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ABSTRACT. Objective: Available methods of smoking assessment 
(e.g., self-report, portable puff-topography instruments) do not permit 
the collection of accurate measures of smoking behavior while minimiz-
ing reactivity to the assessment procedure. This article suggests a new 
method for monitoring cigarette smoking based on a wearable sensor 
system (Personal Automatic Cigarette Tracker [PACT]) that is completely 
transparent to the end user and does not require any conscious effort to 
achieve reliable monitoring of smoking in free-living individuals. Meth-
od: The proposed sensor system consists of a respiratory inductance 
plethysmograph for monitoring of breathing and a hand gesture sensor 
for detecting a cigarette at the mouth. The wearable sensor system was 
tested in a laboratory study of 20 individuals who performed 12 different 

activities including cigarette smoking. Signal processing was applied to 
evaluate the uniqueness of breathing patterns and their correlation with 
hand gestures. Results: The results indicate that smoking manifests 
unique breathing patterns that are highly correlated with hand-to-mouth 
cigarette gestures and suggest that these signals can potentially be used 
to identify and characterize individual smoke inhalations. Conclusions: 
With the future development of signal processing and pattern-recognition 
methods, PACT can be used to automatically assess the frequency of 
smoking and inhalation patterns (such as depth of inhalation and smoke 
holding) throughout the day and provide an objective method of as-
sessing the effectiveness of behavioral and pharmacological smoking 
interventions. (J. Stud. Alcohol Drugs, 74, 956–964, 2013)
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CIGARETTE SMOKING IS THE LEADING CAUSE of 
preventable death in the United States. It causes more 

than 440,000 deaths each year and generates an estimated 
$167 billion in annual health-related economic losses (Cen-
ters for Disease Control and Prevention, 2006). Recent na-
tional surveys indicate that approximately 60 million people, 
or 25% of the U.S. population age 12 years and older, have 
smoked tobacco in the past month, with cigarette smoking 
being the most common mechanism of consumption (Sub-
stance Abuse and Mental Health Services Administration 
[SAMHSA], 2010). Understanding behaviors associated 
with cigarette smoking, such as frequency of smoking and 
smoke exposure (e.g., depth of inhalation and duration of 
smoke holding), is important for evaluating and improving 
the effectiveness of behavioral and pharmacological smoking 
interventions.
 Cigarette smoking is typically assessed by retrospective 
self-report, which provides a crude estimate of cigarette 
consumption, with the accuracy limited by memory biases 
and intentional misrepresentations of actual levels of use 
(Hufford et al., 2001) and may substantially underestimate 
actual cigarette consumption (Hatziandreu et al., 1989). 

