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The ggplot2 package, authored by Hadley Wickham,1 is an 
implementation of the theory described in “The Grammar of 
Graphics” by Leland Wilkinson.2 In a nutshell, the grammar 
defines a set of rules by which components of a statisti-
cal graphic are organized, coordinated, and rendered. The 
package is programmed entirely in the R statistical program-
ming environment3 using the grid graphics system,4 extend-
ing Wilkinson’s theory to a “layered” grammar of graphics.5

The grammar implemented in ggplot2 provides an infra-
structure for composing a graphic from multiple elements:

•	 An input data object, usually an R data frame.
•	 Aesthetics (abbreviated “aes”), which refer to visual at-

tributes that affect how data are displayed in a graphic, 
e.g., color, point size, or line type.

•	 Geometric objects (“geoms” for short), such as points, 
lines, polygons, box plots, error bars, etc.

•	 Scale transformations, which map aesthetics to unique 
values of variables, in addition to mathematical trans-
formations to produce positional axes (e.g., logarithms). 
This process entails a conversion from “data units” to 
“graphical units.” The inverse mapping of a scale trans-
formation is rendered in the graphic as a guide, either 
a positional scale or a legend, in the original data units.

•	 Statistical transformations (“stats”), which refer to 
some type of data summarization such as a five-num-
ber summary for a box plot (stat_boxplot) or counts 
of observations by bin (stat_bin). The objective of 
statistical transformation is to supply the inputs neces-
sary to produce a geom; for example, stat_bin sets 
up the data structure necessary for geom_bar and 
geom_histogram. Many stat_functions can be in-
voked directly to generate ggplot layers.

•	 Coordinate transformations (“coord”), which specify 
how a coordinate system is specified in a graphic. The 
default is the Cartesian coordinate system, but several 
others are built in, such as polar coordinates (coord_
polar) or flips of the x and y coordinates (coord_flip).

•	 Faceting or conditioning, which applies the same type 
of graph to each defined subset of the data, usually 
indicated by the unique values of a categorical variable 
or factor.

•	 A theming system, which controls the nondata aspects 
of a statistical graphic, such as the size and font of axis 
labels, legends, and titles or the appearance of the plot 
background.

•	 Annotation, which allows you to add text and/or exter-
nal graphics to a ggplot.

•	 Positional adjustments, such as point jittering to reduce 
overplotting of points or various ways to maneuver bar 
segments associated with different groups in a bar 
chart.

The creation of a ggplot involves a stepwise process that 
takes the defined component pieces, called layers, and coor-
dinates them through a sequence of transformations to pro-
duce the final graph.

In ggplot2, two functions can be used to create a graphic: 
qplot() and ggplot(). The former is shorthand for “quick 
plot” and is particularly useful when you want to create rela-
tively simple graphs. Its original purpose was to provide a 
transition from R base graphics to ggplot2 graphics. For more 
complex graphics, you should use ggplot(), which is the 
function used for all of the examples in this article. The chap-
ter in the ggplot2 book1 corresponding to qplot() is avail-
able on the book’s web page: http://ggplot2.org/book/. Click 
on the link to “Getting started with qplot.”

R version 2.15.3 and ggplot2 version 0.9.3.1 were used 
to create all the plots in this article. It helps if the reader is 
familiar with base and lattice graphics in R, but it is not a 
prerequisite. The R code and data sets to reproduce all plots 
shown in this article can be downloaded online (see Supple-
mentary Material online). Some topics cannot be fully illus-
trated in the text due to space constraints, so the annotated 
code will be supplied in the supplemental materials for you to 
try on your own. A useful companion is the online help pages 
for ggplot2 (http://docs.ggplot2.org/current), which contains 
a series of illustrative examples under each help page.

BASIC SYNTAX IN ggplot2

Two concepts at the core of ggplot2 are essential for its 
flexibility and efficiency: layers and aesthetic mappings. A 
ggplot object is composed of one or more layers, where 
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each layer contains a different graphical object, or grob 
for short.  The ggplot() function defines the base 
layer of a ggplot, indicating the name of the input data 
frame and establishing the association between a certain 
subset of its variables and their corresponding roles in the 
graph.

More specifically, the ggplot() function has two optional 
arguments: (i) data (an input data frame), and (ii) aes, which 
defines the “x” and “y” variables in addition to any other vari-
ables to be associated with specific aesthetics, such as color, 
point shape, or line type. A standard call to define the base 
layer of a ggplot is:

ggplot(data = Data, aes(x, y))

This is sufficient to define a ggplot object, but it does not 
produce any plotted output until at least one layer is added 
that specifies a geometry (geom). For example, to create a 
scatter plot, type:

ggplot(data = Data, aes(x, y)) +
geom_point()

In this case, no argument is supplied to geom_point. 
The required information (data and aesthetic mappings) 
is taken from the default set up in the base layer by the 
ggplot() call.

