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Objective: In this study, we screened microRNA (miRNA) target genes of prostate cancer by integrating miRNA
and mRNA expression profiles after target prediction and performed function enrichment analysis for selected
candidate genes. Methods: The miRNA expression profile (GSE36802) and mRNA expression profile (GSE36801)
were downloaded from the Gene Expression Omnibus database. We processed data and identified the differen-
tially expressed miRNAs and mRNAs with R packages. Verified targets of miRNAs were identified through
miRecods and miRTarBase. Then, software of Search Tool for the Retrieval of Interacting Genes was used to
construct the interaction network of target genes. Finally, we performed function enrichment analysis for genes in
the interaction network with the Functional Classification Tool. Results: A total of 22 upregulated and 8 down-
regulated miRNAs were detected in this study, of which, hsa-mir-31 was the most overexpressed miRNA in
prostate cancer. Both ITGA5 and RDX, two target genes of hsa-mir-31, were found to be differentially expressed
from mRNA profiles by overexpressing hsa-mir-31. The cell adhesion molecule was found to be the most sig-
nificant pathway enriched by ITGA5 and RDX. Conclusion: Overexpression of hsa-mir-31 can be a significant
marker to distinguish cancer tissues from benign tissues. The targets such as ITGA5 and RDX regulated by hsa-
mir-31 are candidate genes of prostate cancer, which provide new treatment strategies for its gene therapy.

Introduction

Prostate cancer is more prevalent in Western countries
than other parts of the world (Landis et al., 1999). Radiation

therapy or prostatectomy can be used to treat prostate cancer
when the cancer tissue is primarily detected. When diagnosed
with advanced cancer, the patients are always treated with
androgen deprivation therapy, which can easily lead to the
androgen-independent phenotype. Prostate cancer is a chronic
disease that often takes decades from the onset to clinical
manifestation. It is mainly associated with factors such as age,
race, diet, and lifestyle (Greenlee et al., 2000).

The development, invasion, and metastasis of prostate can-
cer involve multiple factors, multiple stages, and multiple
genes. Currently, the clinical treatment of prostate cancer
mainly includes surgery with adjuvant endocrine therapy,
chemotherapy, and gene therapy. The genetic basis of prostate
cancer, the relationships between oncogenes, tumor suppressor
genes, environment such as hormones are the core issues for
prostate cancer research (Hiatt et al., 1994), as well as prostate
cancer susceptibility genes and metastasis-related genes.

MicroRNA (miRNA) has the potential to be used as bio-
markers and therapeutic targets for the treatment of various
cancers. MiRNA/mRNA expression profiles are frequently
used for identifying functionally important miRNAs and their

target genes. MiRNA is an endogenous noncoding single-
stranded RNA with a length about 21–25nt. MiRNAs are
highly conserved in evolution and act through complete or
partial complementarity with the 3¢UTR region of target
genes, causing the degradation of mRNA or translation in-
hibition of the target gene to achieve its post-transcriptional
regulation (Sylvestre et al., 2007). MiRNAs play multiple roles
similar to oncogenes and cancer suppressors in cell growth,
differentiation, and apoptosis. Ultimately, they regulate the
process of tumorigenesis, development, and metastasis
(Gregory and Shiekhattar, 2005).

MiR-143 is upregulated during the differentiation of
prostate cancer stem cells and promotes prostate cancer me-
tastasis by repressing FNDC3B expression (Fan et al., 2013).
PCAF is upregulated in cultured PC cells, and upregulation of
PCAF is associated with the downregulation of miR-17-5p
(Gong et al., 2012). The regulation of Livin expression may
involve miR-198 in prostate cancer cell lines (Ye et al., 2013).
Kobayashi et al. (2012) report significantly higher expression
of miR-30d in three prostate cell lines (PC3, DU145, and
LNCaP) compared with two normal prostate cell lines
(RWPE-1 and PrSc) using miRNA microarrays and qPCR.
Using reporter gene assay, they identify miR-30d as a
downregulator of SOCS1 expression by directly binding to
3¢-UTR of SOCS1. Furthermore, miR-30d regulates the
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expression of phospho-STAT3, MMP-2, and MMP-9 through
the downregulation of SOCS1.