Real-time methods of assessment, which require smokers 
to use an electronic diary to record each cigarette as soon 
as they have fi nished smoking, may provide more accurate 
estimates of smoking frequency and smoking patterns (Shiff-
man et al., 2002; Stone et al., 1999). These methods also 
require people to remember to record their smoking and may 
produce underreporting of cigarette consumption. Regular 
smokers may only record approximately half of the cigarettes 
they smoke with electronic diary methods (Warthen and 
Tiffany, 2009). Biomarkers of nicotine exposure have also 
been used to evaluate the accuracy of self-reported smoking 
in epidemiological and observational studies (Caraballo et 
al., 2004; Patrick et al., 1994). This research suggests that 
conventional biomarkers may be accurate in determining 
levels of smoke exposure among heavy, regular smokers, but 
they are substantially less accurate in determining how much 
someone smokes at low levels of smoking.
 Self-reports of the number of cigarettes smoked, even if 
accurate, are also limited in that they do not yield an exact 
estimate of smoke exposure. Studies of smoking topogra-
phy reveal that smokers vary considerably in the amount of 
smoke they inhale when they smoke a cigarette (Kozlowski 
et al., 2001). Consequently, the number of cigarettes smoked 
over a given period is not strongly related to total smoke 
exposure for that same period.
 Portable smoking topography devices allow for the col-
lection of real-time data and permit the assessment of puff-
ing behavior (and smoking frequency) in a smoker’s natural 
environment. This approach overcomes some of the problems 
associated with self-report methods, but it is limited as a 
measure of total smoking frequency because it requires 
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smokers to remember and comply with instructions to smoke 
their cigarettes through the device. Moreover, the majority 
of smokers report that smoking cigarettes through portable 
topography devices changes their smoking behavior (Ham-
mond et al., 2005). Finally, conventional puff topography de-
vices measure airfl ow through the cigarette but do not assess 
respiratory events that occur after the cigarette is removed 
from the mouth (e.g., postpuff breath holding; Baker and 
Dixon, 2006). Thus, available methods of smoking assess-
ment do not permit the collection of accurate measures of 
smoking behavior that capture the real-time smoking fre-
quency and comprehensive within-cigarette puff topography 
while limiting reactivity to the assessment procedures.
 In this article, we propose a method based on the use of 
wearable sensors to detect and characterize cigarette smoke 
inhalations (Personal Automatic Cigarette Tracker [PACT]) 
through monitoring of breathing and hand-to-mouth ges-
tures. The monitoring of breathing patterns with PACT is 
performed using respiratory inductance plethysmography 
(RIP) (Cohn et al., 1982; Fiamma et al., 2007). The use of 
this methodology has been extensively explored in the past 
to characterize breathing and inhalation patterns associated 
with smoking. Time and fl ow volume components were mea-
sured using RIP simultaneously with spirometry and body 
plethysmography (Sackner et al., 1982). Breathing patterns 
during smoke inhalation in pipe and cigarette smoking were 
compared with the breathing of never smokers (Rodenstein 
and Stänescu, 1985), with the conclusion that the former 
were distinctly different from normal breathing. RIP was 
also used to observe substantial variations in the volume of 
inhaled smoke and in the duration of inhalation and breath 
hold time across multiple subjects (Tobin et al., 1982). 
A similar variability was reported by Taylor et al. (1988), 
who studied the relation of bronchial reactivity and smoke 
inhalation patterns. These observations represent the start-
ing point of our current research, that is, the identifi cation 
of signifi cant differences in breathing that can ultimately be 
used to automatically recognize smoking patterns by means 
of computer algorithms.
 Another major component of the PACT system is a 
proximity sensor that detects a characteristic hand-to-mouth 
gesture that precedes most cigarette puffs. This gesture is 
an arm motion that is directly related to the act of smoking 
tobacco. If an average smoker consumes 11 cigarettes per 
day with 8–16 puffs for each cigarette (National Cancer 
Institute, 1996), the resulting number of hand-to-mouth 
gestures would be roughly 32,000 to 64,000 repetitions per 
year. A variety of methods have been used to detect hand 
gestures, including accelerometers (Popa, 2011) to assess 
the velocity of movements and infrared range detectors to 
detect specifi c directional movements (Silicon Labs, 2011). 
In addition, capacitive sensing (Kurita, 2010) and video 
(Pavlovic et al., 1997) have been used to create detailed data 
about exact hand positions. Gyroscopes have also been used 

to identify characteristic angular velocities associated with a 
person taking a bite of food (Dong et al., 2012). These sen-
sors can be extremely accurate and versatile; however, they 
cannot provide the exact functionality needed for assessment 
of the hand-to-mouth gestures associated with smoking in 
free-living conditions. As a part of the PACT system, we de-
veloped a wearable hand-to-mouth gesture sensor (Sazonov 
et al., 2011) that uses radio frequency (RF) technology and 
is minimally obtrusive and suitable for use in free-living 
applications.
 The goal of PACT is to be completely transparent to the 
end user and not require any conscious effort to achieve re-
liable monitoring of smoking behavior and smoke exposure 
in free-living individuals. PACT is based on the hypothesis 
that smoking produces unique breathing patterns correlated 
in time with hand-to-mouth gestures. This article presents 
a detailed description of the prototype of the PACT sensor 
system and results of initial testing in a laboratory study.

Method

Participants

 For this study, 20 regular smokers with a history of smok-
ing for at least 1 year were recruited. Subject recruitment 
targeted both men and women (10 men and 10 women, age 
23.1 years, SD = 3.3, range: 19–32) of different races and 
body builds (adiposity with average body mass index = 26.0 
kg/m2, SD = 5.3, range: 21.1–41.7) to test PACT in a widely 
varying sample. The average self-reported cigarette consump-
tion by subjects was 12.4 (SD = 5.8) per day (range: 2–20 per 
day) with an average carbon monoxide measure taken at the 
beginning of the experiment of 16.7 ppm (SD =7.1, range: 
10–31). Subjects reported that they were healthy and had 
no acute or chronic respiratory problems. Subjects signed a 
consent form approved by the University of Alabama. Subjects 
were paid $37.50 for participation in the study.

