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Cells of undomesticated species of Bacillus subtilis frequently form complex colonies during spreading on agar
surfaces. Given that menaquinone is involved in another form of coordinated behavior, namely, sporulation, we
looked for a possible role for menaquinone in complex colony development (CCD) in the B. subtilis strain NCIB 3610.
Here we show that inhibition of menaquinone biosynthesis in B. subtilis indeed abolished its ability to develop
complex colonies. Additionally some mutations of B. subtilis which confer defective CCD could be suppressed by
menaquinone derivatives. Several such mutants mapped to the dhb operon encoding the genes responsible for the
biosynthesis of the iron siderophore, bacillibactin. Our results demonstrate that both menaquinone and iron are
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Introduction

In nature, when confronted with difficult environmental
conditions, groups of bacterial cells enter a physiological state
that conveys new traits to the group and relies on a
programmed collaboration between large numbers of cells
[1-17]. This collaboration, is known as multicellularity [1-18],
and involves sophisticated modes of intercellular
communication such as cell-cell physical interactions, long term
chemical signals and chemotaxis [1-18]. Examples of such
behaviors include fruiting body formation in Myxococcus
xanthus [6,19-21], and aerial hyphae development in
Streptomyces coelicolor [22-25]. The Gram-positive bacterium,
Bacillus subtilis, is also capable of undergoing different
multicellular processes including sporulation [7], genetic
competence [8], social motility (e.g. swarming) [3,9],
extracellular protease production [10,26,27], biofilm formation
[11-13,15] and complex colony development (CCD) during
spreading on hard agar surfaces [14,16,17].

Extensive studies [1,5,14,16,17,28-39] on the properties and
dynamics of CCD have been conducted with B. subtilis and
several species of Paenibacilli using a combination of
microscopy [28,32,33,35,36], time-lapse cinematography
[28,31,37,38] and generic  computational modeling
[28,31-33,38]. Results from these studies showed that colonial
expansion leading to CCD is highly coordinated and cell-
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density-dependent, involving branches of cells enclosed within
a cell-generated polymeric envelope [1,5,28,30,32]. The
developing complex colonies were also found to exhibit
changes in morphology in response to fluctuations in factors
such as media composition, carbon and energy sources and
agar concentration [1,28,34]. Computational analysis predicted
that CCD in B. subtilis and Paenibacilli results from the
interaction of several forces such as chemotaxis towards an
externally supplied food source in combination with two cell-
generated forces; a short-range chemo-attractive force
between the cells, and a long range chemo-repulsive force
[28,31-33,38]. CCD of B. subtilis has also been shown to be
cell-density-dependent [40]. In addition, mutants blocked in
surfactin production were found to be severely impaired in
colony expansion and CCD [3,41,42]. The complex spatial
structure of surface-associated communities together with
gradients of both environmental factors such as nutrients,
oxygen and cell generated signals, form different
microenvironments throughout the colony
[1,15,32,33,36,38,43,44]. These microenvironments ultimately
lead to differential gene expression and the development of
different cell types in specific areas of the colony
[1,15,32,33,36,38,43,44].

In prokaryotes, menaquinones (MKs) are low-molecular-
weight naphthoquinone derivatives, located in the cytoplasmic
membrane, which are involved in electron transfer in
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Figure 1. The typical complex colony development phenotype of B. subtilis 3610. Approximately 10° cells from the mid
logarithmic growth stage were spotted on spreading plates containing 1.2% agar and incubated at 37°C as described in Methods.
The plates were photographed at various time points (12, 60 and 72 hours) after inoculation. The presented results are

representative of five independent experiments.
doi: 10.1371/journal.pone.0079488.g001

respiration [45-48]. All MKs share a 2-methyl-1, 4
naphthoquinone ring, but differ in the structure of the aliphatic
side chains attached at the C3-position in the ring structure
[45-49]. The side chains of MKs are composed of a variable
number of unsaturated isoprenoid residues [45-49]. Hence,
MK-related forms are generally designated as menaquinone-n
(MK-n), where n specifies the number of isoprenoid units
[45,47,48]. The number of isoprenoid residues in the
menaquinones side chains can be species-specific, e.g. MK-8
in Escherichia coli [50,51], MK-9 in Corynebacterium diphteriae
[52] and MK-7 in B. subtilis [48].

Additional functions of MK, other than respiration, include
involvement in the biosynthesis of pyrimidine compounds in E.
coli [50] and the dehydrogenation reaction of steroid ring A in
Norcardiu restricus [53]. In B. subtilis, MK-7 is also involved in
coupled ATP synthesis [54], is required for the glycosylation of
certain membrane proteins and is essential for early events in
sporulation [48].