MiRNA targets and functional protein interactions are a
rich source of information to elucidate the function and the
prognostic value of miRNAs in cancer (Alshalalfa et al., 2012).
Arias et al. (2012) identified biomarkers for prostate cancer
and lymph node metastasis from microarray data and the
protein interaction network using the gene prioritization
method. A protein–protein interaction network of established
miRNA targets confirm that these proteins are highly con-
nected and essential to the cell, affecting tumorigenesis, cell
growth/proliferation, cellular death, cell assembly, and
maintenance pathways (Budd et al., 2012).

It is of great biological importance to detect the protein
interaction network and to perceive the intervention of pro-
tein interactions on disease (Altieri, 2008). Search Tool for the
Retrieval of Interacting Genes (STRING) is a database of
known and predicted protein interactions. The interactions
include direct (physical) and indirect (functional) associa-
tions. They are derived from four sources: genomic context,
high-throughput experiments, (conserved) coexpression, and
previous knowledge. STRING quantitatively integrates in-
teraction data from these sources for a large number of or-
ganisms, and transfers information between these organisms
where applicable. The database currently covers 2,590,259
proteins from 630 organisms (Szklarczyk et al., 2011).

In this study, we identified differentially expressed
miRNAs and further integrated their verified targets of
miRNAs from miRecods and miRTarBase. We also identified
differentially expressed mRNAs and annotated them into
protein interaction networks based on STRING database.

Further, we performed function enrichment analysis for these
genes in the interaction network.

Materials and Methods

Gene expression profiles

We downloaded miRNA and mRNA expression profiles
from The Gene Expression Omnibus (GEO) database
(www.ncbi.nlm.nih.gov/geo/). GEO served as a public re-
pository for high-throughput molecular abundance experi-
mental data, allowing free distribution and shared access to
comprehensive datasets (Edgar et al., 2002). The accession
number of miRNA expression profile is GSE36802, containing
21 paired samples from prostate cancer tissue and benign
prostate tissue. The miRNA profiles are detected on platform
GPL8786-[miRNA-1_0] Affymetrix miRNA Array. The ac-
cession number of mRNA expression profile is GSE36801,
containing two miRNA-31 overexpressed samples and two
control samples. The platform is GPL10558-Illumina Hu-
manHT-12 V4.0 expression beadchip (Ye et al., 2013). The
miRNA expression profiles are paired prostate cancer tissue
and benign prostate tissue, while the mRNA expression pro-
files are detected under the condition of specific miRNA
overexpression. We obtained the microarray annotation data
as well as the raw expression profiles.

Data preprocessing and differential analysis of miRNA

The original expression profile in CEL format was trans-
formed into a matrix using R package Affy (Troyanskaya et al.,
2001; Fujita et al., 2006). The median method was used for

FIG. 1. Boxplot of normalized expression profiles. MiRNA expression profiles are shown in the left figure. Light grey and
dark grey boxes represent the cancer and benign samples. Gene expression profiles by overexpressing miRNA-31 are shown
in the right figure. The light grey and dark grey boxes represent the control and miR-31 overexpressed samples. The black line
in the box represents the median of gene expression. The black line can indicate the level of data standardization. The black
lines of samples are almost at the same level, indicating that the data are well normalized.
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normalizing expression matrix. Then, the Limma package was
utilized to identify differential miRNAs between 21 prostate
cancer samples and 21 paired benign prostate samples (Wet-
tenhall and Smyth, 2004). Then, package multitest with the
BH method (Benjamini and Hochberg, 1995) was used for
multiple test correction. If false discovery rate (FDR) < 0.05
and jlogFCj > 1, the miRNA was considered as differentially
expressed between the paired samples. The most up- and
down regulated miRNAs were selected for further analysis.

Identification of target genes for differential miRNAs

Each miRNA has a plurality of target gene according to
miRNA target prediction algorithms. To identify target genes
with high convince, we regarded the predicted and verified
miRNA targets by two algorithms as target genes. These two
algorithms are miRecords and miRTarBase. MiRecords data-
base stores the miRNA target prediction method for animals.
So far, it has recorded verified target genes for 548 miRNAs
involving nine species (Xiao et al., 2009). MiRTarBase is a
comprehensive collection for the experimentally verified
miRNA targets. Its latest update in November 2012 states that
it collects 2632 relationships between 773 miRNAs and their
target genes, involving 14 species (Hsu et al., 2011). In this
study, all the target genes, verified by both methods, are
highly identified as target genes of differential miRNAs.

