
Citation: CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e79;  doi:10.1038/psp.2013.56
© 2013 ASCPT  All rights reserved 2163-8306/12

www.nature.com/psp

The ggplot2 package, authored by Hadley Wickham,1 is an
implementation of the theory described in “The Grammar of
Graphics” by Leland Wilkinson.2 In a nutshell, the grammar
defines a set of rules by which components of a statisti-
cal graphic are organized, coordinated, and rendered. The
package is programmed entirely in the R statistical program-
ming environment3 using the grid graphics system,4 extend-
ing Wilkinson’s theory to a “layered” grammar of graphics.5

The grammar implemented in ggplot2 provides an infra-
structure for composing a graphic from multiple elements:

•	 An input data object, usually an R data frame.
•	 Aesthetics (abbreviated “aes”), which refer to visual at-

tributes that affect how data are displayed in a graphic,
e.g., color, point size, or line type.

•	 Geometric objects (“geoms” for short), such as points,
lines, polygons, box plots, error bars, etc.

•	 Scale transformations, which map aesthetics to unique
values of variables, in addition to mathematical trans-
formations to produce positional axes (e.g., logarithms).
This process entails a conversion from “data units” to
“graphical units.” The inverse mapping of a scale trans-
formation is rendered in the graphic as a guide, either
a positional scale or a legend, in the original data units.

•	 Statistical transformations (“stats”), which refer to
some type of data summarization such as a five-num-
ber summary for a box plot (stat_boxplot) or counts
of observations by bin (stat_bin). The objective of
statistical transformation is to supply the inputs neces-
sary to produce a geom; for example, stat_bin sets
up the data structure necessary for geom_bar and
geom_histogram. Many stat_functions can be in-
voked directly to generate ggplot layers.

•	 Coordinate transformations (“coord”), which specify
how a coordinate system is specified in a graphic. The
default is the Cartesian coordinate system, but several
others are built in, such as polar coordinates (coord_
polar) or flips of the x and y coordinates (coord_flip).

•	 Faceting or conditioning, which applies the same type
of graph to each defined subset of the data, usually
indicated by the unique values of a categorical variable
or factor.

•	 A theming system, which controls the nondata aspects
of a statistical graphic, such as the size and font of axis
labels, legends, and titles or the appearance of the plot
background.

•	 Annotation, which allows you to add text and/or exter-
nal graphics to a ggplot.

•	 Positional adjustments, such as point jittering to reduce
overplotting of points or various ways to maneuver bar
segments associated with different groups in a bar
chart.

The creation of a ggplot involves a stepwise process that
takes the defined component pieces, called layers, and coor-
dinates them through a sequence of transformations to pro-
duce the final graph.

In ggplot2, two functions can be used to create a graphic:
qplot() and ggplot(). The former is shorthand for “quick
plot” and is particularly useful when you want to create rela-
tively simple graphs. Its original purpose was to provide a
transition from R base graphics to ggplot2 graphics. For more
complex graphics, you should use ggplot(), which is the
function used for all of the examples in this article. The chap-
ter in the ggplot2 book1 corresponding to qplot() is avail-
able on the book’s web page: http://ggplot2.org/book/. Click
on the link to “Getting started with qplot.”

R version 2.15.3 and ggplot2 version 0.9.3.1 were used
to create all the plots in this article. It helps if the reader is
familiar with base and lattice graphics in R, but it is not a
prerequisite. The R code and data sets to reproduce all plots
shown in this article can be downloaded online (see Supple-
mentary Material online). Some topics cannot be fully illus-
trated in the text due to space constraints, so the annotated
code will be supplied in the supplemental materials for you to
try on your own. A useful companion is the online help pages
for ggplot2 (http://docs.ggplot2.org/current), which contains
a series of illustrative examples under each help page.

BASIC SYNTAX IN ggplot2

Two concepts at the core of ggplot2 are essential for its
flexibility and efficiency: layers and aesthetic mappings. A
ggplot object is composed of one or more layers, where

Visualization is a powerful mechanism for extracting information from data. ggplot2 is a contributed visualization package in
the R programming language, which creates publication-quality statistical graphics in an efficient, elegant, and systematic
manner. This article summarizes key features of the package with examples from pharmacometrics and pointers to available
resources for learning ggplot2.
CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e79; doi:10.1038/psp.2013.56; published online 16 October 2013

Application of ggplot2 to Pharmacometric Graphics

K Ito1 and D Murphy2

Tutorial

1Pfizer Inc, Groton, Connecticut, USA; 2ADI-NV, Inc, Henderson, Nevada, USA. Correspondence: K Ito (kaori.ito@pfizer.com)
Received 15 May 2013; accepted 24 August 2013; advance online publication 16 October 2013. doi:10.1038/psp.2013.56

2163-8306

e79

CPT: Pharmacometrics & Systems Pharmacology

10.1038/psp.2013.56

Tutorial

16October2013

2

15May2013

24August2013

2013

© 2013 ASCPT

Application of ggplot2 to Pharmacometric Graphics

Ito and Murphy

http://ggplot2.org/book/
http://docs.ggplot2.org/current
mailto:kaori.ito@pfizer.com
http://www.nature.com/doifinder/10.1038/psp.2013.56
http://www.nature.com/doifinder/10.1038/psp.2013.56
http://www.nature.com/doifinder/10.1038/psp.2013.56

CPT: Pharmacometrics & Systems Pharmacology

Application of ggplot2 to Pharmacometric Graphics
Ito and Murphy

2

each layer contains a different graphical object, or grob
for short. The ggplot() function defines the base
layer of a ggplot, indicating the name of the input data
frame and establishing the association between a certain
subset of its variables and their corresponding roles in the
graph.

More specifically, the ggplot() function has two optional
arguments: (i) data (an input data frame), and (ii) aes, which
defines the “x” and “y” variables in addition to any other vari-
ables to be associated with specific aesthetics, such as color,
point shape, or line type. A standard call to define the base
layer of a ggplot is:

ggplot(data = Data, aes(x, y))

This is sufficient to define a ggplot object, but it does not
produce any plotted output until at least one layer is added
that specifies a geometry (geom). For example, to create a
scatter plot, type:

ggplot(data = Data, aes(x, y)) +
geom_point()

In this case, no argument is supplied to geom_point.
The required information (data and aesthetic mappings)
is taken from the default set up in the base layer by the
ggplot() call.

A powerful feature of ggplot() is that it can use differ-
ent data frames to produce separate layers. For example,
suppose we have two data frames d1 and d2 with variables
x1,y1 and x1,y2, respectively, where x1 is common to both
data frames and y1 and y2 are distinct variables. The follow-
ing code creates two separate scatter plot layers, one from
each data frame:

ggplot(data = d1, aes(x = x1, y = y1)) +
geom_point() +
geom_point(data = d2, aes(x = x1, y = y2))

Two equivalent ways to code this plot are

ggplot(data = d1, aes(x = x1)) +
geom_point(aes(y = y1)) +
geom_point(data = d2, aes(y = y2))

and

ggplot() +
geom_point(data = d1, aes(x = x1, y = y1)) +
geom_point(data = d2, aes(x = x1, y = y2))

This example illustrates a few important points about
coding a ggplot graphic:

•	 A base layer can be empty, with the data and aesthetic
definitions passed to individual geom_ or stat_ lay-
ers, as shown in the last code block above.

•	 The data argument in a ggplot() call must either be
a data frame or NULL (the latter implicit in the third
code block above).

•	 Any aesthetic defined in a base layer by ggplot()
is passed on to all subsequent layers. In the first code
block above, it is expected that every layer will have an
x variable named x1 and a y variable named y1, but it
is possible to override the defaults in a specific layer, as

shown in the second geom_point call. In the second
code block, we took advantage of the fact that x1 is
common to both geom_point calls; therefore, for effi-
ciency, we can define it in the base layer as the default
x variable and set up separate aes() calls for y in the
two geom_point layers.