Microscopy-based observations suggest that some cells,
which are closer to the centre of the complex colony, are
inactive and sporulate [1,32,33,36,38], similar to what is seen
in the formation of fruiting-body-like structures and biofilms by
B. subtilis [2,12,15,55]. In this regard, we set to investigate
whether MK is also required for CCD in the B. subtilis strain
NCIB 3610 (B. subtilis 3610). The results presented in this
study point to a role for both MK and iron in multicellular
processes such as CCD.

Results

Complex colony development in wild-type B. subtilis
3610 strain

When inoculated on spreading plates at 37°C, the cells of B.
subtilis 3610 first formed a colony at the inoculation site, which
we referred to as the “mother” colony (Figure 1). Following 12
hours of growth, branches started to emerge from the edges of
this “mother” colony, expanding at rates of 0.3-0.7 mm per hour
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(Figure 1). Within the first 60 hours of incubation, the branched
colony covered most of the plate and 72 hours post inoculation,
the cell number increased by four orders of magnitude with a
final colony diameter of 4-5 centimeters (Figure 1). The
characteristic complex colony consisted of thick branched
structures at the periphery reminiscent of irregular dendrite-like
structures (Figure 1). The middle of the complex colony
contained several layers of cells (15-40 ym thick), while at the
outer edge of the plate cells were organized as a monolayer.

Menaquinone is required for complex colony
development in the B. subtilis 3610

If MK-7 is indeed necessary for CCD, it is reasonable to
assume that blocking its biosynthesis will also inhibit CCD by
B. subtilis. Blocking of MK-7 biosynthesis can be accomplished
by using diphenylamine (DPA), known to inhibit the synthesis
of menaquinone in various bacteria [56-58]. In this work, CCD
by the parental strain, 3610, was inhibited in the presence of
150 uM of DPA - the diameter of the complex colony was 0.5
cm and did not show irregular dendrite-like structures (Figure
2A). However, this inhibition was reversed when 100 uM of
MK-4 was supplemented with the DPA (Figure 2A). Moreover,
although CCD was severely inhibited in the presence of 150
uM DPA, growth rate was nearly unaffected (Figure 2B).

Inhibition of MK-7 biosynthesis can also be accomplished by
a mutation in a gene directly involved in its synthesis (men
genes) or in one of the aromatic amino acid synthesis (aro)
genes [59]. Single colonies of MK biosynthesis-defective
mutants are smaller compared to wild-type colonies and are
also resistant to aminoglycoside antibiotics [54].

To further support the possible role of MK-7 in CCD in B.
subtilis 3610, we used Mini-Tn70 transposon mutagenesis in
order to isolate mutants defective in MK-7 biosynthesis and
examine their ability to develop complex colonies while
spreading (Materials and Methods). Eighty-four small colonies
(1.75*105%) were obtained. Forty-two (50%) of them were also
resistant to the aminoglycoside antibiotics, kanamycin and
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Figure 2. Menaquinone is essential for complex colony development and growth of Bacillus subtilis. A. Three pl of a fresh
overnight culture of the wild-type strain were spotted onto the center of plates containing 1.2% agar supplemented with 150 yM DPA
(left) or with 150 yuM DPA + 100 uM MK-4 (right). Plates were photographed after 72 hours. Each experiment was carried out in
triplicate. B. Growth curves of B. subtilis 3610 in spreading medium, and in spreading medium supplemented with 150 yM DPA.

Each growth experiment was carried out in triplicate.
doi: 10.1371/journal.pone.0079488.9g002

paromomycin. Identification of insertion sites of the Mini-Tn10
transposon by sequencing (Materials and Methods) revealed
that two (4.76%) of these 42 mutants were defective in the
menG gene, which encodes a 2-heptaprenyl -1, 4 -
naphthoquinone methyltransferase enzyme involved in the final
step of the MK-7 biosynthesis of in B. subtilis [59,60]. The
insertion site, which was identical in both isolates, was located
at the beginning of the coding region and therefore the
disruption probably resulted in the absence of any functional
protein.
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As shown in Figure 3A, the menG mutants lost their ability to
form normal complex colonies. After 72 hours the complex
colony reached a diameter of 2 cm and no irregular dendrite-
like structures could be observed.