Constructing interaction network of miRNA targets

One gene always acts in synergy with other partners;
therefore, the interactive protein should also be studied when
we explore the function of one gene and its protein (Li et al.,
2004). Therefore, the online software STRING (Szklarczyk
et al., 2011) was used for searching all the interactions between
the differentially expressed genes (http://string-db.org). The
interaction network was also constructed. The interaction is
weighted by the verification of experimental data, text min-
ing, and other ways.

Identifying differential mRNAs regulated
by differential miRNA

The method of screening differential miRNAs was used
to further identify genes closely related to miRNAs. In
this manner, we obtained the mRNAs that were specifically
differentially expressed when the miRNA was differentially
expressed. If FDR < 0.05 and jlogFCj > 1, the mRNA was
considered as differentially expressed between the paired
samples. Comparative analysis was performed on the differ-
ential genes and genes in the interaction network.

Gene Ontology and pathway enrichment analysis
of gene sets in the interaction network

Traditional analysis always focuses on single genes, which
ignores the functional interactions between genes. The gene
set enrichment analysis considers functionally similar or
function-related genes as a whole. In this strategy, we can
identify the biological functions or biological properties by
calculating the overall significance of gene expression changes
in this gene set (Nam and Kim, 2008).

In this study, the P-value represents the possibility of a gene
possessing a Gene Ontology term. The smaller the P-value,
the less possible that the gene module is random. The genes in

the module perform specific and significant biological func-
tions in synergy (Allison et al., 2006).

Functional Classification Tool (Huang da et al., 2009) utilized
the iced clustering algorithm heuristic partitioning procedure to
screen the complex functions and pathways for genes of inter-
est. We performed Gene Ontology and pathway enrichment
analysis for the genes in the interaction network (FDR < 0.05).

Results

Identified differential miRNAs

The original expression profiles are well preprocessed and
normalized, as shown in Figure 1. After normalization, we
performed differential analysis between prostate cancer
samples and benign prostate samples using limma. FDR
multiple test correction was used for identifying differential
genes. Finally, 30 miRNAs were regarded as significantly
differentially expressed under the threshold of FDR < 0.05 and
jlogFCj > 1, of which, 22 were upregulated such as hsa-mir-31,
hsa-mir-145, hsa-mir-455, and hsa-mir-505, while 8 were
downregulated including hsa-mir-33a, hsa-mir-25, hsa-mir-
130b, and hsa-mir-769. Hsa-mir-31 was the most over-
expressed miRNA in prostate cancer. Therefore, it was se-
lected for further study (Table 1).

Target genes of differential miRNAs

The validated relationship between miRNA and its target
genes were downloaded from database miRecords and

Table 1. List of Differentially Expressed miRNAs

miRNA_ID_LIST Adjusted P-value logFC

hsa-mir-31 0.000269 2.4511
hsa-mir-145 1.55E-06 2.30637
hsa-mir-455 4.35E-06 2.12955
hsa-mir-221 8.92E-05 1.77595
hsa-mir-222 3.23E-08 1.69902
hsa-mir-143 8.92E-05 1.6839
hsa-mir-221 3.23E-08 1.64293
hsa-mir-133b 0.000146 1.55934
hsa-mir-376c 8.55E-05 1.53589
hsa-mir-187 0.0227 1.47433
hsa-mir-139 0.000439 1.43215
hsa-mir-455 3.57E-06 1.37154
hsa-mir-224 0.00286 1.29457
hsa-mir-204 0.00314 1.22415
hsa-mir-505 8.23E-05 1.21126
hsa-mir-149 0.00216 1.20354
hsa-mir-222 0.0401 1.08908
hsa-mir-34a 0.0174 1.08451
hsa-mir-152 3.36E-05 1.04373
hsa-mir-30e 0.00376 1.01954
hsa-mir-377 0.0401 1.01744
hsa-mir-181c 0.000268 1.00151
hsa-mir-33a 0.0227 - 1.00405
hsa-mir-25 8.55E-05 - 1.01443
hsa-mir-18b 0.0401 - 1.04336
hsa-mir-130b 0.000734 - 1.07332
hsa-mir-769 0.0129 - 1.11036
hsa-mir-182 0.000254 - 1.16549
hsa-mir-148a 0.000304 - 1.20802
hsa-mir-96 0.00709 - 1.31404

logFC, log fold change.
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miRTarBase. As shown in Table 2, the miRNA targets of hsa-
mir-31, which are confirmed by miRecords or miRTarBase,
were defined as its target genes.

