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Abstract

This paper looks at the series solutions of three dimensional boundary layer flow. An Oldroyd-B fluid with variable thermal
conductivity is considered. The flow is induced due to stretching of a surface. Analysis has been carried out in the presence
of heat generation/absorption. Homotopy analysis is implemented in developing the series solutions to the governing flow
and energy equations. Graphs are presented and discussed for various parameters of interest. Comparison of present study
with the existing limiting solution is shown and examined.
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Introduction

Investigation of non-Newtonian fluids in recent time has

received much attention of the researchers for their industrial

and engineering applications. In particular these fluids are

important in material processing, chemical and nuclear

industries, geophysics, bioengineering, oil reservoir engineer-

ing, polymer solutions etc. It is well known that all the non-

Newtonian fluids on the basis of their behavior in shear cannot

be described by a single relationship between the shear stress

and shear rate. Therefore many models of non-Newtonian

fluids exist. Such models are based either on natural

modifications of established microscopic theories or molecular

considerations. The complexity of constitutive equations in the

non-Newtonian fluids is the main culprit for the lack of

analytical solutions in general. Even such complexity also offer

interesting challenges to the computer scientists, mathemati-

cians and engineers for the numerical solutions. Amongst the

several models of non-Newtonian fluids, the Oldroyd-B is one

which can takes into account the relaxation and retardation

times effects [1–10].

The boundary layer flow induced by a stretching surface has

importance in the aerodynamic extrusion of plastic sheets, crystal

growing, continuous casting, glass fiber and paper production,

cooling of metallic plate in a bath, the boundary layer along a

liquid film in the condensation process and many others. Such

consideration in presence of heat transfer has central role in the

polymer industry. In such processes, the quality of final product

greatly depends upon the cooling rate and kinematics of stretching.

Crane [11] firstly presented exact analytic solution for the two-

dimensional boundary layer flow of viscous fluid over a linearly

stretching surface. Later, this problem later has been extensively

examined through various aspects of stretching velocities, suction/

blowing, magnetohydrodynamics, heat/mass transfer, non-New-

tonian fluids etc (see few recent articles regarding to two- and

three-dimensional flows [12–20]). Further the concept of heat

generation/absorption is useful in the cases involving heat removal

from nuclear fuel debris, underground disposal of radioactive

waste material, storage of food stuffs and dislocating fluids in

packed bed reactors.

All the above mentioned articles deal with the fluids with

constant thermal conductivity. However in reality the thermal

conductivity changes with the temperature. To our knowledge, no

attempt has been made for the three-dimensional boundary layer

flow of an Oldroyd-B fluid with variable thermal conductivity.

Even such attempt for Maxwell fluid is not available. In this work,

the conservation laws of mass, momentum and energy are reduced

to nonlinear ordinary differential systems. The outcoming

problems are solved by homotopy analysis method (HAM) [21–

29]. The velocity components and temperature are analyzed

through their graphical representations. Local Nusselt number is

examined with the help of tabular values.

Governing problems
We consider the steady three-dimensional flow of an incom-

pressible Oldroyd-B fluid. The flow is caused by a stretched

surface at z~0. The flow occupies the domain zw0. The ambient

fluid temperature is taken as T? . The thermal conductivity is a

linear function of temperature. Boundary layer flow is considered

in the presence of heat generation or absorption. The governing

equations for three-dimensional flow and heat transfer are as

follows:

