 1988 Jun;85(11):4095–4098. doi: 10.1073/pnas.85.11.4095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schnabel R., Bernstein H. G., Luppa H., Lojda Z., Barth A. Aminopeptidases in the circumventricular organs of the mouse brain: a histochemical study. Neuroscience. 1992;47(2):431–438. doi: 10.1016/0306-4522(92)90257-3. [DOI] [PubMed] [Google Scholar]
- Tieku S., Hooper N. M. Inhibition of aminopeptidases N, A and W. A re-evaluation of the actions of bestatin and inhibitors of angiotensin converting enzyme. Biochem Pharmacol. 1992 Nov 3;44(9):1725–1730. doi: 10.1016/0006-2952(92)90065-Q. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veltmar A., Culman J., Qadri F., Rascher W., Unger T. Involvement of adrenergic and angiotensinergic receptors in the paraventricular nucleus in the angiotensin II-induced vasopressin release. J Pharmacol Exp Ther. 1992 Dec;263(3):1253–1260. [PubMed] [Google Scholar]
- Wilk S., Thurston L. S. Inhibition of angiotensin III formation by thiol derivatives of acidic amino acids. Neuropeptides. 1990 Jul;16(3):163–168. doi: 10.1016/0143-4179(90)90129-m. [DOI] [PubMed] [Google Scholar]
- Wright J. W., Harding J. W. Regulatory role of brain angiotensins in the control of physiological and behavioral responses. Brain Res Brain Res Rev. 1992 Sep-Dec;17(3):227–262. doi: 10.1016/0165-0173(92)90018-h. [DOI] [PubMed] [Google Scholar]
- Wright J. W., Jensen L. L., Roberts K. A., Sardinia M. F., Harding J. W. Structure-function analyses of brain angiotensin control of pressor action in rats. Am J Physiol. 1989 Dec;257(6 Pt 2):R1551–R1557. doi: 10.1152/ajpregu.1989.257.6.R1551. [DOI] [PubMed] [Google Scholar]
- Wright J. W., Mizutani S., Murray C. E., Amir H. Z., Harding J. W. Aminopeptidase-induced elevations and reductions in blood pressure in the spontaneously hypertensive rat. J Hypertens. 1990 Oct;8(10):969–974. doi: 10.1097/00004872-199010000-00013. [DOI] [PubMed] [Google Scholar]
- Wright J. W., Morseth S. L., Abhold R. H., Harding J. W. Pressor action and dipsogenicity induced by angiotensin II and III in rats. Am J Physiol. 1985 Nov;249(5 Pt 2):R514–R521. doi: 10.1152/ajpregu.1985.249.5.R514. [DOI] [PubMed] [Google Scholar]
- Wright J. W., Morseth S., Mana M. J., LaCrosse E., Petersen E. P., Harding J. W. Central angiotensin III-induced dipsogenicity in rats and gerbils. Brain Res. 1984 Mar 12;295(1):121–126. doi: 10.1016/0006-8993(84)90822-9. [DOI] [PubMed] [Google Scholar]
- Wright J. W., Roberts K. A., Cook V. I., Murray C. E., Sardinia M. F., Harding J. W. Intracerebroventricularly infused [D-Arg1]angiotensin III, is superior to [D-Asp1]angiotensin II, as a pressor agent in rats. Brain Res. 1990 Apr 23;514(1):5–10. doi: 10.1016/0006-8993(90)90428-e. [DOI] [PubMed] [Google Scholar]