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Abstract

Aquaporins are channel proteins which transport water across cell membranes. We show that the bread wheat
aquaporin gene TaTlP2;2 maps to the long arm of chromosome 7b and that its product localizes to the
endomembrane system. The gene is expressed constitutively in both the root and the leaf, and is down-regulated by
salinity and drought stress. Salinity stress induced an increased level of C-methylation within the CNG trinucleotides
in the TaTIP2;2 promoter region. The heterologous expression of TaTIP2;2 in Arabidopsis thaliana compromised its
drought and salinity tolerance, suggesting that TaT/P2;2 may be a negative regulator of abiotic stress. The proline
content of transgenic A. thaliana plants fell, consistent with the down-regulation of P5CS1, while the expression of
SOS1, SOS2, SOS3, CBF3 and DREB2A, which are all stress tolerance-related genes acting in an ABA-independent
fashion, was also down-regulated. The supply of exogenous ABA had little effect either on TaTIP2;2 expression in
wheat or on the phenotype of transgenic A. thaliana. The expression level of the ABA signalling genes ABI1, ABI2
and ABF3 remained unaltered in the transgenic A. thaliana plants. Thus TaTIP2;2 probably regulates the response to
stress via an ABA-independent pathway(s).
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Introduction

A range of abiotic stresses, including soil salinity, drought
and extreme temperature, can compromise crop yield and
quality. Improving tolerance to these stresses is thus a major
priority in many crop breeding programmes. The effectiveness
of water transporters, such as the aquaporins, is an important
component of the plant response to stress [1]. The aquaporins
belong to a highly conserved major intrinsic protein family, and
combine with the cell membrane system to control the flow of
water between and within the cell. Their structure is
characterized by the formation of six transmembrane domains
connected by five loops [2—4]. Based on their sub-cellular
localization and sequence, plant aquaporins have been
classified into four sub-families, namely the plasma membrane
intrinsic proteins (PIPs), the tonoplast intrinsic proteins (TIPs),
the nodulin 26-like intrinsic proteins (NIPs) and the small basic
intrinsic proteins [5]. There are also three new subclasses of
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aquaporins in moss Physcomitrella patens, named GlpF-like
intrinsic protein (GIP), hybrid intrinsic protein (HIP) and X
intrinsic protein (XIP) [6].

The Panax ginseng aquaporin gene PgTIP1 [7], tomato
(Solanum lycopersicum) SITIP2;2 [8] and cotton (Gossypium
hirsutum) GhPIP2;7 [9] have been shown to positively regulate
salinity and drought tolerance, but negative effects on stress
tolerance of certain aquaporins have also been documented
[10]. The stress inducibility of aquaporin genes is variable, with
examples including both their up- [11-15] and down-regulation
[13,14,16,17] as well as their insensitivity [13—-15]. Among the
wheat aquaporins, it is known that certain TIPs show a marked
affinity with ammonia [18], while the activity of particular NIP
[19] and PIP genes [20—-22] have been associated with an
improved response to abiotic stress. Of a set of 35 wheat
aquaporin genes, 24 were shown to be PIPs and 11 were TIPs
that have diverse sequence characteristics [23]. However, as
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Table 1. Sequences of PCR primers used.

Wheat Aquaporin Gene TaTIP2;2

Name Forward sequence (5°-3’)

Reverse sequence (5’-3°)

TaTIP2 GCTCTAGAATGCCGGGCTCCATCGCCTTCG
TaTIP2;2 CTCTCATCCTCCCAGTTCTGTTC
Actin GTTCCAATCTATGAGGGATACACGC

GC island1 TTGGTGGTTATATAATTTTGGAGGT
GC island2 TGTTAAGGGGGAAGTTGATATTTA
TaTIP2;2-GFP GCTCTAGAATGCCGGGCTCCATCGCCTTCG

CGAGCTCTTAGTAGTCGTTGCCGGCGACGGA
CACGTACCGGTAGACGACGC
GAACCTCCACTGAGAACAACATTACC
CAAAACAATTTTTCAAATCCAATAC
AAAAAATACCATAACATACACCAAC
GCGGATCCGTAGTCGTTGCCGGCGACGGA

doi: 10.1371/journal.pone.0079618.t001

yet there is an insufficient understanding of the role of the
aquaporins in the abiotic stress response of wheat.