Since CCD is partially driven by cell divisions [42], the effect
of a mutation in the menG gene on CCD could be explained by
growth inhibition. As seen in Figure 3B, the mutation in menG
caused a substantial growth defect compared to the parental
strain. Hence, growth inhibition may explain the inhibition of
CCD in this mutant. However, while 40 ug/ml of either MK-4 or
phylloquinone did not restore the complex colony forming
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Figure 3. The menG mutant is defective in complex colony development and growth. A. Cells of wild-type (left) and menG
(right) strains were spotted on spreading plates containing 1.2% agar and incubated at 37°C in a humid and dark environment.
Plates were photographed after 72 hours. The presented results are representative of five independent experiments. B. Growth
curves were performed in spreading medium or in spreading medium supplemented with 40 pug/ml of either MK-4 or phylloquinone.
The presented results are representative of three independent experiments.

doi: 10.1371/journal.pone.0079488.g003

ability of the menG mutant (data not shown), addition of either Mutants defective in complex colony development are

of these MK-7 derivatives did shorten the generation time from suppressed by MK-4

1 hour to 30 minutes, similar to the wild-type growth rate In order to obtain a larger variety of mutants in menaquinone

(Figure 3B). synthesis, we used an additional random insertional
mutagenesis method, which utilizes the TnYLB-1 transposon
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Figure 4. Reconstitution of complex colony development by addition of MK-4. Three pl of a fresh overnight culture were
spotted onto the center of spreading plates containing 1.2% agar (left) and spreading plates containing 1.2% agar supplemented
with 40 pg/ml MK-4 (right) and incubated at 37°C in a humid and dark environment. Plates were photographed after 72 hours. The
presented results are representative of at least five independent experiments.

doi: 10.1371/journal.pone.0079488.9g004

and mutants that can display CCD only in the presence of
MK-4 were screened for (Material and Methods).
Approximately 17*10% kanamycin resistant colonies from four
independent mutagenesis pools were screened for their ability
to develop complex colonies on spreading hard agar plates
(Material and Methods). Out of 207 mutants that were defective
in CCD, 10 mutants (4.8 %) exhibited complex colonies similar
to those of the parental strain upon addition of 40 pg/ml of
MK-4 (Figure 4). Most of these mutations were mapped to 5
unique genes. Two of these mutants were defective in yoml,
which encodes a protein similar to a lytic transglycosylase
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which cleaves bonds in the peptidoglycan [61] and in a non-
coding region upstream of a gene cluster consisting of yxaC,
and yxaD, which encode proteins with similarity to
peptidoglycan hydrolases, belonging to the LrgB autolysin
family, and a probable transcriptional regulator from the MarR
(Multiple antibiotic resistance regulators) family, respectively
[62]. The eight remaining isolates contained insertions in the
dhbA (1), dhbE (5), and dhbF (2) genes, all of which are
essential for the biosynthesis of bacillibactin (BB), the known
catecholic siderophore of B. subtilis that is required for iron-
acquisition under iron-limiting conditions [63].
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Figure 5. Mutants in dhb genes are defective in bacillibactin (BB) synthesis. A. Production of BB starts with chorismate and
proceeds through the enzymatic activities of the DhbC, DhbB, and DhbA proteins to DHB, an intermediate with weak siderophore
activity. DHB is subsequently activated by DhbE-mediated adenylation. A modular peptide synthetase later modifies the resulting 2,
3-dihydroxy-benzoyl-adenylate through the addition of glycine and threonine residues and finally esterifies three of these
intermediates to form BB; B. Wild-type, dhbE, dhbF and dhbA strains were plated on CAS hard agar plates (Materials and
Methods). Photographs were taken after 48 hours of incubation at room temperature. The results are representative of five

independent experiments.
doi: 10.1371/journal.pone.0079488.9g005

Mutants in dhb genes are defective in bacillibactin
synthesis

In B. subtilis the primary siderophore, BB, is encoded by the
dhb operon [63-65]. As illustrated in Figure 5A, production of
BB starts with chorismate and proceeds through the enzymatic
activities of the DhbC, DhbB, and DhbA proteins to the
bacillibactin (BB) precursor 2, 3-dihydroxybanzoate (DHB).
DHB, an intermediate with weak siderophore activities, is
subsequently activated by DhbE-mediated adenylation by
forming a 2, 3-dihydroxybenzoyladenylate. In B. subtilis 2, 3-
dihydroxybenzoyladenylate is then attached to Gly and Thr by
the DhbF product to produce the complete and active BB
[63-66]. BB is exported out of the cell, and once secreted,
binds Fe*® (ferric iron) ions and reenters the cell via an ABC
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transporter encoded by feuABC [67]. Inside the cell the Yuil
esterase releases the iron from the siderophore, making it
available for cellular processes [67].

