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Abstract: Triple-negative breast cancers (TNBCs) are heterogeneous cancers that present tumors without the es-
trogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Because 
of the absence of these receptors, there are currently no known specific molecular targets for treatment, and al-
though TNBC tumors are chemosensitive, prognosis is poor because this type of cancer relapses more frequently 
and more aggressively than hormone receptor-positive cancers. The mechanisms by which TNBCs escape control 
by chemotherapy are not clear, and it is crucial to identify novel molecular drivers that can be targeted in order to 
develop more efficient therapeutic approaches. We recently highlighted a pleiotropic role for parathyroid hormone-
related protein (PTHrP) in all stages of breast cancer, and used our neutralizing anti-PTHrP monoclonal antibody 
(mAb M158) to efficiently inhibit progression and metastasis of human breast cancer xenografts in athymic mice. In 
the present study, we present evidence for a strong in vitro anti-proliferative effect of our blocking anti-PTHrP mAb 
M158 as a single agent on TNBC lines of various subtypes that are known to express PTHrP (MDA-MB-231, BT-549, 
MDA-MB-435). The same mAb is inactive in a TNBC line without detectable PTHrP expression (MDA-MB-468). In in 
vitro combination studies, the mAb enhances the effect of the chemotherapeutic drugs taxol and doxorubicin in 
PTHrP-positive TNBC cells in an additive manner. When combined with the bisphosphonate zoledronate, M158 can 
act in additive or antagonistic fashion in vitro depending on the cell line. Our observations identify PTHrP as a novel 
target against TNBC cell proliferation, and suggest that combination therapies that include an anti-PTHrP approach 
might increase treatment efficacy in patients with PTHrP-positive TNBC.
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Introduction

Standard cancer therapies cause breast tumor 
regression because the majority of cancer cells 
are sensitive to the administered drugs or to 
chemo- and radiotherapy. However, it is very 
common to observe a recurrence of tumors 
accompanied by a metastatic invasion of distal 
organs that generally proves fatal. This repopu-
lation phenomenon is due to the fact that solid 
tumors are genetically diverse and contain 
small numbers of naturally-resistant tumor 
cells that become selected by the treatment 
and clonally expand after administration of 
therapy [1, 2]. For any given treatment or drug, 
there likely is a resistant population with the 
potential to give rise to eventual metastases 

[1]. It is therefore nearly-impossible for drugs 
given as single agents to provide long-term dis-
ease control, and the use of combinations of 
anti-cancer agents has been adopted in clinics 
to improve therapeutic effectiveness [2, 3]. 
However, survival enhancement due to dual 
therapy can be minimal and toxicity problems 
frequently arise [2]. Consequently, new combi-
nations of current drugs as well as combina-
tions involving novel metabolic targets are 
actively sought.

Triple-negative breast cancers (TNBCs) prefer-
ably strike young patients and constitute 
12-24% of all diagnosed breast cancer cases. 
They are heterogeneous cancers but share an 
absence of estrogen receptor (ER), progester-
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one receptor (PR), and human epidermal growth 
factor receptor 2 (HER2) in their tumor cells [4]. 
Because of the absence of these receptors, 
there are currently no known specific molecular 
targets for TNBC treatment. Tumor characteris-
tics of TNBCs include rare histologies, high 
grade, elevated mitotic count, tumor necrosis, 
pushing margins of invasion, larger tumor size 
and axillary node involvement [5]. TNBCs have 
recently been classified into basal-like, mesen-
chymal-like and luminal androgen receptor 
(LAR) subtypes, and the susceptibility of each 
sub-type to chemotherapy has been defined as 
follows: basal-like TNBCs show preferential 
response to cisplatin, mesenchymal-like TNBCs 
to NVP-BEZ235 (PI3K/mTOR inhibitor) and 
dasatinib (abl/src inhibitor), and LAR TNBCs to 
bicalutamide (androgen receptor inhibitor) [6]. 
However, despite chemotherapy, distant TNBC 
metastases occur in lung, bone, liver, pleura 
and brain, and the route of first metastasis cor-
relates with patient survival [7]. Less than 30% 
of women presenting metastatic TNBC survive 
5 years and almost all of them die despite che-
motherapy [6]. It is important to note that 
although the tumors are chemosensitive, prog-
nosis is poor in TNBC because this type of can-
cer relapses more frequently and more aggres-
sively than hormone receptor-positive cancers 
[5]. The mechanisms by which TNBCs escape 
control by chemotherapy are not clear but the 
identification of molecular drivers that can be 
targeted is crucial to developing more efficient 
therapy.