In the same manner, one can sequentially add layers to a
ggplot, as in the following:

ggplot(Data, aes(x, y)) +
geom_point()+
geom_line() +
geom_smooth()+ ...

HOW IT WORKS

Let us look at a few examples, saving certain technical details
for later sections. Below is a snapshot of the R code for each
example in Figure 1. The ggplot() call defines the “data”
(i.e., data frame) that are to be input and the variable aes-
thetic mappings to be passed to all layers. The “+” operator
adds layers to the ggplot object and must be at the end of a
line of code if an additional layer is to be added (see Supple-
mentary Material online for the code).

Figure 1(a)
ggplot(data=d1, aes(x=AGE, y=CRCL)) +
geom_point() +
geom_smooth(method = “lm”)

Figure 1(b)
ggplot(d1, aes(x=WT)) +
�geom_histogram(binwidth = 3, color =
“black”, fill = “white”) +
facet_grid(GEN ~.) +
�geom_vline(data=tabWT, aes(xintercept=WT.
median), linetype=“dashed”, size=2,
color=“red”)

Figure 1(c)
ggplot(d1, aes(x= GEN, y=WT)) +
geom_boxplot() +
labs(x = “”, y = “Weight (kg)”) +
�scale_x_discrete(labels=c(“Female”,
“Male”)) + ggtitle(“Body weight by
gender”) +
�theme(axis.text.x = element_
text(angle=90, hjust=1, size=12))

In Figure 1a, geom_point() adds a scatter plot to
the base layer, followed by a fitted least-squares linear
regression line in a separate layer with geom_smooth()
using method = “lm” as an optional argument (The
default method for geom_smooth is “loess” if the sample
size is less than 1,000 and “gam” (from the mgcv package)
otherwise.).

In Figure 1b, geom_histogram() creates a histo-
gram layer. Because no y aesthetic was defined in the
base layer, stat_bin is called first to transform WT into
a set of class intervals of binwidth 3, with corresponding
counts saved in a derived variable ..count.. before

www.nature.com/psp

Application of ggplot2 to Pharmacometric Graphics
Ito and Murphy

3

the geom is rendered. The output from stat_bin is then
passed to geom_histogram, yielding a frequency
histogram.

Arguments exist in each geom function to control
appearance; in geom_histogram(), these include bin-
width (control the width of each bin), color (color for
outline of each histogram bar), and fill (fill color for his-
togram). Because these are not defined inside aes(),
the color and fill aesthetics are set to constant values
rather than mapped. Pairings of aesthetics with vari-
ables take place inside an aes() call, which defines a
mapping between values of aesthetics and values of
the defined variable. The facet_grid() call creates a
histogram for each level of GEN (Male = 0, Female = 1)
in separate panels. Note that facet_grid(GEN~.)
creates a panel plot by row, whereas facet_grid(.~
GEN) creates a panel plot by column (see “Faceting”
section).

Finally, geom_vline()adds a new layer consisting
of a vertical line in each panel, using another data frame
(data=tabWT) that contains precomputed median values for
each gender.

> tabWT
   GEN WT.median
1   0       67.7
2   1       80.4

Several more aesthetics are set in this code chunk. To get
individual lines for each panel of Figure 1b, it is necessary
for the input data frame to contain a GEN variable so that
ggplot2 knows which vertical line to associate with each
panel. Without this information, the default action would be to
plot both lines in each panel.

In Figure 1c, the x variable GEN is a factor and the y vari-
able WT is numeric. geom_boxplot() produces separate
box plots of WT for both females and males. The remaining
code is used to customize the plot by adding a title, changing
the axis labels, etc.

Next, let us use Theoph (data from an experiment on
the pharmacokinetics of theophylline) from the nlme pack-
age to illustrate another feature of ggplot2. We often want
to be able to plot lines for different groups of data without
mapping a variable to an aesthetic. The group = aesthetic
in ggplot2 allows you to do this easily. We consider two

Figure 1 Example plots using ggplot2. (a) Scatter plot adding a layer of a linear regression line. (b) A histogram by gender (using facet_
grid) adding a layer for median value for each panel. (c) A box plot conditioned by gender (using aesthetic mapping) with a customized
title and x and y labels. (d) A spaghetti plot for Theoph data (nlme package). (e) Add a mean line to the spaghetti plot. (f) A spaghetti plot by
covariate (body weight category) using facet_grid().

75
0.0

2.5

5.0

7.5

0.0

C
ou

nt

50

60

70

80

90

100

0
1

Body weight by gender

W
ei

gh
t (

kg
)2.5

5.0

7.5

20 40 60
AGE

60

0

0

3

6

C
on

ce
nt

ra
tio

n
(m

g/
l)

9

5 10 15

Time (h)

20 25 0

0

3

6

C
on

ce
nt

ra
tio

n
(m

g/
l)

9

5 10 15

Time (h)

20 25 0

0

3

6

C
on

ce
nt

ra
tio

n
(m

g/
l) 9

5 10

WT < 70 kg WT ≥ 70 kg

15

Time (h)

20 25 0 5 10 15 20 25

80 100

Female Male

WT

100

125C
R

C
L

150

175

200
a b c

d e f

CPT: Pharmacometrics & Systems Pharmacology

Application of ggplot2 to Pharmacometric Graphics
Ito and Murphy

4

common examples: (i) spaghetti plots and (ii) plotting a line
connecting mean values across levels of a factor.

The first example can be coded as follows:

library(nlme)

head(Theoph)
Grouped Data: conc ~ Time | Subject

Subject Wt Dose Time conc
1 1 79.6 4.02 0.00 0.74
2 1 79.6 4.02 0.25 2.84
3 1 79.6 4.02 0.57 6.57
4 1 79.6 4.02 1.12 10.50
5 1 79.6 4.02 2.02 9.66
6 1 79.6 4.02 3.82 8.58

Figure 1(d)
�ggplot(data=Theoph, aes(x=Time, y=conc,
group=Subject)) + geom_line() +
�labs(x=“Time (hr)”, y=“Concentration
(mg/L)”)

This produces separate lines for each level of Subject with-
out having to define an aesthetic.

For case (ii), consider the problem of adding a line that con-
nects the means of each group (note: for this case, we need a
nominal time postdose (ntpd) to calculate mean values, and the
R-code to calculate “ntpd” is provided in the Supplementary
Material online). The default behavior in ggplot2 is to ignore
a call to geom_line() when the x variable is a factor; to get
around this, we use the group = 1 aesthetic, which is used
to plot an overall “average” line across the levels of the factor.

Figure 1(e)
�p �<- ggplot(data=Theoph, aes(x=Time,

y=conc, group=Subject)) +
geom_line() +
�labs(x=“Time (hr)”, y=“Concentration
(mg/L)”) +
stat_summary(fun.y=median, geom=“line”,
aes(x=ntpd, y=conc, group=1),
color=“red”, size=1)

print(p) # “p” is a ggplot object

Notice this plot (plot object) is saved as “p” (you can
name it whatever you like, e.g., plot1, my.plot, etc); we
will call it “p” in the following code.

Once you have created a plot (plot object) as above, it is
easy to create a multipanel plot conditioned by a covariate,
such as DOSE or SEX (see “Faceting” section).

create a flag for body weight
�Theoph$WT <- ifelse(Theoph$Wt<70, “WT <
70kg”, “WT >= 70kg”)

Figure 1(f)
p + facet_grid(.~WT)

Let us save this plot as “plot1” for later use (for “Multiple
Plots on One Page” section).

plot1 <- p + facet_grid(.~WT)

CORE ELEMENTS of ggplot2

Generating a ggplot graphic entails an ordered sequence
of transformations from data units to graphical units and back.