In order to confirm that all three dhb mutants - dhbA, dhbE
and dhbF - were defective in BB production, a CAS agar assay
was performed (Materials and Methods). As shown in Figure
5B, while colonies of the parental strain, 3610, formed dark
orange halos as a result of BB secretion and subsequent
chelation of the iron present in the medium, colonies of the dhb
mutants formed significantly paler orange halos. The pale
orange halos formed by the dhb mutants can be attributed to
their ability to produce the precursor DHB, a weaker iron
chelator [67]. This result, which is in agreement with a previous
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Figure 6. Iron is essential for complex colony development in Bacillus subtilis. A. Three pl of a fresh overnight grown culture
were spotted onto the center of spreading plates containing 1.2% agar (left) and spreading plates containing 1.2% agar
supplemented with 150 uM Fe*3 (right), and incubated at 37°C in a humid and dark environment. Plates were photographed after 72
hours. B. Three pl of a fresh overnight culture were spotted onto the center of spreading plates containing 1.2% agar (left) and
spreading plates containing 1.2% agar supplemented with 120 uM of an iron chelator, 2,2'-dipyridyl (right) and incubated at 37°C in
a humid and dark environment. Inhibition of complex colony development in the dhb mutants in the presence of 120 uyM 2, 2'-
dipyridyl was observed following 72 hours of incubation at 37°C. The presented results are representative of five independent

experiments.
doi: 10.1371/journal.pone.0079488.9g006

report [67], confirmed that all three dhb mutants are impaired in
the production of BB.

Reconstitution of complex colony development in the
dhb mutants by iron supplementation

A significant fraction of the mutations in the CCD-defective
strains that were suppressed by MK-4 were localized to the
dhb operon, which encodes the biosynthesis of the iron
siderophore, BB [63-66]. This finding suggests a role for iron in
CCD.

Since the medium used for the spreading plates contained
less than 1 uM Fe*3, a concentration that is known to stimulate
production of BB [63], we were interested in examining the
effects of adding Fe** on the CCD phenotype of the dhb
mutants. We observed that increasing the Fe*® concentrations
in the spreading medium to 150 yM resulted in complete

PLOS ONE | www.plosone.org

reconstitution of CCD by all three dhb mutants (Figure 6A).
Furthermore, addition of 120 uM of the iron chelator, 2, 2'-
dipyridyl to the medium led to inhibition of CCD in the wild-type
strain 3160 (Figure 6B). Taken together these results indicate a
role for iron availability in CCD.

Since iron starvation can prevent bacterial growth [68], we
decided to compare the growth rates of the dhb mutants with
the growth rate of the wild-type, under the condition of iron
limitation. When we compared the growth rates (Materials and
Methods) of the dhb mutants and the wild-type strain, we
discovered that all three dhb mutations significantly affected
growth compared to the parental strain (Figure 7). Calculations
have shown that the doubling time of wild-type, dhbA, dhbE
and dhbF were 35, 48.8, 49 and 37.5 minutes, respectively.
Thus, growth inhibition can explain the dhb mutants’ loss of
ability to perform CCD.
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Figure 7. Growth curves of B. subtilis 3610 wild-type and dhb mutants. Growth curves were performed in spreading medium.
The presented results are representative of three independent experiments.

doi: 10.1371/journal.pone.0079488.9g007

The effect of quinone derivatives on the suppression of
complex colony development defect in dhb mutants

To further investigate the connection between iron
availability, MK and CCD, we tested whether other quinone
derivatives could reconstitute CCD in the dhb mutants. For this
purpose, several quinones (Figure 8) were tested for their
ability to reconstitute complex colony development in the these
mutants (Materials and Methods). Two naphthoquinones, MK-4
and phylloquinone, contain side chains of four and one
isoprenoid residues, respectively (Figure 8). Two other
naphthoquinones, menadione and menadione bisulfate, lack an
isoprenyl side chain as does benzoquinone (HyQ) (Figure 8).
As shown in Figure 8, only those quinones that contain at least
one isoprenoid side chain restored CCD to the dhb mutants
while neither of the other naphthoquinones nor the
benzoquinone lacking the isoprenoid moiety exhibited any
reconstitution of CCD in those mutants.
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Discussion