Instruments

 The PACT wearable sensor system is depicted in Figure 
1. All of the sensors and electronics were mounted on a 
custom-sewn vest that could be worn under or over regular 
clothing. Breathing was monitored by a RIP module (zRIP, 
Philips Respironics, Murrysville, PA) kept in a vest pocket 
and equipped with abdominal (AB) and thoracic (TC) re-
spiratory bands. The hand-to-mouth gesture sensor (HG) 
comprised two components. First, an antenna was attached 
to the vest at chest level using Velcro. Second, a transmitter 
was worn on the inside of the wrist of the dominant hand 
(the other hand was not instrumented). During a hand-to-
mouth gesture, the transmitter comes into the vicinity of the 
antenna, generating a signal proportional to the distance be-
tween the antenna and the transmitter (Sazonov et al., 2011).
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FIGURE 1. Wearable sensors comprising the PACT. The hand-to-mouth sensor captures the proximity of the subject’s wrist and chest to detect the transportation 
of the cigarette to the mouth; the airfl ow sensor is a thermocouple that measures the changes in air temperature based on oral/nasal air inhale and exhale; the 
respiratory band and the zRIP module capture respiration; the push button is used to self-report instances such as smoke inhalations. All sensors are connected 
to a data logger, and the data are stored on a microSD card.

 Instrumentation also included a number of devices that 
were needed for system development but do not represent 
an integral part of PACT. A thermocouple airfl ow sensor 
was worn to measure the oral and nasal airfl ow (AF) and to 
provide a reference airfl ow signal. A self-report push but-
ton (PB) was given to the subject to report puffs during the 
smoking experiments. A camcorder was used to videotape 
the subjects during the experiment.
 All signals (AB, TC, HG, AF, and PB) were connected 
to a custom-designed electronic circuit for amplifying and 
conditioning of the signals. The same circuit incorporated a 
portable data logger (Logomatic V2, Sparkfun Electronics, 
Boulder, CO) that digitized the signals with 10 bits of reso-
lution and a sampling frequency of 100 Hz and stored them 

on a microSD card. This circuit was kept in the second vest 
pocket. The stored data were extracted via a USB connection 
and processed on a personal computer. Figure 2 illustrates 
the sensor signals during a brief period of smoking. The bat-
tery and storage capacity of the PACT hardware potentially 
allow continuous use for 24 hours before a battery recharge 
was required.

Procedure and data analysis

 During the experiments, the subjects performed 12 dif-
ferent activities: (a) sitting, (b) reading aloud, (c) standing, 
(d) walking on a treadmill at a self-selected slow pace (1.81 
mph, SD = 0.24), (e) walking on a treadmill at a self-selected 
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fast pace (2.93 mph, SD = 0.40), (f) using a computer to 
browse the Internet, (g) eating food using hands for solids 
and a cup for liquids, (h) eating foods using silverware and 
drinking from a straw, (i) walking outside, (j) smoking a 
cigarette while sitting, (k) resting in a sitting position, and 
(l) smoking a cigarette while standing. These activities 
were designed to test a variety of breathing conditions (e.g., 
breathing with and without speech, labored breathing dur-
ing physical exercise) and hand-to-mouth or other gestures 
proximal to the chest area (e.g., during food intake). Except 
for eating and smoking activities, which were not restricted 
in time, all the activities had a fi xed time of 5 minutes to be 
performed. The total duration of collected data was 19.56 
hours, including 531 cigarette puffs. Processing of the col-
lected data was aimed at testing the feasibility of the main 
hypothesis that smoke inhalations were highly correlated 
with hand-to-mouth gestures and that the corresponding 
breathing pattern was distinctly different from breathing 
patterns during other activities. In this analysis, smoking 
a cigarette while sitting was merged with smoking while 
standing, because smoking in various postures represented 
a single activity of interest. Signal processing techniques 
were used to automatically detect hand gestures and all the 
inhalation peaks. Then, metrics describing hand gestures and 
breathing patterns were computed and statistically compared 
between different activities.
 Data annotation. The signals and video were annotated by 
human raters in custom-designed LabVIEW software used 
to manually mark the boundaries of every smoking breath 
(including puff, smoke inhalation, and exhalation). These an-