The bread wheat cultivar Shanrong No. 3 (SR3) is a
derivative of an asymmetric somatic hybrid between cv. Jinan
177 (JN177) and an accession of tall wheatgrass (Thinopyrum
ponticum) [24]. SR3 has proven to show an enhanced level of
both salinity and drought tolerance over JN177 [25]. A
microarray-based gene expression study has shown that in
drought and salinity stressed SR3 plants, TaTIP2 was down-
regulated [26]. Here, we report the isolation of the TaTIP2;2
SR3 allele. We have determined its chromosomal location and
confirmed that its expression is suppressed by both drought
and salinity stress. We show that it encodes a protein
deposited in the endomembrane, and that its heterologous
expression in A. thaliana compromised the level of tolerance to
salinity and drought stress. Finally, we demonstrate that the
gene is involved in the down-regulation of proline synthesis and
acts in an ABA-independent manner.

Materials and Methods

Plant materials and growing conditions

SR3 seedlings were raised in half-strength Hoagland's liquid
medium [27] at 22°C under a 16h photoperiod with the light
intensity of 3,000 lux. At the three leaf stage, a portion of the
seedlings was exposed to abiotic stress by the addition to the
medium of either 150mM NaCl, 18% w/v PEG or 100uM ABA.
After Oh, 0.5h or 48h of this treatment, RNA was extracted from
both the leaf and the root using an RNAiso plus kit (Takara,
Dalian, China), following the protocol recommended by the
manufacturer. A. thaliana plants were cultured on either half
strength MS medium or soil under the same environmental
conditions as the wheat seedlings.

Isolation of TaTIP2;2

The TaTIP2;2 cDNA sequence (GenBank accession number
AY525640) was used to design a primer pair (TaTIP2,
sequences given in Table 1) able to amplify the gene's open
reading frame from a template of cDNA prepared from salinity
stressed SR3 seedlings. For cloning purposes, an Xbal
restriction site was included in the forward primer and a Sacl
site in the reverse primer. The PCR comprised an initial
denaturation of 95°C/3min, followed by 35 cycles of 94°C/40s,
65°C/50s, 72°C/60s, ending with a final extension of 72°C/
10min. The amplicons were gel-purified, digested with Xbal
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and Sacl and ligated with Xbal/Sacl digested pSTART [28].
The resulting construct was transferred into Agrobacterium
tumefaciens strain EHA105 for the agroinfection of A. thaliana
Col-0 via the floral dip method [29]. Homozygous transgenic
segregants in the T, generation were used for phenotypic and
gene expression analysis. The same primer pair was used to
recover the SR3 TaTlP2;2 genomic sequence, and the
resulting amplicon was gel-purified and ligated with the pMD18-
T vector (Takara, Dalian, China) to allow for its sequencing.

A transmembrane domain prediction of the predicted
TaTIP2;2 protein was obtained using the TMHMM tool provided
at http://www.cbs.dtu.dk/servicess TMHMM. The software
package DNAMAN v6.0 (http://www.lynnon.com/) was
employed to obtain the intron/exon structure of the genomic
sequence. The phylogeny of TaTIP2;2 was investigated by
comparing its protein sequence with those of TIP sequences
from A. thaliana, rice, maize, barley and wheat represented in
the GenBank database.

Chromosomal location of TaTIP2;2

The genomic DNA of a full set of wheat cv. Chinese Spring
nulli-tetrasomic lines [30] and a partial set of ditelocentric lines
[31] was used as a template for PCRs primed with TaTIP2. The
PCR comprised an initial denaturation of 95°C/5min, followed
by 35 cycles of 94°C/30s, 65°C/40s, 72°C/60s, ending with a
final extension of 72°C/10min. The resulting amplicons were
separated by agarose electrophoresis.