The interaction network for target genes of miRNA

The online software STRING is utilized to predict interac-
tions between target genes of hsa-mir-31. As a result, we
identified a total of 935 significantly differentially expressed
genes (DEGs) that are influenced by the overexpression of
hsa-mir-31. The interaction network of miRNAs mapped by
DEGs included 6 upregulated genes, 4 downregulated genes,
and 25 target genes (Fig. 2). Combined scores that weigh the
degree of confidence for each interaction are illustrated in
Supplementary Table S1 (Supplementary materials are
available online at www.liebertpub.com.gtmb).

Function enrichment analysis of genes
in the interaction network

Function enrichment analysis was performed for the target
genes of differential miRNAs, using the Functional Classifi-
cation Tool. We found two enriched functional clusters, con-
taining 25 and 39 Gene Ontology terms, respectively (Fig. 3,
Table S2). Both ITGA5 and RDX are validated as target genes
of hsa-mir-31 using luciferase reporter assay, qRT-PCR, and
Western blot. We also obtained six enriched pathways of
DEGs in the network. The most significant pathway was cell
adhesion molecules (CAMs), which is a key process in cancer
metastasis. The first step of cancer invasion is to change
CAMs, which endow the tumor metastasis ability, with

Table 2. Differentially Expressed Genes

Among miRNA Targets

miRecord miRTarBase

—— ARPC5
—— CASR
—— CXCL12
—— DACT3
—— DKK1
—— DMD
—— ETS1
FOXP3 FOXP3
Fzd3 FZD3
—— HOXC13
—— ICAM1
ITGA5 ITGA5
—— JAZF1
—— KLF13
LATS2 LATS2
MMP16 MMP16
MPRIP MPRIP
—— NFAT5
—— NUMB
PPP2R2A PPP2R2A
RDX RDX
—— RET
RHOA RHOA
—— SELE
—— TIAM1
—— YY1
FIH ——

FIG. 2. The interaction network of miRNA target genes. Triangle node represents hsa-miR-31, black nodes represent
miRNA target genes from the miRecords and miRTarBase, the middle grey and dark grey nodes represent down- and
upregulated genes, the remaining light grey nodes are the proteins in the interactive partners of miRNA target genes.
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subsequent adhesion of circulating tumor cells, vascular en-
dothelial cells, and stroma (Fujita et al., 2008) (Table 3).

Discussion

Prostate cancer is the most commonly lethal cancer in men.
Unlike other major types of cancer, no single gene has been
identified as being mutated in the majority of prostate tumors.
This implies that the expression profiling of genes, including
the noncoding miRNAs, may substantially vary across indi-
vidual cases of this cancer (Zhang et al., 2012).

MiRNA degrades or inhibits the translation of its target
genes by fully or partially hybridizing binding with the 3¢-
UTR of target genes (Fujita et al., 2008). They mainly regulate
gene expression at the post-transcriptional level. MiRNAs
may potentially impact a series of important processes of life,
such as development, cell proliferation, apoptosis, and cell
differentiation. A number of studies have reported that miR-
NAs exhibit up- or downregulation in cancer samples (Ga-
lardi et al., 2007). MiRNAs are always differentially expressed
in prostate cancer. There is widespread deregulation of miR-
NA expression in human prostate cancer (Ozen et al., 2008).
Ectopic miR-34a expression results in cell cycle arrest
and growth inhibition and attenuates hemoresitance to the
anticancer drug camptothecin by inducing apoptosis, sug-

gesting a potential role of miR-34a for the treatment of p53-
defective prostate cancer (Fujita et al., 2008). MiR-221 and
miR-222 expression affects the proliferation potential of
the human prostate carcinoma cell (Galardi et al., 2007). Mi-
croRNA145 targets BNIP3 and suppresses prostate cancer
progression (Chen et al., 2012). These miRNAs are all differ-
entially expressed in prostate cancer. Therefore, differential
miRNAs can be considered as potential biomarkers for pros-
tate cancer.