Three types of transformations occur in the process of render-
ing a graph, in the following order: (i) scale transformations,
which convert from data units to graphical units used by the
computer; (ii) statistical transformations, which reduce input
data to a form required by a geom, and (iii) coordinate transfor-
mations, which manipulate the coordinate system of a graph.
The system underlying ggplot2 enacts a training process that
coordinates all of the layers and transformations before render-
ing the graphic. The final graph applies inverse transformations
on positional axes and legends so that the labels are expressed
in the original data units. Each element of the system described
below contributes in some way to the training process.

geoms and stats
In ggplot2, geoms are functions that convert transformed
numeric data to some type of geometric object, such as points,
lines, bars, or box plots. The functions that transform the input
data into a form that can be used by geoms are called stats.
Strictly speaking, stats and geoms are independent of one
another; however, every geom in ggplot2 has a default stat.
For example, both geom_bar and geom_histogram use
stat_bin as their core stat function, whereas geom_con-
tour() has stat_contour() as its default stat. Usually, a
geom is called to produce a ggplot layer, but it is possible to call
a stat function directly to perform both the necessary statisti-
cal transformation and the rendering of the geometry through
the geom = argument of the stat function. Typical usage of a
stat_ function within a ggplot() call entails some type of
data reduction, followed by a call to the geom = argument,
which triggers the visualization. An example of this feature is
shown in the code that generates Figure 1, but many more
examples are shown in the online help pages for the stat_
* functions of ggplot2 cited in the references.

Mapping and setting aesthetics
To visualize data conditioned by the values of one or more
grouping variables, e.g., SEX or DOSE, we can (i) associ-
ate (or map) individual values of a grouping variable to cor-
responding values of an aesthetic, such as color, size, or
shape; or (ii) create separate panels for each value/level of
a grouping variable, which is covered in the “Faceting” sec-
tion. For illustration, suppose we want to map SEX to color
(“colour” is used in the example code here following Hadley
Wickham’s ggplot web page (http://had.co.nz/ggplot2) and
his book, but “color” works as a substitute for “colour.”); to do
this, use aes()to define the mapping:

ggplot(Data, aes(x, y, colour = SEX))

This reveals a few more properties of aesthetics in ggplot2 :

•	 Aesthetics fall into two general groups: positional and
non-positional.

•	 By default, each mapped aesthetic defined inside
aes() produces a guide to aid interpretation of the
graph: for positional aesthetics, the guide is a scaled
axis, whereas for non-positional aesthetics, the default
guide is typically a legend.

•	 All mappings inside aes() are actually transforma-
tions in the mathematical sense (i.e., 1–1 and onto) so
that the inverse mappings are uniquely defined.

http://had.co.nz/ggplot2

www.nature.com/psp

Application of ggplot2 to Pharmacometric Graphics
Ito and Murphy

5

In the above example, the default behavior would be to set
up positional axes for both x and y, and to produce a legend
for color.

Another important feature of aesthetics is that they can either
be mapped inside aes()or set outside of aes() inside the call
to a geom. A mapping uniquely associates values of a variable
with default values of an aesthetic; by contrast, setting refers to
assigning a single value to an aesthetic. Here is an illustration
of the difference between mapping and setting aesthetics:

Data <- data.frame(x1 = 1:12,
				 y1 = 0.5*1:12 + rnorm(12),
				� drug = rep(factor(c(“A”,

“B”,“C”)), each=4))

Figure 2(a)
�ggplot(Data, aes(x = x1, y = y1, size=3, color=
“darkblue”)) +

geom_point()

Figure 2a maps x1 and y1 to the positional aesthetics x
and y, and maps “3” and “darkblue” to size and color, respec-
tively, creating two new factors named “3” and “darkblue,”
each with one level. The first color in the default color pal-
ette is assigned to the points (pink). Because new factors (“3”
and “darkblue”) are created on the fly and mapped inside the
ggplot() call (regardless of whether you wanted it or not),
ggplot() automatically creates legends for size and color,
as seen in Figure 2a.

To avoid this “feature,” you need to set size and color out-
side of aes() in the layer call:

Figure 2(b)
ggplot(Data, aes(x=x1,y=y1)) +

geom_point(size=3, color=“darkblue”)

For another example of the difference between map-
ping and setting aesthetics, we can map color to levels of

a grouping variable for all layers and set size, line type, etc.
separately in distinct layers:

Figure 2(c)
ggplot(Data, aes(x=x1, y=y1, color=drug)) +
geom_point(size=3) +
geom_line(size=0.5, linetype=2)

The above code creates Figure 2c. Factor “drug” is mapped
to color, which assigns the default ordering of colors in ggplot2
to levels (“A,”, “B,” and “C”) in its defined order. Points and
lines are drawn accordingly, and a corresponding legend is
created by default to associate colors with drug names.

GUIDES

In the grammar of graphics, a guide is a graphical object that
aids in the interpretation of a statistical graphic. There are
two classes of guides: positional and nonpositional. A posi-
tional guide is an axis, a reference (i) to the range of values
in a single direction if the variable to which it is mapped is
continuous or (ii) to the levels of a factor, if discrete. A non-
positional guide is usually a legend, which illustrates the
relationship between individual values of an aesthetic and its
corresponding variable values.

Point shape and line type are discrete aesthetics, which
means that they cannot be mapped to numeric variables
(must be either factor or character variables). Point size is
continuous, and therefore, it must be mapped to a numeric
variable. Color and fill aesthetics, on the contrary, may be
mapped to either discrete (e.g., “red,” “blue,” etc.) or continu-
ous variables (color gradient). In a legend guide, continuous
values are discretized into bins whose number can be con-
trolled by the user. To get a smooth range of (fill) colors, a
color bar guide is available.

The guides() function in ggplot2 allows a user to manipu-
late various aspects of a legend or color bar guide, typically in

Figure 2 Mapping and setting aesthetics in ggplot2. (a) Variables that are not in the data set are mapped to color and size inside aes, which
creates new factor variables on the fly and produce a plot with unwanted legends. (b) Correct settings for color and size. (c) Map the levels of
the “drug” variable to color and set size and line type in separate geom calls.

2.5

2

4

y1

6

3

Mapping (wrong) Set color and size Map color and set size, linetype

Drug

A

B

C

“darkblue”

3

Darkblue

8

2

4

y1

6

8

2

4

y1

6

8

5.0 7.5

x1

10.0 12.5 2.5 5.0 7.5

x1

10.0 12.5 2.5 5.0 7.5

x1

10.0 12.5

a b c

CPT: Pharmacometrics & Systems Pharmacology

Application of ggplot2 to Pharmacometric Graphics
Ito and Murphy

6

conjunction with the guide_legend and guide_colorbar
functions. The online help page for guide_legend6 has a
fairly comprehensive set of useful examples that go beyond
the intended scope of this article.

Positional guides can assume several forms. In scatter
plots, for example, both positional guides are continuous.
In the special case of a time-related scatter plot, one of the
axes (usually horizontal) may represent a date or a date–time
object. In a strip chart or a Cleveland dot chart, one of the
axes is discrete, whereas the other is continuous. You may
want to represent a continuous axis in a suitably transformed
metric such as a logarithmic or square root scale.

Scale functions
Each mapped aesthetic produces a default guide. Scale
functions allow a user to control the rendering of a guide,
whether positional or nonpositional.

The scale functions in ggplot2 have the following common
arguments:

•	 breaks: the set of values that are used to define the
tick locations in an axis guide or the unique values of a
legend guide;

•	 values: the desired values of the aesthetic in a legend
guide;

•	 labels: the desired set of labels in an axis or legend
guide.

Other arguments may be present in individual functions to
handle specific properties of a scale.

Positional axes tend to have the form scale_dir_type,
e.g., scale_x_discrete, scale_x_date, or scale_y_
continuous (e.g., Figures 5 and 7). Certain scale
transformations are built in, such as scale_x_sqrt or
scale_y_log10, but most scale transformations now need
to be defined through the scales package, which is beyond
the scope of this article. In a positional axis scale, breaks
would generally represent the desired locations of tick marks,
and labels would represent the tick labels to be associated
with the breaks. For dates or transformed continuous scales,
manual specification of the labels is a common practice.