Analysis of TaTIP2;2 expression

The cDNA first strand was synthesized using a Tianscript RT
kit (Tiangen, Beijing, China), and this was used as the template
for a semi-quantitative RT-PCR (sqRT-PCR), primed by
TaTIP2;2 (primer sequences given in Table 1). The wheat Actin
gene (GenBank accession AB181991) was used as a
reference (primer sequences given in Table 1). The PCR
comprised an initial denaturation of 95°C/5min, followed by
25-30 cycles of 94°C/30s, 55°C/30s, 72°C/60s, ending with a
final extension of 72°C/10min.

Methylation analysis of TaTIP2;2 promoter

The methylation status of the TaTIP2,2 promoter was
investigated both before and after the imposition of salinity
stress (150mM NaCl for 48h). The 2.5kbp sequence upstream
of the TaTIP2;2 start codon was obtained from a draft
assembly of the wheat cv. Chinese Spring genomic sequence
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(http://www.cerealsdb.uk.net/CerealsDB/Documents/
DOC_search_reads.php). Bisulphate sequencing was applied
to genomic DNA extracted from SR3 at the three leaf stage.
The DNA was processed with a sodium bisulphate kit (Qiagen,
Hilden, Germany) and then used as a PCR template. The
detection of CG islands and the design of primers were
facilitated by MethPrimer software [32], and the resulting primer
sequences are given in Table 1. The PCR comprised an initial
denaturation of 94°C/4min, followed by 35 cycles of 94°C/30s,
60°C/30s, 72°C/30s, ending with a final extension of 72°C/
10min. The amplified fragments were gel-purified, ligated with
the pEASY T1 vector (Transgene) and transformed into E. coli.
A random selection of at least 15 clones per amplicon was
sequenced. BiQ Analyzer software (http://big-
analyzer.bioinf.mpi-inf.mpg.de/) was used to calculate the the
ratios of cytosine methylation at each CG/CNG/CNN site.

Sub-cellular localization of TaTIP2;2 in wheat
protoplasts

The TaTIP2;2 gene without its stop codon was cloned into
the Xbal and BamH]I sites of the pUC-GFP vector to form a
TaTIP2;2::GFP gene fusion. The sequence was amplified using
the primer pair TaTIP2;2::GFP (primer sequences given in
Table 1), and ftransferred into wheat cv. Yangmai158
protoplasts isolated from embryogenic calli to perform a
transient expression analysis, following the methods described
by Yoo et al. [33]. GFP fluorescence was monitored with a
Leica TCS SP2 confocal laser scanning microscope under
488nm excitation.

Phenotyping of transgenic A. thaliana

Seed of both wild type and transgenic A. thaliana was
surface-sterilized (0.1% w/v HgCl,, 15min), rinsed five times in
water, and held at 4°C on half strength MS medium for 36h. To
investigate the response to drought and salinity stress, a
portion of the seeds was then held at 22°C for 3d, following
which they were transferred onto half strength MS medium
containing either 300mM mannitol (drought treatment) or
150mM NaCl (salinity treatment). The plates were orientated
vertically and held for 10d at 22°C. A second portion of the
seed was used to measure seedling proline content. For this
purpose, three week old seedlings cultured on MS medium
were processed as described by Troll and Lindsley [34].

The expression of stress-related genes in transgenic A.
thaliana

RNA of four week old A. thaliana plants on half strength MS
was extracted with the same method for SR3 and used as a
template for quantitative RT-PCRs targeting the stress-related
genes ABI1, ABI2, ABF3, SOS1, SOS2, SOS3, CBF3,
DREB2A, DREB2B, MYB2, MYC2, RAB18, RD29B and
P5CS1. Relevant primer sequences and the analytical method
adopted were as reported elsewhere [35,36].
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Results

The sequence characteristics of TaTIP2;2

The SR3 TaTIP2;2 ORF comprises a 747bp sequence,
predicted to encode a 248 residue polypeptide. Its sequence is
the same with the previously reported TaTIP2;2 (GenBank
accession number AY525640) [18]. Alignment of its opening
reading frame with the TaTIP2;2 genomic sequence showed
that the genomic copy consists of three exons (130bp, 249bp
and 367bp) and two introns (83bp and 92bp) (Figure 1A).
TMHMM analysis indicated that the protein contains six
transmembrane domains (Figure 1B), typical of the aquaporins.
An alignment of TaTIP2;2 protein with other plant TIP proteins
confirmed the conventional classification of the aquaporin gene
family, the three wheat TIP2 proteins clustered closely with one
another, and their sequence was ~89% homologous with that
of the rice homologue OsTIP2;2 (Figure S1).