Complex colony development is a social form of motility that
enables bacteria to travel and colonize solid surfaces
[1,5,28-39,69]. Despite the extensive description of CCD as a
dynamic process in the Bacillaceae, little is known of the genes
and molecules involved in the organization and conversion of
expanding colonies into complex organizations. Since in B.
subtillis MK is involved in many crucial biological processes,
such as respiration [45-49], ATP synthesis [54], and sporulation
[70], we set out to investigate whether MK is also required for
CCD in B. subtilis strain NCIB 3610. For this aim, first, we
illustrated that CCD in B. subtilis can be inhibited by blocking
MK synthesis either by DPA or by mutation in menG gene,
which is involved in the final step of the MK-7 biosynthesis, and
that these mutants resemble other MK-defective mutants
studied to date [71-73]. Subsequently, we screened for B.
subtilis mutants that could form complex colonies only in the
presence of MK-4, an MK-7 derivative. In this screen a
significant number of independent mutations were mapped to
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Figure 8. Menaquinone derivatives lacking an isoprenoid side chain cannot suppress the complex colony development
defect in B. subtilis siderophore mutants. Three pl of a fresh overnight culture were spotted onto the center of spreading plates
containing 1.2% agar, spreading plates containing 1.2% agar supplemented with 40 pg/ml of either MK-4, phylloquinone,
menadione sodium bisulfite (MBS) or Hydroquinone (HyQ), or spreading plates containing 1.2% agar supplemented with 10 pug/ml of
menadione. Photos were taken after 72 hours. Each experiment was carried out in triplicate.

doi: 10.1371/journal.pone.0079488.g008

the dhb operon, which encodes the genes responsible for BB
biosynthesis [74] . Our findings establish a role of MK and iron
in CCD by B. subtilis.

CCD motility is considered a passive form of surface
translocation that does not require active flagella [42,75]. Being
flagella-independent, CCD maotility is driven by two forces,
operating individually or together. The first is the expansive
force of a growing colony caused by cell divisions [42], and the
second is a force generated by the swelling of the colony
caused by water uptake from the surface [76]. Since spreading
motility is partially driven by cell divisions, mutations that affect
growth can influence CCD [42]. Since the menG and the dhb
mutants have shown slower growth rates compared to the wild-
type strain, the loss of CCD by these mutants can be explained
by growth inhibition, which results from insufficient levels of MK
or iron. Nevertheless, the finding that the MK-7 analogs, MK-4
and phylloquinone, did restore the growth rate of the menG
mutant, similar to the wild-type, but not CCD, taken together
with our finding that 150 yM of DPA inhibited CCD but not
growth, suggest a more specific role for MK in CCD,

PLOS ONE | www.plosone.org

independent of its role in respiration and growth [45-48,77].
Furthermore, these data imply that higher levels of MK are
required for CCD than for growth. In agreement with our
observations, previous studies [70,78] showed that a 10-fold
higher MK-7 concentration is required for maximum sporulation
than was necessary to establish normal cellular respiration,
suggesting more specific roles for MK in early sporulation
functions. An additional study [47], showed that nearly 50% of
the total MK-7 synthesized by B. subtilis is secreted into the
growth medium at the stationary phase, and thus a large
fraction of the MK pool is not involved in respiration. Moreover,
since in B. subtilis, MK is involved in ATP synthesis [54], it is
plausible that as a result of blocking MK biosynthesis, less ATP
molecules are synthesized and hence more energy in the form
of ATP is required for CCD than for growth.

Several studies [79,80] have shown that there is coupling of
sporulation with multicellular development. For example, in
Myxococcus xanthus, sporulation apears only after the cells
aggregate into macroscopic fruiting bodies [79], and this is also
the case for Streptomyces coelicolor, which produces spores in
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raised structures known as aerial mycelia [80]. Moreover, many
studies [1,32,33,36,38] suggest that within the complex colony,
some cells that are found close to the mother colony can
sporulate. Accordingly, one can speculate that sporulation and
CCD can be coupled in B. subtilis, and since in B. subtilis MK-7
is essential for early events in sporulation [70,78], it is possible
that MK deficiency inhibits sporolation resulting in inhibition of
CCD.