PLOS ONE | www.plosone.org 1 November 2013 | Volume 8 | Issue 11 | e78240



Lu

Lx
z

Lv

Ly
z

Lw

Lz
~0, ð1Þ

u
Lu

Lx
zv

Lu

Ly
zw

Lu

Lz
zl1

u2L
2u

Lx2
zv2L

2u

Ly2
zw2L

2u

Lz2
z2uv

L2u

LxLy

z2vw
L2u

LyLz
z2uw

L2u

LxLz

0
BBB@

1
CCCA

~n
L2u

Lz2
zl2

u
L3u

LxLz2
zv

L3u

LyLz2
zw

L3u

Lz3
{

Lu

Lx

L2u

Lz2

{
Lu

Ly

L2v

Lz2
{

Lu

Lz

L2w

Lz2

0
BBB@

1
CCCA

0
BBB@

1
CCCA,

ð2Þ

u
Lv

Lx
zv

Lv

Ly
zw

Lv

Lz
zl1

u2L2v

Lx2
zv2L

2v

Ly2
zw2L

2v

Lz2
z2uv

L2v

LxLy
z

2vw
L2v

LyLz
z2uw

L2v

LxLz

0
BBB@

1
CCCA

~n
L2v

Lz2
zl2

u
L3v

LxLz2
zv

L3v

LyLz2
zw

L3v

Lz3
{

Lv

Lx

L2v

Lz2

{
Lv

Ly

L2v

Lz2
{

Lv

Lz

L2w

Lz2

0
BBB@

1
CCCA

0
BBB@

1
CCCA,

ð3Þ

rCp u
LT

Lx
zv

LT

Ly
zw

LT

Lz

� �
~

L
Lz

k
LT

Lz

� �
zQ(T{T?), ð4Þ

where the respective velocity components in the x{, y{ and z{

directions are denoted by u, v and w, l1 and l2 show the

relaxation and retardation times respectively, T the fluid

temperature, s the thermal diffusivity of the fluid, n~(m=r) the

kinematic viscosity, m the dynamic viscosity of fluid, r the density

of fluid and Q the heat generation/absorption parameter.

The subjected boundary conditions are

u~ax, v~by, w~0, T~Tw at z~0, ð5Þ

u?0, v?0, T?T? as z??, ð6Þ

in which k is the thermal conductivity of fluid and a and b have

dimensions inverse of time.

Expression of variable thermal conductivity is

k~k?(1zeh), e~
kw{k?

k?
, ð7Þ

where k? is the fluid free stream conductivity and kw the

conductivity at the wall.

The following transformations are utilized to facilitate the

analysis:

u~axf 0(g), v~ayg0(g),

w~{
ffiffiffiffiffi
an
p

(f (g)zg(g)), h(g)~
T{T?

Tw{T?
, g~z

ffiffiffi
a

n

r
:

ð8Þ

Now Eq. (1) is satisfied automatically and Eqs. (2)–(7) yield

f 000z(f zg)f 00{f ’2zb1 2(f zg)f 0f 00{(f zg)2f 000
� �

zb2 (f 00zg00)f 00{(f zg)f ’’’’� �
~0,

ð9Þ

g000z(f zg)g00{g’2zb1 2(f zg)g0g00{(f zg)2g000
� �

zb2 (f 00zg00)g00{(f zg)g’’’’� �
~0,

ð10Þ

(1zeh)h’’zPr(f zg)h’zeh’2zPr Sh~0, ð11Þ

f ~0, g~0, f ’~1, g’~b,h~1 at g~0,

f ’?0, g’?0, h?0 as g??: ð12Þ

In above expressions, b1~l1a and b2~l2a are the Deborah

numbers , b~
b

a
is a ratio of stretching rates parameter, Pr~

rCpn

k

is the Prandtl number and S~
Q

raCp

is the heat generation/

absorption parameter.

The local Nusselt number with heat transfer qw is defined as

follows:

Nux~
xqw

k(Tw{T?)
, qw~{k

LT

Lz

� �
z~0

: ð13Þ

Dimensionless variable reduce the above equation in the following

form

Nu=Re1=2
x ~{h’(0), ð14Þ

where Rex~ux=n is the local Reynolds number.

Series solutions
Initial approximations and auxiliary linear operators for

homotopy analysis solutions are selected in the following forms:

f0(g)~ 1{e{gð Þ, g0(g)~b 1{e{gð Þ, h0(g)~exp({g), ð15Þ

L(f )~f ’’’{f ’, L(g)~g’’’{g’, L(h)~h’’{h: ð16Þ

The above operators have the properties

Lf (C1zC2egzC3e{g)~0,

Lg(C4zC5egzC6e{g)~0, Lh(C7egzC8e{g)~0,

with Ci (i~1{8) as the arbitrary constants.

The associated zeroth order deformation problems can be

written as

1{qð ÞLf f̂f (g; q){f0(g)
h i

~qBf Nf f̂f (g; q), ĝg(g; q)
h i

, ð17Þ
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h i
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f̂f (0; q)~0, f̂f ’(0; q)~1, f̂f ’(?; q)~0, ĝg(0; q)~0,

ĝg’(0; q)~b, ĝg’(?; q)~0, ĥh(0, q)~1, ĥh(?, q)~0, ð20Þ
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L3 f̂f (g, q)

Lg3
{

Lf̂f (g, q)

Lg

 !2

z(f̂f (g, q)zĝg(g, q))
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in which q is an embedding parameter, Bf , Bg and Bh the non-zero

auxiliary parameters and Nf , Ng and Nh the nonlinear operators.