Legend-related scale functions are modified through scale
functions of the form scale_aes_type, such as scale_
fill_gradient, scale_colour_identity, or scale_
shape_manual. The way in which these arguments are
applied depends somewhat on the type of scale selected.
For legend guides associated with discrete variables such as

Figure 3 Controlling appearance and customizing plot. (a) Changing color and shape of points. (b) Adding legend and title, changing
background.

0 10 20 30

Time (h)

0

200

400

C
on

ce
nt

ra
tio

n
(n

g/
m

l)

600

DOSE 30 100 300 DOSE

30

100

300

DOSE

30

100

300

DOSE

30

100

300

DOSE

30

100

300

40 50

0 10 20 30

Time (h)

0

200

400

C
O

N
C

600

Change shape and color

Customize plot (legend, title, background)

40 50 0 10 20 30

Time (h)

0

200

400

C
O

N
C

600

40 50 0 10 20 30

Time (h)

0

200

400

C
O

N
C

600

40 50

0 10 20 30

Time (h)

0

200

400

C
on

ce
nt

ra
tio

n
(n

g/
m

l)

600

PK profile of drug X

40 50

DOSE

30

100

300

0 10 20 30

Time (h)

0

200

400

C
on

ce
nt

ra
tio

n
(n

g/
m

l)

600

PK profile of drug X

40 50

a

b

www.nature.com/psp

Application of ggplot2 to Pharmacometric Graphics
Ito and Murphy

7

factors, breaks typically represent unique values of the vari-
able (e.g., factor levels), values represent the values of the
aesthetic to be mapped to breaks, and labels represent the
desired labels in the legend guide. For continuous aesthetics,
the corresponding scale functions have different sets of argu-
ments, e.g., range substitutes for breaks and/or values.

The aesthetics for which scale functions exist are color,
fill, shape, size, linetype, and alpha, the last of
which applies when alpha transparency is mapped to a vari-
able. Two types of scale functions that apply to all aesthetics
are identity and manual: an identity scale is appropriate
when the desired values of the aesthetic are defined in the
input data frame; on the contrary, a manual scale is appro-
priate when you want to customize the breaks, values,
and/or labels used in a legend. Additional scale types spe-
cific to color and fill aesthetics include brewer, gradient,
gradient2, gradientn, grey, and hue.

ggplot2 has a predefined set of default values for aesthet-
ics. For example, the first default shape is a closed circle
(pch=16 in base graphics), the next is a closed triangle
(pch=17), and so on. A list of values for the primary aes-
thetics is given in Appendix B of the ggplot2 book,1 found at
http://ggplot2.org/book/appendices.pdf.

We use the data set d3 (which contains mean CONC
by TIME conditioned by DOSE) to illustrate how to change
default shapes and colors using scale_functions.

p <- �ggplot(d3, aes(x=TIME, y=CONC,
shape=DOSE)) +
geom_line() + geom_point(size=3) +
�geom_errorbar(width=.1,
aes(ymin=CONC-ci, ymax=CONC+ci))

#Figure 3(a)-left panel
print(p)

To change the shape of points:

#Figure 3(a)-middle panel
p + scale_shape_manual(values=c(1,2,7))

Observe that you need to have mapped DOSE to shape
in the original ggplot() call before using scale_shape_
manual. Note that the defined values in scale_shape_
manual are pch (point character) values from par() in base
graphics.

Similarly, if you want to change the color for each dose
(Figure 3a, right panel), the DOSE variable needs to be
mapped to color in the ggplot() call, e.g.,

p �<- ggplot(d3, aes(x=TIME, y=CONC,
shape=DOSE, color=DOSE)) +
geom_line() + geom_point(size=3) +
�geom_errorbar(width=.1, aes(ymin=CONC-
ci, ymax=CONC+ci)) +
scale_shape_manual(values=c(1,2,7)) +
�scale_colour_manual(values=c(“black”,
”red”,”darkblue”))

#Figure 3(a)-right panel
print(p)

Because the same variable is mapped to both shape and
color, the scales are merged if they have the same title,
breaks, and labels.

THEMES

The theming system in ggplot2 controls the nondata aspects
of a ggplot, primarily its general appearance. The system was
overhauled in version 0.9.2 of the package so that it now sup-
ports relative sizing and inheritance of theme elements.

The key concept in the theming system is the theme, or
more precisely, theme function. Every ggplot is controlled by
a theme function that controls the general appearance of a

Figure 4 Coordinate system (coord_flip). (a) First attempt to create a forest plot before swapping the x and y axes. (b) Flip a plot using
coord_flip(). (c) Reorder the variable based on the relative effect and add a title, axis labels, etc. to polish a plot.

1.00
Body weight

Age

1.00 1.25

y

1.50 1.75 1.00 1.25

Change relative to reference value

1.50 1.75

Diabetes

Gender

CYP2D6

Medication

Body weight

Estimated impact on CL

Age

Diabetes

Gender

CYP2D6

Medication

Body weight
Age

Diabetes
Gender

CYP2D6

Medication

x

x

1.25

1.50

y

1.75

Original plot + coord_flip() Polish a plota b c

http://ggplot2.org/book/appendices.pdf

CPT: Pharmacometrics & Systems Pharmacology

Application of ggplot2 to Pharmacometric Graphics
Ito and Murphy

8

ggplot. The default is theme_grey, which produces a light
gray background with white gridlines. There are several rea-
sons1 why it was selected as the default theme: (i) the white
gridlines aid in the judgment of position but have little visual
impact and can easily be “tuned out”; (ii) the gray background
gives the plot a similar color (in a typographical sense) as
the remainder of the text, ensuring that the graphics fit in
with the flow of the text without standing out over a bright
white background; (iii) the gray background creates a con-
tinuous field of color, which ensures that the plot is perceived
as a single visual entity. The default theme function can be
changed globally either in an R session with theme_set()

or within a ggplot() call by invoking the desired theme
function. We will consider the latter in this section.

A theme function is composed of theme elements, which
are individual nondata components of a graphic, such as
axis.text, axis.ticks, legend.key, legend.
position, and panel.background. To alter specific
theme elements in a ggplot() call, we use the theme()
function. Each argument of theme() is a pairing of a spe-
cific theme element with a function call that modifies one or
more properties of the theme element. There are four ele-
ment functions: element_text(), element_rect(),
element_line(), and element_blank(). Most theme

Figure 6 Annotations in plots. (a) Add text (labels) layer for outlier points; (b) new annotation function annotation_custom(): insert an
image (semilog scale plot) into the original plot (normal scale).

−8

−4

0

25 50

PRED

0

0

200

C
on

ce
nt

ra
tio

n
(n

g/
l) 400

600

10 20

10

0
Lo

g
-

co
nc

en
tr

at
io

n
(n

g/
m

l)
10 20 30

Time (h)

40 50

30

100

300

30 40 50

Time (h)

75

W
R

E
S

4

8
Annotation (add text) Plot in plota b

Figure 5 Visualize clinical data with weighted information. (a) Drug groups are differentiated using aesthetic mapping (color), (b) multipanels
using facet_grid, and size of shape visually represents the number of patients in each treatment arm.

−2

0

0 12 24 52

Time (week)

2

R
es

po
ns

e

4

DRGN

Donepezil

Galantamine

Placebo

6

Aesthetic mapping (color) Faceting by drug group and size of point is weighted

−2

−4

−6

0

0 12 24 52 0 12 24

Time (week)

52 0 12 24 52

2

R
es

po
ns

e

4

6

8

Donepezil Galantamine Placebo

a b

www.nature.com/psp

Application of ggplot2 to Pharmacometric Graphics
Ito and Murphy

9

elements are associated with one of the first three ele-
ment_*() functions; element_blank() sets all properties
associated with a theme element to NULL.