In this study, we combined miRNA and mRNA expression
profiles, integrated miRNA target information from miR-
ecods and miRTarBase, and considered the protein interac-
tions to identify candidate miRNAs and their target genes.
The screened miRNA-mRNA pairs may be candidates for
further verification.

It is found that hsa-mir-31 is the most overexpressed
miRNA in prostate cancer. Integrin a5 (ITGA5) and radixin
(RDX) are target genes of hsa-mir-31 according to miRTar-
Base. ITGA5 and RDX are two migration-related genes and
play an important role in mediating cell adhesion and mi-
gration in cancer (Andorfer et al., 2011). Shih et al. (2009)
have identified that the expression of ITGA5 can increase
the formation of mother vessels by stimulating the VEGF-A
pathway. In addition, Li et al. (2010) have suggested that
miR-31 also blocks breast cancer metastasis through the
suppression of cell migration and is functionally linked to
ITGA5 and RDX. Moreover, Andrea et al. have stated that
miR-31 as antimetastatic miRNA prevents all steps of me-
tastasis through downregulating the expression of ITGA5 and
RDX (Creighton et al., 2010). Our results may create a new
insight into the role of ITGA5 and RDX in prostate cancer.
ITGA5 and RDX differentially expressed after the over-
expression of hsa-mir-31, according to the mRNA expression
profile, suggesting that ITGA5 and RDX can become candi-
date genes of prostate cancer and allow a new treatment
strategy for its gene therapy. Moreover, the overexpression of
hsa-mir-31 can distinguish tissues from prostate cancer and
benign surroundings.

Table 3. The Pathways Enriched by the Genes

in the Interaction Network

Term Count FDR

hsa04514:Cell adhesion molecules
(CAMs)

14 1.20E-04

hsa04144:Endocytosis 15 9.39E-04
hsa04012:ErbB signaling pathway 11 9.51E-04
hsa04662:B cell receptor signaling

pathway
10 0.00241898

hsa04062:Chemokine signaling pathway 14 0.006649006
hsa04350:TGF-beta signaling pathway 10 0.008463694

FDR, false discovery rate.

FIG. 3. Two significant functional clusters and genes enriched in clusters. Genes in the boxes represent experimentally
verified target genes of hsa-miR-31. The rest are genes in the interaction network and they are enriched in the same functional
cluster as ITGA5 or RDX.
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CAMs, which are enriched by the interaction network of
the target genes of hsa-mir-3, are closely related to tumor in-
vasion and metastasis by binding with ligands from the ex-
tracellular matrix or cells and triggering a variety of signaling
pathways. Coordinated changes are observed in expression of
CAMs in prostate cancer (Murant et al., 1997). Prostate cancer
cells exhibit a diverse expression of cell-CAMs and their sig-
naling intermediates. The expression of these adhesion mol-
ecules has a close association with the invasive phenotype of
these cells. Indeed, characteristics of the tumor cells have been
altered by the overexpression of adhesion molecules (Davies
et al., 2000). Therefore, tumor CAMs act as a biomarker to
diagnose the invasion and metastasis of tumor cells.

On one hand, the identification and determination of
miRNAs, which are closely related to the tumor occurrence
and development, contribute to the study of their regulatory
networks, elucidate the molecular mechanisms of prostate
cancer, and provide new insights into early diagnosis and
treatment. On the other hand, studies on candidate genes,
which are related with the incidence of prostate cancer, not
only benefit the early diagnosis, but also provide a reliable
basis for its prognosis based on gene therapy.

The structure and size of miRNAs make them free from the
attacks of ribonuclease. Although progress has been made to
elaborate the roles of miRNAs in cancer research, their specific
action mechanism in prostate cancer remains to be further
studied. The occurrence of prostate cancer involves multiple
genes and multiple factors, which finally leads to extremely
complex biological phenotypes through multiple stages.

The proposed method proposes a novel method to identify
candidate miRNAs that can be biomarkers of prostate cancer.
Moreover, target genes regulated by miRNA and differen-
tially expressed after miRNA dysregulation can be designed
as new treatment strategies for antiprostate cancer therapy in
the future.
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