For q~0 and q~1 we have

f̂f (g; 0)~f0(g),ĥh(g, 0)~h0(g) and f̂f (g; 1)~f (g), ĥh(g,1)~h(g):ð24Þ

When q increases from 0 to 1 then f (g, q), g(g, q) and h(g, q) vary

from f0(g), g0 gð Þ,h0 gð Þ to f gð Þ, g(g) and h(g) respectively. By

Taylor series one obtains

f g,qð Þ~f0 gð Þz
X?
m~1

fm gð Þqm, fm gð Þ~ 1

m!

Lmf g; qð Þ
Lgm q~0

		 , ð25Þ

g g,qð Þ~g0 gð Þz
X?
m~1

gm gð Þqm,gm gð Þ~ 1

m!

Lmg g; qð Þ
Lgm q~0

		 , ð26Þ

h g,qð Þ~h0 gð Þz
X?
m~1

hm gð Þqm,hm gð Þ~ 1

m!

Lmh g; qð Þ
Lgm q~0

		 , ð27Þ

where the convergence of above series strongly depends upon Bf ,

Bg and Bh. Considering that Bf , Bg and Bh are selected properly so

that Eqs. (17)–(19) converge at q~1 then

f (g)~f0(g)z
X?
m~1

fm(g), ð28Þ

g(g)~g0(g)z
X?
m~1

gm(g), ð29Þ

h(g)~h0(g)z
X?
m~1

hm(g), ð30Þ

and the general solutions are given by

fm(g)~f �m(g)zC1zC2egzC3e{g, ð31Þ

gm(g)~g�m(g)zC4zC5egzC6e{g, ð32Þ

hm(g)~h�m(g)zC7egzC8e{g, ð33Þ

in which the f �m, g�m and h�m show the special solutions.

Analysis

Here the derived series (27)–(29) depend upon the auxiliary

parameters Bf , Bg and Bh . These parameters are important to

adjust and control the convergence of series solutions. The

B{ curves are sketched at 18th order of approximations just

to determine the suitable ranges of Bf , Bg and Bh . Fig. 1

clearly showed that the range of admissible values of Bf , Bg

and Bh are {1:45ƒBf ƒ{0:20, {1:40ƒBgƒ{0:30 and

{1:35ƒBhƒ{0:30. It is also observed that our series

Three-Dimensional Flow of an Oldroyd-B Fluid
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solutions converge in the whole region of g when

Bf ~Bg~Bh~{0:80 (see Table 1).

The effects of Deborah numbers b1, b2 and ratio parameter b
on the velocity component f ’(g) are displayed in the Figs. 2–4.

Figs. 2 and 3 illustrate the variations of Deborah numbers on the

velocity component f ’(g). These Figs. clearly show that both b1

and b2 have reverse behaviors on the velocity component f ’(g).
Physically, b1 and b2 are dependent on the relaxation and

retardation times, respectively. Increasing b1 and b2 indicate that

both relaxation and retardation times increase. It is well known

fact that an increase in relaxation time decreases the velocity but

velocity increases for larger retardation time. Due to this reason

the dimensionless velocity component f ’(g) is decreased with an

increase in b1 but a rise in the fluid velocity component f ’(g) is

seen when b2 increases. The fluid velocity component f ’(g) and

momentum boundary layer thickness are reduced with the

increasing values of ratio parameter b (see Fig. 4) : Figs. 5–7

describe the effects of b1, b2 and b on the velocity component

g’(g). Fig. 5 depicts that the velocity component g’(g) and its

associated momentum boundary layer thickness are decreased

with an increase in b1. It can be noted from Fig. 6 that increasing

values of b2 enhances the fluid velocity and momentum boundary

layer thickness. Effects of b2 on the velocity components f ’(g) and

g’(g) are similar in a qualitative sense (see Figs. 3 and 6). The

velocity component g’(g) and momentum boundary layer

thickness are increasing functions of b. It is also observed from

Fig. 7 that for b~0, the variation in velocity component g’(g) is

zero and two-dimensional case for stretching surface is recovered.

A comparison of Figs. 4 and 7 shows that the ratio parameter has

quite opposite effects on the velocity components f ’(g) and g’(g).
Actually, when b increases from zero, the lateral surface starts to

move in the y-direction. Due to this argument, the velocity

component f ’(g) reduces while the velocity component g’(g) is

increases. To examine the influence of b1, b2, b, Pr , S and e on

the temperature h(g), we have drawn Figs. 8–13. Fig. 8 depicts

that the temperature increases for larger values of b1. We

concluded that the effect of b1 on the velocity components f ’(g),
g’(g) and temperature h(g) is reversed. The temperature and

thermal boundary layer thickness become smaller for larger values

of b2. Fig. 9 leads to the conclusion that the temperature and

thermal boundary layer thickness are decreasing functions of b2.