You can specify/change the position of the legends as
shown below (Figure 3b, left panel):

#Figure 3(b)-left
p + theme(legend.position=“top”)

You can also specify the x and y location as proportions of
the graphics page (not the graphics region) and add a title
using ggtitle (Figure 3b, middle panel):

#Figure 3(b)-middle
p + theme(legend.position=c(0.8,0.8)) +
ggtitle(“pharmacokinetic Profile of Drug X”)

�#save this plot for later use (section
“Multiple Plots on One Page”)
plot2 <- p + theme(legend.position=c(0.8,0.8))

To remove the gridlines:

p + theme(panel.grid.minor=element_blank(),
panel.grid.major=element_blank())

To change the background color:

�p �+ theme(panel.background = element_
rect(fill = “#003DF5”))

In the new system, there are 38 theme elements, some
of which are nested within others. The three primary theme
elements are text, line, and rect, and most (but not all)
elements are associated with these. Theme elements con-
tain one or more properties arranged in a list structure. The
default values are typically defined in the primary elements,
and changes are defined as needed in the nested elements.
To see what a complete theme function looks like in the new
theming system, type theme_grey() at the R prompt. A
complete list of available arguments and definitions of theme
elements can be found in the online help pages (http://docs.
ggplot2.org/current/theme.html).

Several theme elements are associated with measure-
ment units, defined in terms of the unit() function from
the grid package. These elements can be modified directly,
but the grid package needs to be loaded first or an error
is thrown. Some examples include axis.ticks.length,
plot.margin, and legend.key.size. For example,

theme(axis.ticks.length = unit(0.1, “in”))

ggplot2 also natively supports two additional built-in theme
functions: theme_bw() and theme_classic(). All of the
graphs produced thus far in this article have used theme_
grey; theme_bw is a slight variation that replaces the
gray panel background with a white one, whereas theme_
classic is designed to mimic a base graphics plot. A
number of other theme functions for use in ggplot2 can be
accessed from the ggthemes package authored by Jeff
Arnold.7 Below is an example that replaces the default theme
function with theme_classic() (Figure 3b, right panel):

#Figure 3(b)-right panel
p + theme_classic() +
theme �(legend.position=c(0.8,0.8),

�legend.key = element_rect(fill=NA,
color=NA))+

�ggtitle(“pharmacokinetic Profile of
           Drug X”)

AXIS AND MAIN TITLES

ggplot2 lets you define titles in several ways. The simplest
method is to use separate functions to define x, y, and main
titles: xlab(), ylab(), and ggtitle(), respectively. Each
takes a character string as its sole argument. A more gen-
eral labeling function is labs(), which lets you define not
only x, y, and title but also the text of legend titles named
by aesthetic, e.g.,

labs(x = �“Type”, y = “Concentration”, title =
“Main title”, colour = “Gender”,
linetype = “Method”)

This provides a cleaner mechanism for titling in ggplot2
and is recommended when you want to specify several titles
for axes, legends, and/or main titles.

POSITIONAL ADJUSTMENTS

Positional adjustments are used to overcome two types of
problems that occur in the process of rendering graphics:
overplotting of points at the same or nearby locations and
arrangement of a collection of graphical objects, particularly
in the case of bar charts. In the former case, a common rem-
edy is to jitter points, which is implemented by either geom_
jitter() or by use of the position_jitter() function
within geom_point(). Other positional adjustments include
stack, dodge, fill, and identity. In the case of a bar
chart with multiple groups associated with a fill aesthetic, any
one of these can be taken as the value of the position =
argument. The default, stack, produces a vertically stacked
bar chart; dodge produces side-by-side bar charts, fill is a
special case of stack where, in each group, the sum of the
bar values is 100%, and identity stacks bars according
to the ordering of the levels of the stacking variable.

Two examples of jittering points in ggplot2 are shown in the
code chunk below:

�ggplot(subset(d7a, group == “AD”), aes(x =
    Month, y = RESP)) + geom_jitter()

�ggplot(subset(d7a, group == “AD”), aes(x =
   � Month, y = RESP)) + geom_point(position

= position_jitter(width = 0.5))

COORDINATE SYSTEMS

ggplot2 contains six functions that specify or modify coor-
dinate systems in two-dimensional (2D) plots: Cartesian
(coord_cartesian, default), equal-scale Cartesian coor-
dinates (coord_equal), interchange of x and y Cartesian

http://docs.ggplot2.org/current/theme.html
http://docs.ggplot2.org/current/theme.html

CPT: Pharmacometrics & Systems Pharmacology

Application of ggplot2 to Pharmacometric Graphics
Ito and Murphy

10

coordinates (coord_flip), transformed Cartesian coordi-
nates (coord_trans), map projections (coord_map), and
polar coordinates (coord_polar).

For example, suppose we want to ascertain the relative
impact of covariates on certain parameters such as clearance
(CL) in population pharmacokinetic analysis and the relative
effects (magnitude) on area under the concentration–time
curve or the peak plasma concentration (Cmax) with concomi-
tant medications such as Cytochrome P450 3A4 (CYP3A4)
inhibitors. In these situations, a forest plot (also known as
a tornado plot) is helpful as a visual guide to interpret the
results. We can create one easily using coord_flip().

Assume that we have a data set “d4” as shown below,
where x is the name of a covariate in the population pharma-
cokinetic analysis, y is the estimated relative change from its
reference value, and ylo and yhi are the 2.5th and 97.5th
percentiles of a bootstrap confidence interval.

>d4
x y ylo yhi

1 age 0.942 0.899 1.020
2 body weight 1.442 1.220 1.752
3 gender 1.123 1.059 1.197
4 CYP2D6 0.995 0.867 1.123
5 medication 0.981 0.940 1.025
6 diabetes 1.064 1.011 1.117

We start by creating an error bar plot and use geom_
hline() to add reference lines (horizontal line) at 0.8, 1.0,
and 1.25 to visualize a range of 80–125% (Figure 4a). In
this example, we assign the output of the call on the right
to an object “p”, which is of class gg and ggplot; it is
common practice to assign the output of a ggplot()call
to an object and add layers to it (with optional intermediate
assignments):

#Figure 4(a)
p �<- ggplot(d4, aes(x=x, y=y)) +

geom_point() +
	� geom_errorbar(aes(ymin=ylo,
ymax=yhi),width=0.2) +

	� geom_hline(yintercept=1, col=“darkblue”)
+geom_hline(yintercept=c(0.8,1.25),
linetype=2)

print(p) # “p” is a ggplot object

To flip the axis, use coord_flip()(Figure 4b).

#Figure 4(b)
p + coord_flip()

Observe that all mapped geometries (points, error bars,
and lines) are flipped, and the x and y axes are swapped.

To polish this plot, let us change the size and shape of
points, add a main title and axis label, and sort the lev-
els of the covariate by the magnitude of the relative effect
(Figure 4c).