Parathyroid hormone-related protein (PTHrP) is 
a secreted factor expressed in almost all nor-
mal fetal and adult tissues. Its 13 N-terminal 
amino acids are highly homologous to those of 
parathyroid hormone (PTH), a characteristic 
which allows PTHrP to act through a common 
receptor (PTH1R) [8]. Because the remainder of 
the PTHrP sequence is unique, the molecule 
displays properties distinct from those of PTH 
[9]. PTHrP has growth-promoting and anti-
apoptotic properties [9], and is associated with 
oncologic pathologies such as breast cancer 
[10, 11], lung [12-14], prostate [15-17], renal 
[18], colorectal [19-21], skin [22, 23] and gas-
tric carcinomas [24, 25]. Circulating levels of 
PTHrP generally correlate with the more 
advanced stages of cancer [19, 26-31] and the 
Pthrp gene has recently been identified in a 
genomic locus associated with breast cancer 

susceptibility [32]. We have demonstrated the 
implication of PTHrP in key steps of breast can-
cer initiation, progression and metastasis and 
shown that a neutralizing anti-PTHrP antibody 
slows the progression and metastasis of 
human breast cancer xenografts [33]. PTHrP 
regulates the expression of several tumor-rele-
vant genes [34] and we showed that it is an 
upstream control of the chemokine receptor 
CXCR4 [33]. Because overexpression of CXCR4 
in TNBC predicts poor clinical outcome [35], we 
investigate here the putative implication of 
PTHrP signaling in TNBC and show that our 
M158 mAb not only results in cytoreductive 
effects in PTHrP-positive TNBC cell lines of vari-
ous subtypes, but that the treatment signifi-
cantly enhances the inhibitory effect of com-
mon anti-cancer therapeutic molecules such 
as taxol and doxorubicin.

Materials and methods

Cell lines and culture conditions

Triple-negative (ER-, PR-, Her2-) human breast 
cancer cell lines BT549, MDA-MB-231, MBA-
MB-435, MDA-MB-468 were from ATCC. Cells 
were maintained in DMEM medium (Wisent) 
supplemented with 10% fetal calf serum 
(Wisent), 100 μg/ml streptomycin and 100 μg/
ml penicillin in 37°C humidified incubators with 
5% CO2. Cells were passaged every 4 days.

Reagents

Paclitaxel and doxorubicin were purchased 
from Sigma, zoledronate (Zometa) was from 
Astra-Zeneca and Herceptin was from 
Genentech. Drugs were solubilized in culture 
grade dimethylsulfoxide (DMSO, Sigma, final < 
0.1% v/v) and diluted in culture medium imme-
diately before use. Controls using DMSO in cul-
ture medium or culture medium alone were 
identical. 