Fig. 10 shows that an increase in b causes a reduction in

temperature and thermal boundary layer thickness. The temper-

ature and thermal boundary layer thickness are reduced for the

increasing values of ratio parameter. From Fig. 11, we have seen

that temperature field and thermal boundary layer thickness are

smaller for larger values of Prandtl number. In fact larger Prandtl

number corresponds to smaller thermal diffusivity and smaller

thermal diffusivity provides a decrease in temperature and thermal

boundary layer thickness. Fluids with smaller Prandtl number have

higher thermal conductivities and thus have thicker thermal

boundary layer structure. The main role of the Prandtl number is

Figure 1. h- -curves for the functions f(g), g(g) and h(g).
doi:10.1371/journal.pone.0078240.g001

Table 1. Convergence of series solutions for different order
of approximations when b1~b2~0:2, Pr~1:2, e~0:2, b~0:4,
S~0:3 and Bf ~Bg~Bh~{0:8.

Order of
approximations -f0(0) -g0(0) -h9(0)

1 1.00480 0.32896 0.58000

5 1.02158 0.32915 0.46545

10 1.02157 0.32887 0.46899

17 1.02154 0.32887 0.46934

24 1.02154 0.32887 0.46931

30 1.02154 0.32887 0.46931

35 1.02154 0.32887 0.46931

doi:10.1371/journal.pone.0078240.t001

Figure 2. Variations of b1 on f9(g) when b2 = 0.3 and b = 0.5.
doi:10.1371/journal.pone.0078240.g002

Figure 3. Variations of b2 on f9(g) when b1 = 0.3 and b = 0.5.
doi:10.1371/journal.pone.0078240.g003

Three-Dimensional Flow of an Oldroyd-B Fluid
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Figure 4. Variations of b on f9(g) when b1 = b2 = 0.3.
doi:10.1371/journal.pone.0078240.g004

Figure 5. Variations of b1 on g9(g) when b2 = 0.3 and b = 0.5.
doi:10.1371/journal.pone.0078240.g005

Figure 6. Variations of b2 on g9(g) when b1 = 0.3 and b = 0.5.
doi:10.1371/journal.pone.0078240.g006

Figure 7. Variations of b on g9(g) when b1 = b2 = 0.3.
doi:10.1371/journal.pone.0078240.g007

Figure 8. Variations of b1 on h(g) when b2 = 0.3, b = 0.5, Pr = 1.2,
S = 0.3 and e = 0.2.
doi:10.1371/journal.pone.0078240.g008

Figure 9. Variations of b2 on h(g) when b1 = 0.3, b = 0.5, Pr = 1.2,
S = 0.3 and e = 0.2.
doi:10.1371/journal.pone.0078240.g009
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to adjust and control the rate of cooling fluids. Figs. 12 and 13

show the behaviors of S and e on the temperature field h(g).
Increase in both S and e enhances the temperature and thermal

boundary layer thickness. The difference we noted is that the

temperature varies slowly and decays rapidly for e in comparison

to S. For S.0, the heat generation phenomenon occurs. This heat

generation gives more heat to the fluid that corresponds to an

increase in the temperature and thermal boundary layer thickness

(see Fig. 12).

Table 1 provides the convergence values of series solutions. This

Table clearly shows that 17th-order of approximations gives the

convergent solutions for the velocities and 24th order deformations

are required for the temperature. Table 2 shows the comparison

for different values of b with homotopy perturbation method

(HPM) and exact solutions. From this Table one can see that our

series solutions have complete agreement with the previous HPM

and exact solutions upto four decimal places. It is also examined

that both -f0(0) and -g0(0) enhance for the increasing values of ratio

parameter b. Numerical values of local Nusselt number -h9(0) for

different values of b, Pr, S and e in both viscous and Oldroyd-B

fluid cases are obtained in Table 3. We observed that the values of

local Nusselt number for an Oldroyd-B fluid case are larger in

comparison to the viscous fluid. It is also found that an increase in

the values of e causes a reduction in the Nusselt number (see

Table 3).

Conclusions

The three-dimensional flow of an Oldroyd-B fluid over a

stretching surface is examined. Analysis with variable thermal

conductivity and heat generation/absorption is conducted. The

following conclusions can be drawn from the presented analysis.

N Deborah numbers b1 and b2 have quite opposite effects on the

velocity component f ’(g).

N Effects of b on the velocity components f ’(g) and g’(g) are

opposite.

N Thermal boundary layer thickness and temperature of fluid are

enhanced when there is an increase in S.