#Figure 4(c)
ggplot(d4, aes(x=reorder(x,y), y=y)) +
	geom_point(size=3, shape=15)+

	�geom_errorbar(aes(ymin=ylo,
ymax=yhi),width=0.2)+
	�geom_hline(yintercept=1, col=“darkblue”) +
	�geom_hline(yintercept=c(0.8,1.25), line-
type=2) + coord_flip() +
	�labs(title=“Estimated Impact of
    Covariates on CL”,x=“”,y=“Change
    Relative to Reference Value”)

If you want to create a forest plot with a box plot, the same
logic can be applied. Therefore, the R-code looks as shown
below (and save it as “plot3” for later use):

plot3 �<- ggplot(d4, aes(x=reorder(x,y))) +
         �geom_boxplot(aes(ymin=ylo,

lower=ylo, middle=y, upper=yhi,
ymax=yhi), stat=“identity”) +

geom_hline(yintercept=1, col=“darkblue”) +
�geom_hline(yintercept=c(0.8,1.25), line-
type=2) +
coord_flip() +
labs(title=“Estimated Impact on CL”,
    �x=“”,y=“Change Relative to Reference

Value”)

print(plot3)

FACETING

The concept of conditioning plots by the levels of one or more
factors is called faceting in ggplot2. There are two faceting
functions: facet_wrap() and facet_grid(). Both use
a formula to determine the layout, and both share a com-
mon argument scales =, but otherwise, they are separate
entities.
facet_grid() is capable of generating a 2D grid of
graphics panels―by column and/or by row. For example,
facet_grid(.~ group) generates multipanel plots per
level of a factor group by column, but facet_grid(group
~.) will generate plots by row. The dot (.) indicates that no
variable is specified for that side of the formula. By specify-
ing both sides, such as facet_grid(group ~ sex), a
2D grid of multipanel plots by group and by sex will be pro-
duced. In contrast, facet_wrap() reshapes a 1D ribbon
of plots into a 2D arrangement. Instead of a 2D grid of pan-
els associated with the level combinations of two variables,
facet_wrap() creates a string of panels and “wraps”
them into the graphics region like a ribbon, patterned on
how the lattice behaves. You can specify ncol and/or
nrow to control the arrangement of panels. You could write
facet_wrap(~ group, ncol=4)to create a graph with
four panels per row. The default (if you do not specify ncol
or nrow) action is to attempt to lay out the panels as close
to a square as possible. The default action is to start in the
top left corner, moving left to right and then down, start-
ing each new row from the left. The argument as.table
= TRUE controls this ordering. Setting it to FALSE initiates
wrapping from the bottom left corner of the graphics region

www.nature.com/psp

Application of ggplot2 to Pharmacometric Graphics
Ito and Murphy

11

and upward (see Supplementary Material online for the
example code for facet_wrap()).

Here is an illustration to visualize complex clinical data
(e.g., multiple dose levels, different drugs, etc.). You can
choose aesthetic mappings to distinguish behavior among
subgroups in a single graphics region or use faceting to
separate group-wise behavior into multiple subpanels. In
the former case, choose one or more of (fill) color, point
shape, line type, and/or size as aesthetics to map to vari-
ables. A legend is automatically created for each defined
nonpositional mapping.

Data set d5 contains summary information from several
clinical studies (mean response value at each time point,
number of patients for each treatment arm, etc.). To visual-
ize the trend for each drug using smooth lines, map the
color aesthetic to levels of the factor DRGN (drug name)
and use the weight argument to influence the shape of
a locally weighted smooth curve that weights Response
(RESP) with reference to the number of patients (NTRT) in
the data set (Figure 5a).

#Figure 5(a)
ggplot(d5,aes(x=WEEK, y=RESP, colour=DRGN)) +
	� geom_smooth(aes(weight=NTRT), size=1.5) +
	� scale_x_continuous(“Time (week)”,
breaks=c(0,12,24,52))+

	� scale_y_continuous(“Response”,
breaks=c(-6,-4,-2,0,2,4,6,8))

Instead of using color to differentiate each drug group, we can
use facet_grid() to create multiple panels, one per group.
This would be useful for visualizing the data by taking observa-
tion weights into account. For example, in Figure 5b, with mean
values taken from the literature (summary data), the sizes of
the data points represents their “weight”—i.e., greater size of
the point represents more patients in the arm of the study mak-
ing up the data point. This type of display is easily created with
geom_point() using the size argument in aes (Figure 5b).

#Figure 5(b)
p �<- ggplot(d5, aes(x=WEEK, y=RESP)) +

geom_point(aes(size=NTRT), shape=1,
 alpha=0.4) +
geom_smooth(aes(weight=NTRT)) +
scale_x_continuous(“Time (week)”,
 breaks=c(0,12,24,52))+
scale_y_continuous(“Response”,
 �breaks=c(-6,-4,-2,0,2,4,6,8)) +

facet_grid(.~DRGN)

p + theme(legend.position=“none”)

facet_grid()uses common (same range) scales in all
plots by default, but one can produce different ranges for
each plot by using scales=“free”. To limit this freedom
to one direction, one can specify “free_x” or “free_y”.
ggplot2 supports an additional argument, space=“free”,
to adjust the width or height of each panel in proportion to
the maximum extent of the x and/or y scales; the free_x
and free_y options also apply here. For example, in
Figure 7, in the “Miscellaneous” section, the EMCI group
(early mild cognitive impairment) only has data up to 24
months; therefore, this plot only takes one-third of the

space of the width of the normal elderly (NL) group (where
data is available up to 72 months).

ANNOTATION

Annotation refers to textual or graphical embellishments of a
ggplot object, including such things as text labels, fitted equa-
tions, P values, tables, pictures, or inset graphics. It is pos-
sible to tailor annotations on a facet-by-facet basis with a bit
of extra work.

The primary way to add text data to a ggplot is through
geom_text. Its basic syntax is as follows:

�geom_text(data, aes(x, y, label), size,
     hjust, vjust, ...)

The x and y arguments define the locations where the
centers of text strings are located, and label designates
the variable name associated with the text strings. The argu-
ments outside aes() correspond to the (constant) size of
the text string along with its horizontal and vertical justifica-
tions relative to its location. If any of these are mapped to a
variable, then they should be placed inside aes().

It is often the case that only a few text strings are desired
in a graph (e.g., outlier identification); therefore, a common
practice is to create an external data frame that contains
(at least) variables corresponding to the (x, y) locations and
labels. If the strings are to be distributed among facets, then
you should include a variable with the same name as the
faceting variable. This data frame can then be passed into the
geom_text() call as its data = argument. If the variable
names are not the same as those of corresponding aesthet-
ics in the ggplot() call, then they need to be defined as
aesthetics in geom_text().

To illustrate this, let us create a WRES (weighted residu-
als) vs. PRED (predicted) plot using a data set “d6a.” First,
create a scatter plot using geom_point(), and then add
a layer of horizontal lines using geom_hline() as follows:

p �<- ggplot(data=d6a, aes(x=PRED, y=WRES)) +
      geom_point(shape=1) +

	      �geom_hline(yintercept = 0,
color=“red”) +

	      ��eom_hline(yintercept = c(-
5,5),linetype = 2)

Next, create a separate data frame (subset of “d6a”),
which only contains outlier subjects:

outlier <- d6a[abs(d6a$WRES)> 5,]

Add a layer to p using geom_text() with outlier as
the input data frame. Use label=ID to place the subject ID
(identity) numbers in the plot along with the x and y loca-
tions inside aes(), which could be omitted because these
are the same as in the original ggplot() call. Note also that
vjust (vertical justification) is used to adjust the location of
the labels (Figure 6a).

#Figure 6(a)
p �+ geom_text(data=outlier, aes(x=PRED,

y=WRES, label=ID) ,vjust=1, size=3,
color=“red”)

CPT: Pharmacometrics & Systems Pharmacology

Application of ggplot2 to Pharmacometric Graphics
Ito and Murphy

12

�#saved for later use (section “Multiple
Plots on One Page”)
�plot4 <- p + geom_text(data=outlier,
   aes(x=PRED, y=WRES, label=ID), vjust=1,
   size=3, colour=“red”)

In contrast, the annotate() function is typically used
to add single features to a ggplot object such as a single
text string, a rectangle, a segment, or any geom that can be
defined in terms of a vector. No mapping is allowed in an
annotate() call. Assuming you have already a plot saved
in an object “p”, an example usage is:

#add text “hello”
�p + �annotate(“text”, x=20, y=7, label=

“hello”, col=“red”, size=12) +
�
�#add arrow (requires the grid package to
be loaded for unit())
�p �+ �annotate(“segment”, x=20, y=5,

xend=48, yend=7,col=“red”, size=2,
�arrow = arrow(angle=30,
length=unit(0.2, “in”)))

#add shaded area
p� + �annotate(“rect”, xmin=25, xmax=30,

ymin=-Inf, ymax=Inf,
fill=“blue”, alpha=0.2)

PLOT IN PLOT (annotation_custom)

In more recent versions of ggplot2 (v-0.9.0 or later), a func-
tion called annotation_custom() was introduced to allow
insertion of an image (graph, table, or other graphical object
of interest) into a plot.