notations were used along with the sensor signals to analyze 
the data.
 Detection of hand-to-mouth gestures. When signal HG 
from the RF proximity sensor increased above a predefi ned 
threshold THG, the hand was considered to be in the prox-
imity of the mouth, indicating a hand-to-mouth gesture. 
When the signal remained below the threshold, the hand 
was assumed to be away from the mouth. The value of the 
threshold was subject independent and defi ned by the elec-
tronic noise of the proximity sensor. The threshold had to 
be suffi ciently high so that the noise present in the signal 
would not trigger a false detection, but also suffi ciently low 
to capture hand gestures. Based on the direct measurement 
of noise level using standard measurement equipment (i.e., 
an oscilloscope), the amplitude of noise in the proximity 
sensor signal was found to be less than 90 mV under all 
circumstances; therefore, a THG = 100 mV was used.
 Hand gesture metrics. Hand gesture metrics were com-
puted to evaluate the ability of the HG sensor to detect 
hand-to-mouth gestures during smoking and to estimate 
their timing and amplitude. The following hand gesture 
metrics were computed: RHG = the rate (frequency) of hand-
to-mouth gestures for each activity, DHG = the duration of 
each hand-to-mouth gesture, and AHG = the amplitude of 
proximity signal for each hand gesture. The average and 
standard deviation of DHG and AHG were computed across 
all subjects to compare the values and distributions of the 
different activities. (Technical details for computing these 
and the following metrics are available from the authors on 
request.)

FIGURE 2. Push button (PB), hand-to-mouth gesture sensor (HG), oral and nasal airfl ow (AF), thoracic (TC) and abdominal respiratory band (AB) signals 
during smoking. A short segment of captured signals is shown here, digitized with 10 bits of resolution and a sampling frequency of 100 Hz.
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 Finally, the ability of the hand gesture sensor to detect 
hand-to-mouth gestures resulting from smoking was evalu-
ated by computing the number of true positives (TPs) or 
hits in which a hand-to-mouth gesture was detected by both 
the human rater and the HG sensor, false positives (FPs) or 
false alarms in which a gesture is detected by the sensor but 
not by the human rater, and false negatives (FNs) or misses 
in which a gesture is detected by the human rater but not by 
the sensor. Because of the biased data set with a very low 
number of TPs, true negatives (any breath cycle without a 
hand gesture) were not taken into account, and the hit rate 
(Olson and Delen, 2008) of the HG sensor was calculated as 
HR = TP / (TP + FN).
 Derived breathing signals. Breathing patterns are 
typically characterized by tidal volume (VT) and airfl ow 
(AFEST), which are computed from the AB and TC signals. 
The tidal volume signal was obtained as the average between 
the thoracic and abdominal signals, and the estimated airfl ow 
was then calculated as a fi rst derivative over time.
 Breathing segmentation. Breath-by-breath segmentation 
was implemented using extreme value detection, that is, 
peaks and valleys of the VT signals that represent the begin-
ning of an expiration and inspiration, respectively. Breath-
by-breath segmentation facilitates the analysis of respiratory 
behavior when calculating parameters like breath frequency, 
segment duration, amplitude, etc.
 Breathing metrics. The following breathing metrics were 
computed to evaluate key characteristics of breathing in dif-
ferent activities: F = breathing frequency (respiratory rate) 
for each activity, VT MAX

 = peak tidal volume, and AF EST
MAX

 = 
estimated peak airfl ow.
 Statistical analysis. First, a Dunnett’s test for multiple 
comparison analysis was used to evaluate the signifi cance 
of differences in breathing and hand gesture metrics between 
smoking and all other activities. Specifi cally, differences in 
breathing frequency (F), peak tidal volume (VT MAX

), peak 
airfl ow (AF EST

MAX
), rate, duration, and amplitude (RHG, DHG, 

AHG) of hand-to-mouth gestures were evaluated using a type 
I error rate of  = .05.
 Second, average traces of hand gesture HGA