The findings that in the screen for mutants that perform CCD
only in the presence of MK-4, a significant number of
independent mutations mapped to the dhb operon and that that
the iron chelator (2, 2'-dipyridyl) inhibited CCD in the wild-type
strain, suggest: 1) a role for iron in CCD in B. subtilis; 2) that
iron may be essential for MK synthesis in B. subtilis; or 3) that
there is an interaction between iron and MK. This study is not
the first report of iron and siderophores as critical factors in
multicellular behaviour. For example it was suggested that a
critical level of intracellular iron concentration serves as a
signal in Pseudomonas aeruginosa biofilm and that an iron
uptake system is required for its normal development [68].
Accordingly, we speculate that iron may also serve as a signal
molecule that activates iron-dependent pathways that are
crucial for CCD in B. subtilis. The discovery that defects in
CCD in the dhb mutants could be suppressed by exogenously
added quinones, some of which are not normally used by B.
subtilis, suggests that iron may be essential for MK synthesis in
this bacterium. This assumption is supported by previous
studies [78,81-84] that demonstrated that lower iron availability
can limit chorismate formation, which is a key step in the
biosynthesis of aromatic amino acids as well as bacillibactin
and MK-7. Thus, in an environment with low concentrations of
ferric ions, the dhb mutations can cause an iron limitation that
may reduce the levels of the natural menaquinone of B.
subtilis, MK-7. Thus, the limitation in bioavailability of MK-7
might lead to inhibition of CCD in the dhb mutants. Previous
works [85-87] showed that menaquinones can reduce ferric
iron, supporting the interaction between iron and MK. This
could result in a eukaryotic-like vitamin K cycle [88-90], in
which the oxidized menaquinone accumulates and cannot be
re-reduced because of a defect in the recycling of the reduced
MK-7. This MK-7 limitation, which may cause the inhibition of
CCD by the dhb mutants, could then be overcome by the
addition of larger quantities of MK-4 or phylloquinone. The
finding that the loss of CCD by the dhb mutants could also be
suppressed by addition of ferric iron implies that sufficient
amounts of iron for normal CCD can be acquired by passive
diffusion.

The molecular specificity observed when testing which
exogenous MKs can suppress defects in CCD, suggests a role
for the isoprenoid side chain of the naphthoquinone in
facilitating CCD, as seen in MK-7. Secretion of MK-7 by B.
subtilis was suggested to be dependent on the presence of
such an isoprenyl side chain [47], and since CCD is known to
require other secreted factors such as the protein surfactin
[3,41,42], the ability to be secreted may be an important
property of MK-7. However, the identity of the protein(s) that
require MK as a cofactor and are involved in CCD, and whether
they are indeed secreted, will require further study.
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Table 1. Strains and plasmids used in this study.

Strains Characteristics Source
Bacillus
B. subtilis NCBI-3610 . i . Genetic
Undomesticated wild-type strain
(3610) Stock Center
(BGSC)
menG Mutant of B. menG::tn-spc, complex colony .
. . This report
subtilis 3610 development formation defect
yoml mutant of 3610 yoml:tn-kan This report
lysA mutant of 3610 lysA::itn-kan, kanR, This report
Mutant of 3610 carrying
an insertion in a non- i :
. i non-coding region upstream of a gene
coding region upstream o .
cluster consisting of yxaC, and yxaD:tn-  This report
of a gene cluster
kan
consisting of yxaC, and
yxaD
dhbA mutant of 3610 dhbA::tn-kan, kanR, This report
dhbE mutant of 3610 dhbE::tn-kan, kanR. This report
dhbF mutant of 3610 dhbF::tn-kan, kanR This report
Plasmids Characteristics Source
A 2.4-kb mini-Tn70 transposon
containing a ColEl origin of replication, a
Spectinomycin resistance gene, a mls
Erythromycin + Lincomycin) resistance
pIC333 En Y - Y ) ), [93]
gene, a thermosensitive origin of
replication for Gram-positive hosts
(inactive at temperatures higher than
35°C)
A TnYLB-1 transposon containing a
Kanamycin resistance gene, an
Erythromycin resistance gene, a
pMarA thermosensitive origin of replication [92]

(repG+1s) for Gram-positive hosts
(inactive at temperatures higher than
45°C).

doi: 10.1371/journal.pone.0079488.t001

Materials and Methods

Bacterial strains
All strains used in this work are listed in Table 1.

Growth Media

Lysogeny broth (LB) medium was composed of 1% tryptone,
0.5% yeast extract, 0.5% NaCl and solidified by addition of
1.5% hard agar. TY growth media for SPP1 phage transduction
of B. subtilis was composed of 1% tryptone, 0.5% yeast
extract, 0.5% NaCl, 10 mM MgSO,, and 100 pM MnSQO,, and
solidified by addition of 1.5% hard agar for plates and 0.5% for
soft agar. Media for spreading assay (spreading plates) was
composed of spreading salt solution (17 g L' K,HPO,-3H,0, 3
g L' KH,PO, 2 g L' (NH,),SO,, 0.1 g L' MgSO,7H,0),
supplemented with 0.5% (w/v) glucose, and 0.025% (w/v) yeast
extract. The medium was solidified by addition of 1.2% hard
agar. 3ml of the medium were poured onto a 50mm Petri dish
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Table 2. Oligonucleotides used in this study.