Assume that we want to create a pharmacokinetic concen-
tration profile plot from a data set named “d6b” and add
a log-scale version of the same plot in a corner. The code
below illustrates how to create such plots step by step.

Step 1: Create the initial plot (normal scale) and save it as
an object p1:

p1 �<- ggplot(d6b, aes(x=TIME, y=CONC,
   group=ID)) + geom_line() +
   � labs(x=“Time (hr)”, y=“Concentration

(ng/mL)”)

Step 2: Create a semilog plot as the second plot and save
it as p2:

p2 <- p1 +
�scale_y_log10(“log - Concentration
(ng/mL)” ,
 breaks = c(1,10,30,100,300))

Step 3: To add this plot as a image into the first plot, “read”
the plot information using ggplotGrob(). This requires
loading the grid and gridExtra packages.

library(grid)
library(gridExtra)

g �<- ggplotGrob(p2) #image information is
saved as “g”

We can now insert the second plot into the first with anno-
tation_custom() by specifying its bounding box locations
xmin, xmax, ymin, and ymax (Figure 6b):

#Figure 6(b)
p1 + annotation_custom(grob = g,
xmin = 20, xmax = 48, ymin = 300, ymax = 640)

You can also insert pictures, maps, or a (raster) image into
a plot. See more details in Section 4 of the ggplot2-0.9.0 tran-
sition guide8 or the online help.

MISCELLANEOUS TOPICS
ggplot2 vs. other R graphics
There are four primary ways of creating a graph in R: (i) tra-
ditional (base) graphics, (ii) grid graphics (iii) lattice, and
(iv) ggplot2. Each has its own strengths and weaknesses, but
once you get over the learning curve, ggplot2 has a lot of ele-
gance and power. Traditional (base) graphics are easy to start
with and very flexible, but when it comes to creating more com-
plex plots, the code quickly becomes cumbersome. By contrast,
both lattice and ggplot2 are programmed in the grid graphics
system developed by Paul Murrell through the grid package.4
Both are designed to be more user-friendly when plotting mul-
tivariate data, which means that certain design decisions are
hard coded; however, each package has its own philosophy
of how to produce a graphic. The most noticeable difference is
that the code to produce a lattice graphic is contained in a sin-
gle-function call, whereas in a ggplot2 graphic, several function
calls are strung together, separated by a “+” operator. Both
packages have a set of core functions that perform the bulk of
the work (panel functions in lattice; stats and geoms in ggplot2).
Panel functions are typically called within a high-level lattice
function (e.g., xyplot, histogram), whereas geoms and
stats are added to an existing ggplot object. Moreover, each
package is an implementation of a particular theory of graph-
ics: lattice was originally a port of the Trellis graphics system9
in S-PLUS to R by Deepayan Sarkar, whereas ggplot2 is an
extension of the aforementioned Grammar of Graphics.2 The
biggest advantages of lattice over ggplot2 are as follows: (i)
it has several functions for 3D graphics; (ii) you can write your
own panel functions and pass them into a high-level lattice
function call; (iii) it is faster than ggplot2; and (iv) in conjunction
with the latticeExtra package, one can interactively edit a lattice
object and add (superimpose) two compatible lattice objects
together. However, some advantages of ggplot2 over lattice
include the following:

•	 Panel functions in lattice can be tricky to write, espe-
cially for conditioning plots;

•	 It is much easier to tailor legends in ggplot2 than in
lattice;

•	 Usually, modifying panels in a conditioning plot is much
easier in ggplot2;

•	 ggplot2 accepts different input data frames in different
panels—lattice does not;

•	 ggplot2 gives the user a simpler way to control the non-
data features of a graphic through its theming system;

www.nature.com/psp

Application of ggplot2 to Pharmacometric Graphics
Ito and Murphy

13

•	 The code to produce a ggplot is usually easier to read,
write, and modify than the corresponding lattice code.

Figure 7 shows the differences in plot appearance using
(i) ggplot2, (ii) lattice, and (iii) base graphics when creating a
similar type of conditioning plot. The R code snippets to cre-
ate each plot are shown below.

#--ggplot2 version--#
ggplot(d7a, aes(Month, RESP)) +
geom_jitter(shape=1, alpha=0.2) +
�geom_line(data=d7b, aes(Month, RESP),
col=“red”, size=1.2) +
�facet_grid(.~ group, scale=“free”,
space=“free”) +
�scale_x_continuous(breaks=c
(0,6,12,18,24,36,48,60,72))

#--lattice version--#
library (lattice)
�library (latticeExtra)## re-size panels
           in a trellis object post-hoc

trellis.par.set(plot.symbol = list(pch=1,
col=“black”, alpha=0.2))

lt <- �xyplot(RESP ~ Month|group,
data=d7a, layout=c(4,1),panel =
function(x,y,...){

panel.xyplot(x,y, col=“black”, cex=0.8,
�jitter.x = TRUE, jitter.y = TRUE,
factor=2,...)

panel.loess(x, y, col=“red”, lwd=2,...)
}

�,scales = list(x = list(relation =
“free”,
at=c(0,6,12,18,24,36,48,60,72),

cex=0.7))
   )

resizePanels(ls, w=c(6,2,6,3))

#--base graphics version--#
�par(mfrow=c(1,4), mex=0.7,
mai=c(0.7,0.4,0.3,0.2))
group <- c(“NL”, “EMCI”, “LMCI”, “AD”)
for (i in group){
		 temp1 <- d7a[d7a$group==i,]
		 temp2 <- d7b[d7b$group==i,]
		� plot(jitter(temp1$Month),

jitter(temp1$RESP)
		� ,xlab=“Month”, ylab=“RESP”,

ylim=c(0,18), axes=FALSE)
		� axis(1, at=c(0,6,12,18,24,36,48,

60,72))
		 axis(2)
		 box()
		� lines(temp2$Month, temp2$RESP,

col=“red”, lwd=2)
		 title(i)
		 }

Let us examine the differences and similarities among the
three methods step by step. First, it is easy to use different data
sets in separate layers of a ggplot() call. In this example,

geom_line() uses data=d7b instead of the one from the
base layer (data=d7a). d7b is a summary data frame (see
Supplementary Material online) containing mean values of
RESP by Month; because it contains variables named Month
and RESP, there is no need to modify aes() from the base
layer, although no harm is done by including it. d7b is also used
in the base graphics code with lines() to add mean lines to
the existing plot, and temp2 is a subset of d7b created in each
iteration of the for loop to select the data used to produce
each subplot.

The lattice call can produce average lines internally with
panel_average(); however, panel_smooth() is used
in this example to maintain comparability with the other two
graphs.

The equivalent of panel_average() in lattice is pro-
duced in ggplot2 with the stat_summary() function:

#--replace--#
�geom_line(data=d7b, aes(Month, RESP),
     col=“red”, size=1.2)

#--with--#
�stat_summary(fun.y = mean, geom = “line”,

colour = “red”, size = 1.2)

facet_grid(. ~ z) in ggplot2 is the analogue of the
right-hand side of the conditioning formula (y ~ x | z) in
lattice graphics. Base graphics have no built-in mechanism to
create multipanel plots. Instead, par() or layout() is used
to apportion the graphics region into subregions that accom-
modate multiple plots. for loops or apply family functions can
be used to subset of the data by condition and create each
plot, which are rendered in successive order according to the
plot layout.