(t), tidal vol-
ume VT A

(t), and airfl ow AF EST
A

(t) signal waveforms were 
used to estimate the presence and relative timing of hand 
gestures related to breathing in various activities. The aver-
age trace of the tidal volume was aggregated over multiple 
breaths of the same activity for several subjects. The aver-
ages trace of the airfl ow AF EST

A
(t) and the HGEST

A
(t) signals 

were computed in an identical manner. Average traces during 
smoking only included breaths in which cigarette smoke 
was inhaled (as determined from the annotations by human 
raters). All other activities were aggregated over all breaths 
across all subjects.
 Third, differences in average waveforms of hand gestures, 
tidal volume, and airfl ow between pairs of different activities 
A and B were estimated using cross-correlation XAB, where 
activity A was always represented by an average waveform 
corresponding to smoke inhalation breaths. Cross-correlation 
provides a numeric measure of the similarity between the 
waveforms, where identical waveforms would have a cor-
responding XAB = 1 and nonidentical waveforms would have 
-1 < XAB < 1.

Results

 The total number of breaths analyzed in this study was 
21,411, of which 531 (2.5%) were breaths containing ciga-
rette smoke inhalations. Table 1 shows the metrics of hand 
gestures detected from the HG signal: the average and stan-
dard deviation of rate RHG, duration DHG, and amplitude AHG 
were computed by activity across all subjects. Note that the 
rate and duration of the hand gestures during smoking was 
most similar to eating (with hands and silverware), whereas 
average amplitude (which was proportional to the distance of 
the hand to the mouth) was substantially higher for smoking 
than for any other activity.

TABLE 1. Average rate, duration, and amplitude of hand gestures of different activities 
across 20 participants

 RHG DHG AHG

Activity Average SD Average SD Average SD

Sitting 0.40 0.52 8.83 21.00 0.24 0.34
Reading 0.63 0.72 16.02 35.86 0.42 0.43
Standing 0.33 0.45 22.64 49.18 0.39 0.42
Walking slowly 0.29 0.39 1.23 1.36 0.45 0.47
Walking fast 0.30 0.40 7.11 22.97 0.50 0.45
Laptop 0.95 0.76 16.40 44.69 0.24 0.33
Eat with hands 3.78 2.10 5.24 13.93 0.67 0.40
Eat with silverware 4.30 2.40 4.91 9.26 0.57 0.41
Walking outside 0.68 0.66 2.66 4.95 0.53 0.42
Resting 2.12 1.80 4.89 17.45 0.25 0.30
Smoking 3.29 1.04 3.79 5.42 0.96 0.15

Notes: The rate RHG is defi ned as the number of hand-to-mouth gestures over a minute; 
DHG is duration computed in seconds; AHG expresses the average amplitude of the proxim-
ity sensor normalized to range 0–1.
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 The proximity sensor identifi ed 480 TPs (puffs with 
associated hand gestures detected by the sensor), 51 false 
negatives, and 0 false positives (although the sensor de-
tected other gestures, they were not considered as false 
positives, as all were non–smoking related), resulting in a 
hit rate of 0.90.
 Based on the breath-by-breath segmentation, the average 
breathing frequency F (breaths/min) was calculated for each 
activity together with peak tidal volume VT MAX

 and airfl ow 
AF EST

MAX
 (Table 2). As Table 2 demonstrates, the maximum 

breathing frequency was achieved during walking, an activity 
that demanded the highest oxygen consumption. Smoking, 
on the other hand, had the highest tidal volume and airfl ow.
 Table 3 displays the results from the Dunnett’s test for 
multiple comparisons characterizing the differences in 
breathing and hand gesture metrics between smoking and 
all other activities. A signifi cant difference was observed 
between smoking and other tested activities in maximum 

tidal volume (VT MAX
) and amplitude of hand gestures (AHG). 

Among all activities tested, eating most closely resembled 
smoking in breathing frequency (F) and rate of hand gestures 
(RHG). Finally, walking and smoking had similar air-
fl ow (AF EST

MAX
) characteristics.