Neutralizing anti-PTHrP monoclonal antibody 
preparation and treatment

A synthetic human PTHrP peptide (a.a. 1-33) 
was injected intraperitoneally (25 μg in 50% v/v 
Freund’s complete adjuvant) in 5-6 week-old 
female BALB/c mice (Charles River). Mice 
received a booster dose after 13-15 days, and 
sera were collected a week later by tail bleed-
ing to confirm the presence of antibodies 
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against PTHrP. Antibody-producing mice were 
injected with a further 25 μg of the PTHrP pep-
tide. After 72 h, spleen lymphocytes were fused 
with FO myeloma cells (ATCC, Rockville, MD) 
and hybridomas selected in HAT medium. 
Selected clones were adapted to BD cell medi-
um for production of monoclonal antibodies 
(mAb). The mAb-containing supernatants were 
centrifuged, filtered and stored at 4 °C. mAb 
isotype was confirmed with the Bio-Rad Mouse 
Typer Isotyping Panel kit (Bio-Rad, Mississauga, 
ON). The mAbs were highly-specific and we 
observed no cross-reactivity between antibod-
ies and other fragments of the PTHrP molecule. 
Antibody M158 (IgM) was selected for use in 
vitro.

Proliferation assays 

Cells were trypsinized and plated (5000 cells/
well) in 96-wells culture plates (Thermo Fisher) 
and allowed to adhere overnight. Tests were 
conducted in triplicates at 30% confluence in 
100 μl DMEM growth medium containing 10% 
FBS. Increasing doses of M158, taxol, doxoru-
bicin and zoledronate were added to the wells 
as single agents or in combination and the cells 
incubated in 37 °C humidified incubators (5% 
CO2) for 72 hours. Presto Blue reagent 
(InVitrogen/Life Technologies) was used for via-
bility assays: 10 μl of Presto Blue (undiluted) 

was added to individual wells, re-placed in a 37 
°C incubator for 2 hours and the change in fluo-
rescence measured after with a SPECTRA- 
max Gemini microplate spectrophotometer 
(Molecular Devices 5) using 544 nm (excita-
tion) and 590 nm (emission) wavelengths. 

Isobologram analysis

The isobologram method of Berenbaum was 
used to determine whether interactions 
between M158 and various drugs were addi-
tive, antagonistic or synergistic [36]. Dose-
response curves were obtained for single 
agents and IC50 values determined. Combination 
index was calculated by the formula:

CI D 1
d1

D 2
d2

x x
= +

where Dx1 and Dx2 are the doses of agent 1 
and 2 required to produce x percentage of inhi-
bition as a single agent, and d1 and d2 are the 
doses of agent 1 and 2 needed to produce the 
same percentage x effect in combination. CI > 
1 indicates antagonism, CI = 1 additivity, and CI 
< 1 synergy.

Statistical analysis

Data are reported as mean ± standard error of 
means (S.E.M.). Statistical analysis (t-test) was 

Figure 1. TNBC cell lines subtypes. Top: cell line. Middle: gene cluster. Bottom: triple-negative subtype. MSL: mes-
enchymal-like; M: mesenchymal; BL1: basal-like type 1. Subtype information from: [6, 44].
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carried out using the GraphPad Prism 6.02 
Software (GraphPad Software).

Results

In order to test the extended anti-proliferative 
action of the blocking anti-PTHrP mAb M158 in 
triple-negative breast cancer cells in vitro, we 
selected a panel of human TNBC cells of vari-
ous sub-types and with different levels of PTHrP 
expression [37] (Figure 1). The PTHrP-negative 
line MDA-MB-468 was used as a control 
throughout. Treatment of breast cancer cells in 
culture with increasing doses of M158 mAb as 
a single agent caused a significant inhibition in 
proliferation of MDA-MB-231, BT-549, and 
MDA-MB-435 cells, as shown by the top curve 
in each graph (Figure 2). All of these cell lines 

express PTHrP (our results, not shown and 
[37]). The MDA-MB-468 cell line (Figure 2 right) 
does not express detectable PTHrP and showed 
little to no inhibition by the antibody, illustrating 
the specificity of the mAb action. Combination 
treatment clearly show enhancement of the 
anti-proliferative effect of doxorubicin by inclu-
sion of the anti-PTHrP mAb for all PTHrP-positive 
cell lines. As expected, MDA-MB-468 cells were 
inhibited only by doxorubicin in a dose-depen-
dent manner. Similarly, in combination treat-
ment with M158 and taxol, M158 enhances the 
anti-proliferation effect of taxol in PTHrP posi-
tive cells and again, the mAb is inactive in 
PTHrP-negative MDA-MB-468 cells (Figure 3). 
These results show that the anti-PTHrP M158 
mAb enhances the anti-proliferation effect of 