The most apparent difference among the three plots is
how ggplot2 allocates space for the individual panels with
a space = argument in a faceted plot, as described in the
Faceting section. The only way one could replicate the
behavior of the ggplot2 graph in Figure 7 with base graphics
would be to (i) carefully define how to allocate the graphics
space for each panel and (ii) write separate graphics code
for each panel. In lattice, you can define such space as a
post processing using resizePanels function in conjunc-
tion with latticeExtra package, however, there is no single
argument in lattice to mimic ggplot2's behavior.

Two other features of Figure 7 are of note: “alpha transpar-
ency” and “jittering.” The alpha aesthetic ranges between zero
(completely transparent) and one (completely opaque). Similar
to jittering, alpha transparency is useful for handling overplot-
ted data, making it easier to see where the majority of points
lie in a scatter plot. lattice also supports alpha transparency,
but it needs to be set with trellis.par.set() and remains
set as long as the trellis device is open (i.e., you need to close
the current graphic device by dev.off() to undo the altered
settings).

MULTIPLE PLOTS ON ONE PAGE

The gridExtra package is a convenient tool for positioning
multiple plots on a page without having to learn the underly-
ing graphics system (grid).

CPT: Pharmacometrics & Systems Pharmacology

Application of ggplot2 to Pharmacometric Graphics
Ito and Murphy

14

Once each plot is saved as a separate R object as shown
in the previous example, it is easy to combine them on one
page using grid.arrange(). We have already created
four plots and saved them as plot1–plot4; you can place
them in one page as follows:

library(gridExtra)

�grid.arrange(plot1, plot2, plot3, plot4,
    ncol=2)

This creates a 2 × 2 plot (Figure 8). You can specify how
many plots you want to display by column or by row using
the ncol or nrow arguments, respectively.

Figure 7 Same plots using ggplot2, lattice, and base graphics. (a) ggplot2, (b) lattice, and (c) base graphics. AD, Alzheimer’s disease; EMCI,
early mild cognitive impairment; LMCI, late mild cognitive impairment; NL, normal elderly; RESP, response.

0

0

5

10

R
E

S
P

15

0

5

10

R
E

S
P

15

NL EMCI

ggplot2

Lattice

Base graphics

LMCI AD

NL EMCI LMCI AD

NL

0

0 18 36

Month

60 0 18 36

Month

60

5

10

R
E

S
P

15

0

0 6 12 18 24

Month

0 6 18 36

Month

5

10

R
E

S
P

15

0

5

10

R
E

S
P

15

0

5

10

R
E

S
P

15

EMCI LMCI AD

6 121824 36 48 60 72 0 6 1218

Month

24 36 48 60 72 0 6 121824 360 6 121824

0 6 121824 0 6 121824

Month

0 6 12182436 48 60 72 36 0 6 121824 3648 60 72

a

b

c

www.nature.com/psp

Application of ggplot2 to Pharmacometric Graphics
Ito and Murphy

15

SAVING PLOTS

A ggplot object is a list composed of data components,
mappings, layers, scales, etc. A ggplot object can be
rendered in a graphics window or device with print().
The user may also save it to disk with ggsave(), a spe-
cial function in ggplot2 that saves the current ggplot. You
can also use the typical R method to save a (gg)plot. For
example,

ggsave(“myplot.pdf”)

is the same as:

pdf(“myplot.pdf”)
print(p) # p is a ggplot object
dev.off()

ggsave() outputs to various formats, such as png,
pdf, etc. Grid graphics objects (including ggplots and trel-
lis objects) need to be wrapped inside a print() state-
ment when a graphics device is open; see R FAQ 7.22 for
details.

Note that each method has different default settings for
width and height. pdf() defaults to 7 inches for width and
height, whereas ggsave() defaults to the dimensions of the
current graphics device. It can be easily modified (set) by
specifying width and height in the function call.

RESOURCES

There are many ggplot2 learning resources available online,
in books, and in commercially available training courses. The
list below provides several examples of material available to
learn ggplot2, from beginner to more advanced levels.

•	 Hadley Wickham’s web page for ggplot2
http://had.co.nz/ggplot2
•	 ggplot2 help documentation

http://docs.ggplot2.org/current/
•	 ggplot2 book “ggplot2: Elegant Graphics for Data Anal-

ysis” by Hadley Wickham
http://amzn.com/0387981403
(all codes are available from the author’s website)
•	 Cookbook for common graphics by Winston Chang10

http://wiki.stdout.org/rcookbook/Graphs/
•	 ggplot2 (0.9.0) transition guide8

http://cloud.github.com/downloads/hadley/ggplots2/
guide-col.pdf

•	 ggplot2 mailing list
http://groups.google.com/group/ggplot2
•	 stackoverflow

http://stackoverflow.com/tags/ggplot2
•	 ggplot2 Wiki

https://github.com/hadley/ggplot2/wiki

Figure 8 Multiple plots (row × column) in one page using grid.arrange (gridExtra package).

Body weight

Age

1.00 1.25

Change relative to reference value

25

−8

−4

0

4

8

W
R

E
S

50 75

PRED

0

0

200

400

C
on

ce
nt

ra
tio

n
(n

g/
m

l)

C
on

ce
nt

ra
tio

n
(m

g/
l)

600
Dose

30

100

300

10 20 30 40 50

Time (h)

0

0

3

6

9

5 10 15 20 25 0 5 10 15 20 25

Time (h)

WT < 70 kg WT ≥ 70 kg

Estimated impact on CL

1.50 1.75

Diabetes

Gender

CYP2D6

Medication

CPT: Pharmacometrics & Systems Pharmacology

Application of ggplot2 to Pharmacometric Graphics
Ito and Murphy

16

•	 lattice to ggplot2 conversion
http://learnr.wordpress.com/?s=lattice

CONCLUSION

ggplot2 combines the advantages of both base and lattice
graphics and is able to create “publication-ready” plots. Con-
ditioning and shared axes are handled automatically, and you
can build up a plot step by step from multiple data sources. It
also implements a sophisticated multidimensional condition-
ing system and a consistent interface to map data to aes-
thetic attributes.

There are many advanced features in ggplot2, which are
not covered in this article because it focuses on the core ele-
ments of ggplot2 with examples from pharmacometrics. Note
that ggplot2 has been rapidly evolving over the past several
years; therefore, refer to the most current help files (http://
docs.ggplot2.org/current/) as the canonical reference.

Conflict of Interest. The authors declared no conflict of
interest.

1.	 Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer, Berlin, 2009).
2.	 Wilkinson, L. The Grammar of Graphics, 2nd edition. (Springer, Berlin, 2005).
3.	 R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation

for Statistical Computing, Vienna, Austria, 2013). <http://www.R-project.org/>.
4.	 Murrell, P. R Graphics, 2nd edition. (Chapman and Hall, Boca Raton, FL, 2011).
5.	 Wickham, H. A layered grammar of graphics. J. Comput. Graph. Stat. 19 (1): 3–28 (2010).
6.	 <http://docs.ggplot2.org/current/guide_legend.html>
7.	 Arnold, J.B. ggthemes: Extra themes, scales and geoms for ggplot. R package version

1.3.3. (2013) <http://CRAN.R-project.org/package=ggthemes>
8.	 <http://cloud.github.com/downloads/hadley/ggplot2/guide-col.pdf>
9.	 Cleveland, W.S. Visualizing Data. (Hobart Press, Hobart, Australia, 1993).
10.	 Chang, W. R Graphics Cookbook. (O’Reilly, Sebastopol, CA, 2013).

CPT: Pharmacometrics & Systems Pharmacology is an
open-access journal published by Nature Publishing

Group. This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivative Works 3.0 License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

Supplementary information accompanies this paper on the CPT: Pharmacometrics & Systems Pharmacology website
(http://www.nature.com/psp)

http://docs.ggplot2.org/current/
http://docs.ggplot2.org/current/
http://www.R-project.org/
http://docs.ggplot2.org/current/guide_legend.html
http://CRAN.R-project.org/package=ggthemes
http://cloud.github.com/downloads/hadley/ggplot2/guide-col.pdf