 Figure 3 shows the average traces of VT, AFEST, and HG 
signals for four different activities: sitting, reading, eat-
ing with silverware, and smoking. The trace for smoking 
demonstrated a clear correlation between the hand gesture 
and the respiratory signals. Eating, an activity most closely 
resembling smoking in other metrics, did not exhibit such 
correlation.
 Table 4 shows the cross-correlation values illustrating the 
differences in the shapes of the average traces of the tidal 
volume signal (VT A

(t)), airfl ow signal (AF EST
A

(t)), and hand 
gesture signal (HGA

(t)) during smoking and other activities. 
The values of cross-correlation were in the range of .3–.8, 
indicating low to moderate correlation.

TABLE 2. Breath frequency and signal peak-to-peak amplitude of tidal volume and airfl ow 
for different activities across all subjects.

 F VT MAX AF EST
MAX

Activity Average SD Average SD Average SD

Sitting 15.71 4.18 0.13 0.06 0.19 0.10
Reading 10.77 2.51 0.20 0.10 0.19 0.08
Standing 14.42 4.45 0.10 0.04 0.14 0.07
Walking slowly 21.87 4.71 0.12 0.07 0.22 0.14
Walking fast 24.60 4.52 0.14 0.09 0.28 0.20
Laptop 19.38 3.78 0.14 0.05 0.23 0.11
Eat with hands 15.97 3.32 0.17 0.07 0.20 0.09
Eat with silverware 16.06 3.11 0.17 0.07 0.21 0.09
Walking outside 24.39 4.65 0.15 0.08 0.29 0.19
Resting 20.97 3.80 0.15 0.07 0.25 0.13
Smoking 16.49 2.63 0.27 0.13 0.36 0.20

Notes: The breath frequency F represents the number of breathing cycles over 1 minute; 
the peak-to-peak tidal volume VT MAX is the average amplitude across all the breathing 
cycles for the corresponding activity; the peak-to-peak airfl ow AF EST

MAX
 is the average 

amplitude across all the breathing cycles for each activity.

TABLE 3. P values obtained from the multiple comparison statistical analysis of smoking 
compared with all other activities for the breathing and hand gesture behaviors. Each entry 
in the table is a p value obtained by a Dunnet’s test comparison of a given metric during 
smoking (used as the reference) and another activity (Column 1).

Activity
(reference = smoking) F VT MAX AF EST

MAX
 RHG DHG AHG

Sitting .956 .002 .030 .000 .026 .000
Reading .000 .002 .037 .000 .072 .000
Standing .399 .000 .001 .000 .001 .000
Walking slowly .000 .000 .255 .000 .000 .000
Walking fast .000 .000 .998 .000 .001 .000
Laptop .075 .000 .527 .000 .000 .000
Eat with hands .998 .000 .115 1.000 .000 .000
Eat with silverware .998 .000 .151 1.000 .000 .000
Walking outside .000 .000 1.000 .000 .049 .000
Resting .000 .000 .891 .000 .000 .000

Notes: Results from the Dunnet’s statistical test using a 5% joint signifi cance level value 
associated to all 10 tests for breathing rate F; peak tidal volume VT MAX; peak airfl ow 
AF EST

MAX
; rate RHG, duration DHG, and amplitude AHG of hand gestures, respectively.
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Discussion

 The results indicate that hand-to-mouth gestures were 
reliable precursors of smoke inhalations and that the wave-
forms of smoke inhalations were signifi cantly different from 
breaths during any tested activity. Even though the test of 
the pooled data is less sensitive to the differences between 
smoking and other groups than the test that controls for the 
individual subjects’ variability, the conducted tests detected 
signifi cant differences between groups, rendering more ad-
vanced approaches unnecessary. Signifi cant differences were 
observed in the rate of hand gestures, amplitude (proximity) 
of hand gestures, peak tidal volume, and airfl ow. A signifi -