Name Sequence (5°—3’)

IPCR1 GCTTGTAAATTCTATCATAATTG
IPCR2 AGGGAATCATTGAAGGTTGG
IPCR3 GCATTTAATACTAGCGACGCC
MY051 CCCACTTATAAACAAAAGATC
DhbA-Fw CCTTGGCCTTGAGCTTGCAG
DhbA-Rv CCTGATTGTTTTGCCTGACG
DhbE- Fw TTTGAAAAACATCAT

DhbE- Rv TTCCTCCAGCGTATA

DhbF- Fw GTGCTGGATGATC

DhbF- Rv GACGTCCGCCATG

doi: 10.1371/journal.pone.0079488.t002

and left to dry 3 days at room temperature until plates lost
4-5% of their weight.

Growth and maintenance

Generally, overnight liquid cultures were prepared by
inoculation of a single colony into LB and incubation at 37°C in
a New Brunswick gyratory shaker model G-25 at 270 rpm. For
long-term storage, overnight cultures were mixed with 25% (¥/,)
glycerol and stored at -70°C. Concentration of kanamycin used
for supplementing B. subtilis growth media was 15ug/ml.

Isolation of menaquinone-deficient mutants of Bacillus
subtilis 3610

To generate menaquinone-deficient mutants of Bacillus
subtilis 3610, Mini-Tn70 transposon mutagenesis was
preformed according to Kearns et al., 2004 [91]. Thirty three
single colonies from an overnight streak of B. subtilis strain
DS1010 (a strain 3610 derivative carrying the temperature
sensitive plasmid plC333 (Table 1)), that were grown on MLS
(1 pg/ml erythromycin and 25ug/ml lincomycin) plates were
used to inoculate a 1.5ml LB supplemented with MLS. These
cultures were rolled at 25°C overnight, diluted 1:100 and
transferred to LB supplemented with 100 pg/ml spectinomycin
and rolled for approximately 6 hours at 42°C. Candidate
menaquinone-deficient mutants of B. subtilis were selected by
simultaneous resistance to two aminoglycoside antibiotics (11
pg/ml kanamycin and 4 ug/ml paromomycin) when incubated at
37°C. Since, the resistance to aminoglycoside antibiotics stems
from the role of menaquinone in the transport of these
antibiotics into the bacterial cell [54], bacteria that are resistant
to aminoglycoside antibiotics are more likely to be
menagquinone-deficient mutants [77]. In addition, defects in
electron transport decrease the amount of ATP, leading to a
slower growth rate, and consequently MK-defective mutants
form small colonies [54]. Accordingly, only small colonies were
isolated.

Identification of insertion sites of the mini-Tn10 transposon
was performed using the MY051 primer (Table 2) located at the
edge of the transposon.
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Random transposon mutagenesis by TnYLB-1

The mutagenesis was preformed according to Le Breton et
al., 2006 [92]. A single colony from an overnight streak of B.
subtilis strain caring the pMarA plasmid grown on 1 pg/ml

erythromycin plates was used to inoculate a 3ml LB
supplemented with 15 pg/ml kanamycin and 1 ug/ml
erythromycin and incubated at 30°C for 14 hours.

Subsequently, samples from an overnight culture were plated
on spreading plates supplemented with 15 pg/ml kanamycin
and incubated overnight at 42°c (restrictive temperature that
inhibits plasmid replication). Spreading-defective mutants were
picked and isolated. In order to identify the transposon insertion
site, genomic DNA from all candidates was purified and
digested with Taqgl. The digested DNA was used for ligation in
a concentration that favors self ligation (5 ng/ul). The ligation
products were used as a template for PCR using primers
IPCR1 and IPCR2 (Table 2). The PCR products were
sequenced using IPCR3 primer (Table 2).