Figure 2. The anti-PTHrP M158 mAb enhances doxorubicin cytoreductive action on TNBC cell lines. Growth curves 
illustrating combinatorial treatment using increasing doses of mAb M158 and doxorubicin. MDA-MB-231, BT-549 
and MDA-MB-435 are PTHrP-positive while MDA-MB-468 is PTHrP-negative. Curves are representative of a set of 
3 replicates.

Figure 3. The anti-PTHrP M158 mAb enhances taxol cytoreductive action on TNBC cell lines. Growth curves illus-
trating combinatorial treatment using increasing doses of mAb M158 and taxol. MDA-MB-231, BT-549 and MDA-
MB-435 are PTHrP-positive while MDA-MB-468 is PTHrP-negative. Curves are representative of a set of 3 replicates.
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chemotherapeutic drugs doxorubicin and taxol 
on breast cancer cell lines.

Bisphosphonates have been shown to have 
growth-inhibitory effects on tumor cells in vitro 
[38, 39].  All breast cancer cells in our panel 
were incrementally inhibited by increasing 
doses of Zometa, but addition of the anti-PTHrP 
mAb enhanced the anti-proliferation effect of 
the bisphonate in MDA-MB-231 cells while 
antagonizing the bisphosphonate effect in 
BT-549 and MDA-MB-435 (Figure 4). These 
results confirm a biological role for bisphospho-
nates that is tumor cell-targeted and indepen-
dent of skeletal osteolytic events, and but indi-
cate a variable outcome to inclusion of 
anti-PTHrP mAb in combination experiments.

The combination index (CI) was calculated for 
combination treatments [36, 40] and the inter-
actions qualified as antagonistic for combina-

tions of M158 and zoledronate in BT-549 and 
MDA-MB-435, or additive (in all other combina-
tions and cells) (Table 1).

Discussion

In the search to optimize cancer therapeutics, 
significant attention is starting to be directed 
towards rational combinations of agents target-
ing complementary survival pathways in the 
tumor cells [41]. Dual targeting is of particular 
importance in the context of oncogene addic-
tion, a concept which holds one or a few genes 
responsible for maintenance of the malignant 
phenotype and cell survival and where comple-
mentary signaling pathways can become acti-
vated if the transforming oncogene is blocked 
by monotherapy [42]. The concurrent use of 
inhibitory agents, especially those targeting 
novel pathways is consequently essential to 
trial design for better anti-cancer therapies.  

Figure 4. The anti-PTHrP M158 mAb enhances or inhibits zoledronate inhibition of cell proliferation depending 
on TNBC cell lines. Growth curves illustrating combinatorial treatment using increasing doses of mAb M158 and 
Zometa. MDA-MB-231, BT-549 and MDA-MB-435 are PTHrP-positive while MDA-MB-468 is PTHrP-negative. Curves 
are representative of a set of 3 replicates.

Table 1. IC50 and CI values for mAB M158, taxol, doxorubicin and zoledronate on PTHrP+ and PTHrP- 
triple-negative breast cancer cell lines (3 experimental replicates, means ± SEM)