cant correlation was found in the timing of the hand gestures 
and breathing during smoking. The details of these fi nding 
are discussed below.
 For hand gestures, there was a signifi cant difference in 
the rate of hand gestures detected, with smoking having a 
higher rate than other activities, except for eating, where the 
rate was comparable. Thus, the rate of hand gestures could 
be used as a feature to differentiate various activities. If an 
activity exhibits a low rate of hand gestures, these hand 
gestures may be excluded from further consideration as 
potential precursors of smoke inhalations.
 The duration of hand gestures was not very distinctive 
across activities. In contrast, the average amplitude of hand 
gestures for smoking was observed to be the highest of all 
activities, where it was observed that more than 99% of the 
hand gestures associated with smoking were higher in ampli-
tude (more proximal to the mouth) than 95% of all hand ges-
tures seen with the other activities. This effect is stipulated 
by the directional sensitivity of the RF hand gesture sensor, 
which is most closely aligned in a cigarette-holding gesture. 
Thus, the amplitude could potentially also be used to reject 
hand gestures not associated with smoking.
 The proximity sensor reliably picked up hand gestures 
originating from smoking. Video examination showed that 
gestures not captured by the system (FN = 51) were due 
to use of the nondominant hand for smoking. Placing RF 
transmitters on both hands should increase the sensitivity of 
detection of hand gestures related to smoking. On occasion, 

FIGURE 3. Average traces of breathing segments of four different activities: sitting (top left), reading (top right), eating (bottom left), and smoking (bottom 
right). Note that the graphs are on different time scales. In the smoking plot, a distinct hand gesture HGA(t) peak preceding the smoke inhalation can be 
seen on traces of the volume tidal VT A(t) and the airfl ow AF EST

A
(t). This characteristic, together with signifi cant changes in the waveforms of VT A(t) and 

AF EST
A

(t), could be used to identify smoke inhalations.

TABLE 4. Cross-correlation of VT A(t), AF EST
A (t), and HGA(t) between 

smoking and all other activities

Smoking vs. . . . VT A(t) AF EST
A (t) HGA(t)

Sitting .75 .51 .73
Reading .44 .04 .72
Standing .55 .55 .78
Walking slowly .33 .41 .80
Walking fast .38 .31 .79
Laptop .34 .36 .71
Eat with hands .45 .33 .73
Eat with silverware .46 .46 .74
Walking outside .45 .40 .77
Resting .50 .29 .76

Notes: VT A = average trace of tidal volume signal; AF EST
A

(t) = average trace 
of airfl ow; HGA = average trace of hand gesture signal.
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people might smoke by holding a cigarette between their 
lips without using their hands and thus avoid detection of a 
hand-to-mouth gesture. This was not observed in any case 
across all participants in the laboratory experiments, but this 
possibility might arise in free-living conditions. In normal 
conditions, at some point the cigarette has to be transported 
to and from the mouth by hand gestures (i.e., lighting, or 
cigarette or butt removal, which should be detected by the 
RF sensor). Therefore, at least the beginning and end of each 
cigarette should be marked by hand gestures. This particular 
behavior has to be examined in future studies to consider all 
possible smoking scenarios.
 Peak tidal volume and peak airfl ow during smoking were 
substantially different from breathing during most other 
activities. Specifi cally, the average peak-to-peak amplitude 
of the tidal volume signal VT MAX

 and airfl ow AF EST
MAX

 were 
signifi cantly higher during smoke inhalations. This indicates 
that a large volume of air and smoke is rapidly inhaled 
during a typical smoking breath cycle, which agrees with 
observations of previous studies (Rodenstein, 1985).
 The average waveforms across distinct activities also 
demonstrate that smoking, unlike any other activity tested 
in this study, has a very high covariation in time between 
breathing and hand-to-mouth gestures. The average trace of 
the hand gesture signal can be thought of as a probability 
estimate for a hand gesture appearing at a certain time in 
a breath cycle. For most activities in the study, the hand 
gestures are not coordinated with breathing in any way and 
therefore can appear at any time during a breath cycle. For 
example, eating has a rate of hand gestures comparable to 
that of smoking, but such gestures are likely to happen at 
any given time during a respiratory cycle and the trace of 
HGA

(t) for eating is virtually fl at. The only activity with 
highly coordinated hand gestures and breathing is smoking; 
thus, the trace of HGA

(t) for smoking (Figure 3) had a dis-
tinct peak preceding the smoke inhalation seen on traces of 
VT A

(t) and AF EST
A

(t).
 The low values of cross-correlation between average 
traces of VT A

(t) and AF EST
A

(t) indicate that shapes of respira-
tion waveforms during smoking were substantially different 
from other activities even if the breathing rates were not. 
The differences observed in the waveforms of VT A