Phage SPP1 generalized transduction

In order to work with isogenic strains it was necessary to
transfer the specific mutation to the parental strain B. subtilis
3610. Hence, phage SPP1 generalized transduction was
preformed according to Kearns et al., 2004 [9]. For lysate
preparation, a fresh colony of strain B. subtilis 3610 was
inoculated in 3 ml TY broth and grown until the culture was
circa 0.6 ODggo. 0.2 ml of cells were mixed with 0.1 ml phage
stock suspension and incubated statically at 37°C for 15 min.
Three ml of TY soft agar were added and the entire contents
were poured onto fresh TY plates. The lysate plates were dried
for 20 minutes in a laminar flow hood. Following overnight
incubation at 37°C, the top agar was scraped, suspended in 5
ml TY broth, and centrifuged (15 min, 4000 g). The supernatant
was treated with 10 pl of 25 pg/ml DNase at room temperature
for 10 minutes and filtered. To perform transduction, the
recipient colony was inoculated in 2 ml of TY broth and grown
until the culture was very dense. One ml of cells were mixed
with 10 pl phage stock and incubated statically at 37°C for 30
min. The cultures were centrifuged for 15 min at 4000 g) and
the pellets were plated on selective media supplemented with
10 mM sodium citrate. The plates were incubated overnight at
37°C.

Spreading assay

Three pl of a fresh overnight culture were spotted onto the
center of spreading plates containing 1.2% hard agar and
incubated at 37°C under conditions of a humid and dark
environment. After 72 hours of incubation the plates were
examined and photographed.

Spreading reconstitution of spreading-defective
mutants

Spreading reconstitution was monitored using the CCD
assay as described above, but the plates were supplemented
with 5, 10, 20, or 40 pg/ml of MK-4, and phylloquinone,
benzoquinone, menadione or menadione bisulfate. The results
shown are for 40 pg/ml of these molecules, except menadione
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for which 10 pg/ml were used, due to growth inhibition above
that concentration. Examination of the reconstitution of CCD in
the dhb mutants was performed by addition of FeCl, at different
concentrations (5, 10, 50, 100 and 150 yM). The results shown
are for 150 puM, the only concentration tested that reconstituted
spreading fully in all mutants. After 72 hours of incubation the
plates were examined and photographed.

Inhibition of spreading of B. subtilis strain 3610 by the
iron chelator 2, 2'-dipyridyl

In order to examine the influence of the iron chelator 2, 2'-
dipyridyl on spreading, a spreading assay was performed as
described above, but the plates were supplemented with 10,
20, 30, 40, 50, 60, 70, 80, 90, 100, 110 or 120 uM of 2, 2'-
dipyridyl. The latter concentration was the minimum required
for complete inhibition of CCD. After 72 hours of incubation the
plates were examined and photographed.

Inhibition of spreading of B. subtilis strain 3610 by
diphenylamine

In order to examine the influence of diphenylamine (DPA),
which blocks MK synthesis, on CCD, a spreading assay was
performed as described above, but the plates were
supplemented with 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110,
120, 130, 140 or 150 uM of DPA. The latter concentration was
the minimum required for complete inhibition of spreading.
After 72 hours of incubation the plates were examined and
photographed.

Growth curve analysis experiments

To determine the generation times of all strains, cultures of
all tested strains were grown in 3 ml spreading broth at 37°C in
245 rpm. After 10-14 hours, cultures were diluted 1:100 in
spreading broth and grown to an ODg,, of 0.8 at 37°C in 245
rpom. Subsequently, cultures were diluted to an ODg, of 0.05 in
spreading broth at 37°C in 245 rpm and absorbance at 600 nm
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(ODgg5) was monitored every 30 minutes.
experiment was performed three times.

Growth rate experiments were as well performed in
spreading broth supplemented with 150 uM of DPA, 40 ug/ml
of MK-4, or 40 ug/ml of phylloquinone

Every growth

Chrome azurol sulphonate-
hexadecyltrimethylammonium bromide (CAS-HDTMA)
1.5% agar plate assay

An aqueous stock solution of 1.21 mg/ml CAS-HDTMA was
prepared, according to the protocol provided by the
manufacturer (Sigma). For standard CAS agar plates, CAS-
HDTMA solution was diluted 1:10 with standard Davis medium
(7 g L' K,HPO,, 3 g L' KH,PO,, 2 g L'(NH,)2S0O,, 5 g L™
Na,Citrate, 1 g L' MgS0O4, 0.2% Glucose) containing 1.5%
agar. To test for halo formation of B. subtilis 3610 and dhb
mutants, strains were first grown on LB plates for 10-14 hours
at 37 °C. From LB agar plates, single colonies were picked and
streaked onto the CAS agar, incubated for 20 hours at 30°C.
Further incubation took place at room temperature (between
23-25°C). The plates were scanned once a day to monitor halo
formation. Halo intensity was noted after 48 hours.
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