When DNA of the Chinese Spring nulli-tetrasomic lines was
amplified with the TaTIP2 primer pair, only lines deficient for
chromosome 7B (7BA and 7BD) failed to amplify the expected
product. The PCR profile of the ditelocentric line carrying the
long arm but not the short arm of 7B (7BL) was the same as
that of the euploid, while that of the line carrying the short arm
but not the long arm (7BS) was the same as that of the lines
deficient for chromosome 7B (Figure 1C). Thus the gene must
be located on the long arm of chromosome 7B.

Expression of TaTIP2;2 in response to abiotic stress
and exogenous ABA

The outcome of the sqRT-PCR experiments showed that
TaTIP2;2 was expressed in both the leaf and root of SR3
(Figure 1D). In the root, the gene was down-regulated following
a 0.5h exposure to either salinity or drought stress. In the leaf,
it was also down-regulated following a 0.5h exposure to
salinity, but its down-regulation in response to PEG treatment
was delayed. There was no apparent effect of exogenous ABA
on its expression (Figure 1D).

Methylation of the TaTIP2;2 promoter under stress
treatment

The 2.5kbp region upstream of the SR3 TaTIP2;2 start
codon contained two major CG islands, one located at
positions -425 to -616, and the other at -1982 to -2,272.
Bisulphate PCR analysis showed that almost all the cytosines
present at CG dinucleotide sites were hyper-methylated
irrespective of the presence of salinity stress (Figure 2A), while
the methylation intensity at the CNG trinucleotide sites was
increased by the imposition of salinity stress (Figure 2B).

Sub-cellular distribution of TaTIP2;2 protein

Both GFP on its own and the TaTIP2;2::GFP fusion protein
were transiently expressed in wheat protoplasts. In the case of
the construct containing only GFP, confocal microscopy
identified signal throughout the cytoplasm and nucleus (Figure
3A-C). However, in the case of the TaTIP2;2::GFP construct,
there was no fluorescence on the cytoplasm membrane; rather
the signal was concentrated in the tonoplast of the central
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Figure 1. Characteristics of TaTIP2;2. (A) The genomic copy consists of three exons (indicated by filled bars) and two introns
(lines). (B) Domain prediction of the gene product. Internal residues indicated by full lines, external ones by dotted lines. The
transmembrane domains are shaded grey. (C) Chromosomal location of TaTIP2,2 based on aneuploid stocks of cv. Chinese Spring.
7BA, 7BD are deficient for chromosome 7B, 7BS for chromosome arm 7BL and 7BL for chromosome arm 7BS. (D) sqRT-PCR
analysis shows that TaTIP2;2 was expressed in both the root and leaf, and was down-regulated by drought (PEG) and salinity, but

not by ABA.
doi: 10.1371/journal.pone.0079618.g001

Figure 3. Sub-cellular localization of TaTIP2;2 protein in wheat protoplasts. (A-C) A transgene encoding GFP alone
generates signal throughout the protoplast. (A) Fluorescent image, (B) bright field image, (C) merger of A and B. (D-F) The
TaTIP2;2-GFP fusion is deposited in the endomembrane system. (D) Fluorescent image, (E) bright field image, (F) merger of D and

E. Bars, 10uM.
doi: 10.1371/journal.pone.0079618.g003

vacuole and throughout the endomembrane system (Figure Heterologous expression of TaTIP2;2 in stressed A.
3D-F). thaliana
Two homozygous transgenic T, A. thaliana selections (OE1
and OE2) carried TaTIP2;2 driven by the CaMV 35S promoter,
and successfully expressed the gene (Figure 4A). The
behaviour of OE1 and OE2 differed from that of the wild type
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Figure 2. Methylation status of the TaTIP2;2 promoter
region as affected by salinity stress. (A) CG methylation
(filled circles show methylated and open circles unmethylated
CG sites). (B) CNG methylation. The horizontal axis shows the
positions of CNG sites, and the vertical axis the proportion of
methylated sites.