N Numerical values of local Nusselt number are larger for an

Oldroyd-B fluid than the viscous fluid.

Figure 10. Variations of b on h(g) when b1 = b2 = 0.5, Pr = 1.2,
S = 0.3 and e = 0.2.
doi:10.1371/journal.pone.0078240.g010

Figure 11. Variations of Pr on h(g) when b1 = b2 = 0.5, b = 0.5,
S = 0.3 and e = 0.2.
doi:10.1371/journal.pone.0078240.g011

Figure 12. Variations of S on h(g) when b1 = b2 = 0.5, b = 0.5,
Pr = 1.2 and e = 0.2.
doi:10.1371/journal.pone.0078240.g012

Figure 13. Variations of e on h(g) when b1 = b2 = 0.5, b = 0.5,
Pr = 1.2 and S = 0.3.
doi:10.1371/journal.pone.0078240.g013
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N An increase in e corresponds to a reduction in the values of

Nusselt number.

N Results for three-dimensional flow of Maxwell fluid with

variable thermal conductivity (which are not available yet) can

be recovered by choosing b2~0.

The considered stretched flow of an Oldroyd-B fluid is

important because it can be used in production of plastic sheet

and extrusion of molten polymer through a slit die in polymer

industry. This thermofluid problem involves significant heat

transfer between the sheet and surrounding fluid. The extrudate

in this mechanism starts to solidify as soon as it exits from the die

and then sheet is collected by a wind-up roll upon solidification.

Physical properties of the cooling medium, e.g., its thermal

conductivity has pivotal role in such process. The success of whole

operation closely depends upon the viscoelastic character of fluid

above the sheet. The (drag) force required to pull the sheet can be

determined by fluid viscosity. The variable thermal conductivity is

quite common in polymeric and plastic industries. Electronics

engineers rapidly are embracing thermally conductive plastics

because they can absorb heat as well as most metals and can be

modelled into intricate shapes and act as structural components as

well. Especially the new generation of plastics is significant in

components where heat build-up can degrade a conventional

plastic. No one area gets overheated by spreading the heat load

throughout the component. High thermally conductive polymers

are useful in processes with dissipation of thermal energy. The

knowledge of good thermal conductivity in modern thermal

management composites is helpful in retaining typical properties of

plastics such as low weight and electrical insulation. High energy

generation rates within turbines or electronics require high

thermal conductivity materials like copper and aluminium. The

low thermal conductance materials such as polystyrene and

alumina are useful in building construction or in furnaces for

insulation purposes. It is hope that the present work will serve as a

stimulus for needed experimental work on this problem.

Table 2. Comparison for the different values of b by HAM, HPM and exact solutions [30].

b HPM [30] Exact [30] HAM

-f0(0) -g0(0) -f0(0) -g0(0) -f0(0) -g0(0)

0.0 1.0 0.0 1.0 0.0 1.0 0.0

0.1 1.02025 0.06684 1.020259 0.66847 1.02026 0.06685

0.2 1.03949 0.14873 1.039495 0.148736 1.03949 0.14874

0.3 1.05795 0.24335 1.057954 0.243359 1.05795 0.24336

0.4 1.07578 0.34920 1.075788 0.349208 1.07578 0.34921

0.5 1.09309 0.46520 1.093095 0.465204 1.09309 0.46521

0.6 1.10994 0.59052 1.109946 0.590528 1.10994 0.59053

0.7 1.12639 0.72453 1.126397 0.724531 1.12639 0.72453

0.8 1.14248 0.86668 1.142488 0.866682 1.14249 0.86668

0.9 1.15825 1.01653 1.158253 1.016538 1.15826 1.01654

1.0 1.17372 1.17372 1.173720 1.173720 1.17372 1.17372

doi:10.1371/journal.pone.0078240.t002

Table 3. Values of local Nusselt number {h’(0) for the different values of the parameters b1, b2, b, Pr, S and e .

b Pr S e -h9(0)

b1 = b2 = 0.0 b1 = b2 = 0.3

0.0 1.3 0.3 0.2 0.15942 0.18436

0.6 0.54435 0.55510

1.0 0.67522 0.68113

0.5 0.8 0.3 0.2 0.22983 0.29794

1.5 0.53178 0.58749

2.0 0.68626 0.73129

0.5 1.3 0.0 0.2 0.76265 0.76872

0.2 0.60416 0.61328

0.5 0.20774 0.21046

0.5 1.3 0.3 0.0 0.59132 0.60313

0.3 0.47028 0.48050

0.6 0.38842 0.39777

doi:10.1371/journal.pone.0078240.t003
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