(t) and 
AF EST

A
(t) (as depicted in Figure 3) and the characteristic 

behavior of the hand-to-mouth gestures may be suitable to 
identify distinct features that could allow automatic com-
puter detection of smoke inhalation and objective character-
ization of smoking that does not require a conscious input 
from the individual.
 At this point, an obvious disadvantage of the presented 
sensor system is the relatively large size of the garment, 
including the vest, sensors, and electronics. However, the 
present incarnation of the PACT was assembled from parts 
readily available on the market and is not necessarily the 
best fi t for long-term use and convenience. In the future, the 

system could be substantially miniaturized using more suit-
able electronics and reduced to a single ribcage belt with the 
data-capturing and RF proximity sensor fully integrated into 
the belt.
 On the other hand, even when the subject has to be 
instructed to wear a possibly intrusive system for monitor-
ing purposes, the present sensor system would eliminate 
the subject’s burden of remembering to use an external 
device for every single cigarette smoked. Another promis-
ing advantage of PACT is that the sensor signals carry rich 
information about the full breathing cycle associated with 
smoking: puff, smoke inhalation, smoking apnea (smoke 
holding), and smoke exhalation, as opposed to conventional 
puff topography devices that only detect and quantify the air 
drawn through a cigarette during a puff. The monitoring of 
breathing also creates an advantage of knowing a subject’s 
compliance, as absence of the breathing signal would indi-
cate that the device is not being worn (it is anticipated that 
PACT will continuously log sensor signals without being 
turned on/off by the subject). Because PACT only registers 
the air and smoke being inhaled into the lungs, it thus has 
the advantage of not registering quick successive puffs (e.g., 
“lighting puffs”) that have to be cleaned up on puff topogra-
phy devices. 
 The next step in PACT development is to use signal 
processing, machine learning, and pattern recognition tech-
niques to build classifi cation models to automatically detect 
and characterize smoking behavior and smoke exposure. The 
results of the present study show that shapes of inhalation 
patterns are substantially different for different activities. 
Therefore, it should be possible to use methods of machine 
learning and pattern recognition (e.g., artifi cial neural net-
works or support vector machines) to learn and recognize 
smoke inhalations by looking at the shape of the breathing 
waveform following any detected hand-to-mouth gesture. In 
addition, the need for a hand gesture sensor will be evaluated 
because it may be possible to detect smoke inhalations en-
tirely through analysis of the breathing signal alone. Overall, 
miniaturization of PACT sensors in combination with these 
methods may provide additional information not available 
from the current smoke topography monitors. In the future, 
PACT can also be used to study the correlation of common 
smoking biomarkers with the individual traits of respiration 
during cigarette smoking (e.g., duration of smoke holding).
 A question may arise about how PACT will respond to 
activities not represented in the current data set but involv-
ing various hand gestures, such as placing or taking a call 
on a phone. Given the results described above, we anticipate 
that most of the activities of daily living will not have the 
same coordination of breathing and hand-to-mouth gestures 
as smoking does, and thus they will not be confused with 
smoking. For example, food intake, the most common activ-
ity involving repeated hand gestures, shows no correlation 
between breathing and hand gestures. Moreover, breathing 



964 JOURNAL OF STUDIES ON ALCOHOL AND DRUGS / NOVEMBER 2013

patterns during smoke inhalations are different from those of 
other activities and thus provide an additional indication of 
the type of activity being performed. This issue can only be 
addressed through a multiday study in a naturalistic setting, 
which is one of the future steps in PACT development.
 In conclusion, this study suggests a novel method for 
monitoring cigarette smoking and smoke exposure in 
free-living conditions, presents a detailed description of a 
wearable sensor system, and suggests that unique breath-
ing patterns highly correlated in time with hand-to-mouth 
gestures are associated with smoke inhalations, which could 
be distinguished from other common daily activities. Future 
development of signal processing and pattern recognition 
methods should allow transparent monitoring of the smok-
ing behavior of individuals in free-living conditions. In 
its current state, the PACT system might be of interest to 
specialists studying smoking behaviors and could provide 
a practical approach for unconstrained monitoring of the 
dynamics of smoke exposure.
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