doi: 10.1371/journal.pone.0079618.g002

control in response to exposure to ten days of salinity or
osmotic (mannitol) stress. In the presence of NaCl, the growth
of the transgenic plants ceased before the cotyledons had fully
opened, and most of the seedlings were bleached; in contrast,
the cotyledons of the wild type plants opened normally, and
bleaching was less frequent (Figure 4B, C). The effect of
mannitol stress was to shorten the length of the transgenics'
primary roots compared to those of the wild type (Figure 4D,
E). Thus the constitutive expression of TaTIP2;2 in A. thaliana
compromised the level of drought and salinity. There was no
differential response to the supply of 5uM ABA (Figure 4F). The
proline content in OE1 and OE2 was lower than in the wild type
(Figure 4G).

Effect of TaTIP2;2 heterologous expression on the
expression of abiotic stress-related genes

As revealed by quantitative RT-PCR, the expression level of
the ABA signalling genes ABI1, ABI2 and ABF3 was not
obviously altered by the presence of the TaTIP2,;2 transgene
(Figure 5A), similar results were also produced from DREBZ2B,
MYB2, MYC2, RAB18 and RD29B (data not shown), but that of
SOS1, SOS2, SOS3, CBF3, DREB2A and P5CS1 was
markedly lowered (Figure 5B,C).

PLOS ONE | www.plosone.org

Wheat Aquaporin Gene TaTIP2;2

Discussion

The participation of TaTIP2;2 in the determination of
stress tolerance

Response of plant to drought and osmotic stress is intimately
related with water transport, in which the aquaporins are
involved [8]. Although a number of attempts have been made
to characterize the expression profile of various aquaporin
genes [3,37], their in vivo function has been much less well
researched [7,10,19,38]. Only few examples have been
presented which suggest a role for them in stress response. In
wheat, Gao et al. [19] showed that TaNIP activity can promote
stress tolerance by increasing the K*/Na* ratio via the
regulation of the SOS pathway; wheat PIP aquaporins genes
TaAQP7 [21] and TaAQPS8 [20], durum wheat PIP genes
TdPIP1;1 and TdPIP2;1 [22], cotton PIP gene GhPIP2;7 [9]
were also found to be beneficial to stress tolerance. However,
many instances of variation in TIP aquaporin expression
induced by abiotic stress have been documented. Thus, the
down-regulation of both ZmTIP2;2 and TaTIP2;2 was induced
by salinity [15,26,39] and that of OsTaTlP2;2 by low
temperature [17]. Here, we have demonstrated that the
response of TaTIP2;2 to the imposition of stress suggests that
it acts as a negative regulator of salinity and drought stress.
The observation that this response is independent of ABA is
consistent with previous indications that T/P genes generally
are not subject to hormonal regulation [14].

Gene expression can be regulated in a number of ways, but
a prominent mechanism is represented by promoter
methylation. We have shown that the TaTIP2;2 upstream
sequence experienced an increase in C-methylation at CNG
sites as a result of the imposition of salinity stress, and that
TaTIP2;2 expression was reduced by this treatment. With
respect to the regulation of gene expression, C-methylation at
CNG sites is thought to be more important than at CG sites
[40]. As a result, it is possible that these two events are
causally related.

It has been suggested that the TIPs are deposited in the
tonoplast. With the A. thaliana TIPs, AtTIP1;1 and AtTIP2;2
localized to the tonoplast of the root central vacuole and
vacuolar bulbs [41]. Through an analysis of signal peptides or
anchors, the site of TaTIP2;2 deposition has been
bioinformatically predicted to lie within the plasma membrane
[23], a conclusion inconsistent with the present experimental
results, which showed that the protein was present not only in
wheat protoplast tonoplasts, but also distributed throughout the
endomembrane system (Figure 3D). The P. ginseng protein
PgTIP1 appears to enhance the level of stress tolerance, but
its sub-cellular location has not been determined [7]. A tomato
TIP protein SITIP2;2 was found localized to the tonoplast, and
overexpression of it has increased stress tolerance [8].
Contradictory to this, TaTIP2;2 has a negative effect on stress
response. Potentially the localization of a given TIP may be
related to its effect on the stress response, but as yet there are
insufficient relevant data available to reach any sensible
conclusion on this issue.
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doi: 10.1371/journal.pone.0079618.g004