M158 IC50 Taxol IC50 Doxo IC50 Zoledronate IC50

M158 + Taxol 
CI

M158 + Doxo 
CI

M158 + Zol 
CI

MDA-MB-231 
PTHrP+

2.0 ± 0.03 
μg/ml

4.1 ± 0.1 
nM

0.15 ± 0.06 
μg/ml

6.0 ± 1.1 x 10-5 M 1.37 1.23 1.03

BT-549 
PTHrP+

4.2 ± 2.72 
μg/ml

2.8 ± 0.1 
nM

1.65 ± 1.2 
μg/ml

3.38 ± 0.8 x 10-5 M 1.07 1.06 3.42

MDA-MB-435 
PTHrP+

3.1 ± 0.47 
μg/ml

3.6 ± 1.1 
nM

0.50 ± 0.05 
μg/ml

5.26 ± 0.99 x 10-5 M 1.23 1.11 3.33

MDA-MB-468 
PTHrP-

------------- 5.9 ± 4.0 
nM

0.12 ± 0.01 
μg/ml

8.5 ± 3.3 x 10-5 M ------------- ------------- -------------

IC50s and CIs values for single agent and combination experiments with M158 anti-PTHrP mAb, taxol, doxorubicin and zoledronate. No values for 
M158 as a single agent or in combinations can be obtained for MDA-MB-468 cells which do not express PTHrP.



Anti-PTHrP mAb enhances effect of therapeutic drugs in TNBC

505	 Am J Cancer Res 2013;3(5):500-508

PTHrP has only recently been identified as a 
factor with a breast cancer-promoting role dis-
tinct from its canonical involvement in tumor 
cell-induced skeletal osteolysis [43], and we 
expand here our previous observations on the 
use of an anti-PTHrP mAb which has proven 
efficient against human breast cancer cell 
xenografts [33]. A panel of cells was chosen to 
cover several subtypes of TNBCs: MDA-MB-231 
is a mesenchymal stem-like line (MSL), BT-549 
is a mesenchymal-like line (M), MSA-MB-435 is 
another basal B TNBC line, and MDA-MB-468 is 
a basal-like type1 (BL1) TNBC from the basal A 
gene cluster [6, 44]. The first three cell lines 
were chosen for their PTHrP positivity, with 
MDA-MB-468 as a PTHrP-negative control.

As a single agent, M158 showed efficacy 
against all PTHrP-positive cells tested here, and 
our previous observation that this mAb carries 
little toxicity in experimental mice suggests fea-
sible use as a single agent in PTHrP-positive 
TNBC human therapeutics [33]. More interest-
ing is the enhancement of the anti-proliferative 
effect of taxol and doxorubicin, currently-used 
chemotherapy drugs whose dosage could be 
reduced with the concurrent addition of an anti-
PTHrP blocking antibody. 

The mechanisms by which bisphosphonates 
act against bone resorption are well-known 
[45] but their direct action on tumor cells is a 
more recent observation [38, 39, 46-48]. Like 
other nitrogen-containing bisphosphonates, 
zoledronate inhibits protein prenylation, a pro-
cess essential for normal cell function [47]. 
Here, in MDA-MB-231 cells, combination of 
zoledronate and M158 is additive suggesting 
that these inhibitors address two different 
pathways to cell proliferation, only one of which 
is PTHrP-driven. In BT-549 and MDA-MB-435, 
the interaction is antagonistic and suggests 
both inhibitors address the same pathway, 
potentially the Ras prenylation activation of 
PTHrP which leads to proliferation [49]. In MDA-
MB-468 cells (without PTHrP), only the zoledro-
nate-sensitive pathway would be active.

In summary, anti-PTHrP monoclonal antibodies 
are potent proliferation inhibitors in PTHrP-
positive TNBC cells and potentiates the effects 
of chemotherapeutic drugs. The mAb/zoledro-
nate interactions are more complex as they 
appear to involve a common signaling pathway, 
however, a clear additive relationship is 

observed in the MDA-MB-231 cell type. Our 
observations on TNBC agree with collective 
data covering chondrosarcoma, thyroid cancer, 
medulloblastoma, adrenocortical cancer, oral 
squamous and renal, colon and prostate can-
cer cells which suggests that modulation of 
PTHrP levels is a promising approach for anti-
cancer strategies [43].
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