TaTIP2;2 is a negative regulator of stress tolerance

Despite the aquaporins (including the TIPs) having been the
focus of a substantial body of research, there is little
understanding of how they contribute to the stress response.
The A. thaliana proteins AtTIP1;1 and AtTIP1;2 have been
characterized as hydrogen peroxide channels, suggesting their
possible role in the signalling of stress induced by reactive
oxygen species [42]. Salinity stressed A. thaliana lines
heterologously expressing PgTIP1;1 can accumulate more Na*
and are more drought tolerant than the wild type [7]. SITIP2;2
maintains the osmotic water permeability of tonoplast and
extends the capacity of vacuole for osmotic buffering under
stress [8]. Evidence for the involvement of TIPs in stress
response signalling remains scanty.

Proline is frequently used by plants as an osmolyte, and its
accumulation is a common response to a wide range of abiotic
stresses [43,44]. Glutamate semialdehyde, the precursor of
proline, is formed by the reduction of glutamate catalysed by
pyrroline-5-carboxylate synthetase (P5CS) [43]. However,
although the expression of TaNIP was found to be responsible
for increasing the proline content of transgenic A. thaliana, it
had no effect on the transcription of P5CS1 [17]. In the present
experiments, in contrast, the heterologous expression of
TaTIP2;2 did reduce P5CS1 expression (Figure 5C), which
may explain the lower proline content of the transgenic lines
(Figure 4G). The implication is that TaTIP2;2 expression
reduced the osmotic tolerance of transgenic A. thaliana
partially via the suppression of proline synthesis.

The SOS pathway genes SOS7, SOS2 and SOS3 are all
positive regulators of salinity tolerance in A. thaliana [45].
SOS3 [46] is a calcium sensor, which activates the kinase
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activity of SOS2 [47]. The resulting complex up-regulates
activity of SOS1 [48-50], a Na*/H* antiporter located on the cell
membrane that exports Na* to the extracellular space and
reduces the severity of the salinity stress [48,50]. Heterologous
expression of TaNIP has been shown to reduce the level of
SOS2 expression, although surprisingly, the phenotypic effect
of this reduction was to enhance abiotic stress resistance [19].
All three SOS genes were down-regulated by the TaTIP2;2
transgene (Figure 5B), leading to our hypothesis that the
negative impact of TaTIP2;2 expression on the salinity
tolerance of transgenic A. thaliana operates via its regulation of
the SOS pathway.

Both CBF3 [51] and DREB2A [52] are positive stress
regulators acting independently of ABA. Their up-regulation
has been shown to enhance the level of drought and salinity
stress tolerance. Here, the heterologous expression of
TaTIP2;2 down-regulated both genes (Figure 5C), the effect of
which would be expected to inhibit plant growth in the presence
of abiotic stress. ABA plays a central role in determining stress
tolerance [53]. The products of ABI1 [54] and ABI2 [55] are
both negative regulators of ABA signalling, while that of ABF3
[56] is a positive regulator. None of these three genes was
transcriptionally affected by the heterologous expression of
TaTlP2;2 (Figure 5A). Expression of other tested ABA
responsive stress regulators MYB2, MYC2 [57,58], RAB18
[59,60] and RD29B [58] was also not changed by the
overexpression of TaTlP2;2 (data not shown). These results
suggest that the altered stress tolerance of the transgenic A.
thaliana plants was not induced through an ABA-dependent
pathway. Together with the response of TaTlP2;2 in ABA
treated wheat is not obvious (Figure 1D), it can be concluded
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differences between means (Student’s t-test, P<0.05 or 0.01).
doi: 10.1371/journal.pone.0079618.g005

that TaTIP2;2 is ABA-independent. In the study of A. thaliana
[13], rice [61], Brassica napus [12], Craterostigma
plantagineum [62] and radish [14] aquaporin genes, ABA-
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