A powerful feature of ggplot() is that it can use differ-
ent data frames to produce separate layers. For example, 
suppose we have two data frames d1 and d2 with variables 
x1,y1 and x1,y2, respectively, where x1 is common to both 
data frames and y1 and y2 are distinct variables. The follow-
ing code creates two separate scatter plot layers, one from 
each data frame:

ggplot(data = d1, aes(x = x1, y = y1)) +
geom_point() +
geom_point(data = d2, aes(x = x1, y = y2))

Two equivalent ways to code this plot are

ggplot(data = d1, aes(x = x1)) +
geom_point(aes(y = y1)) +
geom_point(data = d2, aes(y = y2))

and

ggplot() +
geom_point(data = d1, aes(x = x1, y = y1)) +
geom_point(data = d2, aes(x = x1, y = y2))

This example illustrates a few important points about 
coding a ggplot graphic:

•	 A base layer can be empty, with the data and aesthetic 
definitions passed to individual geom_ or stat_ lay-
ers, as shown in the last code block above.

•	 The data argument in a ggplot() call must either be 
a data frame or NULL (the latter implicit in the third 
code block above).

•	 Any aesthetic defined in a base layer by ggplot() 
is passed on to all subsequent layers. In the first code 
block above, it is expected that every layer will have an 
x variable named x1 and a y variable named y1, but it 
is possible to override the defaults in a specific layer, as 

shown in the second geom_point call. In the second 
code block, we took advantage of the fact that x1 is 
common to both geom_point calls; therefore, for effi-
ciency, we can define it in the base layer as the default 
x variable and set up separate aes() calls for y in the 
two geom_point layers.

In the same manner, one can sequentially add layers to a 
ggplot, as in the following:

ggplot(Data, aes(x, y)) +
geom_point()+
geom_line() +
geom_smooth()+ ...

HOW IT WORKS

Let us look at a few examples, saving certain technical details 
for later sections. Below is a snapshot of the R code for each 
example in Figure 1. The ggplot() call defines the “data” 
(i.e., data frame) that are to be input and the variable aes-
thetic mappings to be passed to all layers. The “+” operator 
adds layers to the ggplot object and must be at the end of a 
line of code if an additional layer is to be added (see Supple-
mentary Material online for the code).

# Figure 1(a)
ggplot(data=d1, aes(x=AGE, y=CRCL)) +
geom_point() +
geom_smooth(method = “lm”)

# Figure 1(b)
ggplot(d1, aes(x=WT)) +
�geom_histogram(binwidth = 3, color = 
“black”, fill = “white”) +
facet_grid(GEN ~.) +
�geom_vline(data=tabWT, aes(xintercept=WT.
median), linetype=“dashed”, size=2, 
color=“red”)

# Figure 1(c)
ggplot(d1, aes(x= GEN, y=WT)) +
geom_boxplot() +
labs(x = “”, y = “Weight (kg)”) +
�scale_x_discrete(labels=c(“Female”, 
“Male”)) + ggtitle(“Body weight by  
gender”) + 
�theme(axis.text.x = element_
text(angle=90, hjust=1, size=12))

In Figure 1a, geom_point() adds a scatter plot to 
the base layer, followed by a fitted least-squares linear 
regression line in a separate layer with geom_smooth() 
using  method = “lm” as an optional argument (The 
default method for geom_smooth is “loess” if the sample 
size is less than 1,000 and “gam” (from the mgcv package) 
otherwise.).

In Figure 1b, geom_histogram() creates a histo-
gram layer. Because no y aesthetic was defined in the 
base layer, stat_bin is called first to transform WT into 
a set of class  intervals of binwidth 3, with corresponding 
counts  saved in a derived variable ..count.. before 
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the geom is rendered. The output from stat_bin is then  
passed to geom_histogram, yielding a frequency 
histogram.

Arguments exist in each geom function to control 
appearance; in geom_histogram(), these include bin-
width (control the width of each bin), color (color for 
outline of each histogram bar), and fill (fill color for his-
togram). Because these are not defined inside aes(), 
the color and fill aesthetics are set to constant values 
rather than mapped. Pairings of aesthetics with vari-
ables take place  inside an aes() call, which defines a  
mapping between values of aesthetics and values of 
the defined variable. The facet_grid() call creates a  
histogram for each level of GEN (Male = 0, Female = 1) 
in  separate panels. Note that facet_grid(GEN~.)  
creates a panel plot by row, whereas facet_grid(.~ 
GEN) creates a panel plot by column (see “Faceting” 
section).

Finally, geom_vline()adds a new layer consisting 
of a vertical line in each panel, using another data frame 
(data=tabWT) that contains precomputed median values for 
each gender.

> tabWT
   GEN WT.median
1   0         67.7
2   1         80.4

Several more aesthetics are set in this code chunk. To get 
individual lines for each panel of Figure 1b, it is necessary 
for the input data frame to contain a GEN variable so that 
ggplot2 knows which vertical line to associate with each 
panel. Without this information, the default action would be to 
plot both lines in each panel.

In Figure 1c, the x variable GEN is a factor and the y vari-
able WT is numeric. geom_boxplot() produces separate 
box plots of WT for both females and males. The remaining 
code is used to customize the plot by adding a title, changing 
the axis labels, etc.

Next, let us use Theoph (data from an experiment on 
the pharmacokinetics of theophylline) from the nlme pack-
age to illustrate another feature of ggplot2. We often want 
to be able to plot lines for different groups of data without 
mapping a variable to an aesthetic. The group = aesthetic 
in ggplot2 allows you to do this easily. We consider two 

Figure 1  Example plots using ggplot2. (a) Scatter plot adding a layer of a linear regression line. (b) A histogram by gender (using facet_
grid) adding a layer for median value for each panel. (c) A box plot conditioned by gender (using aesthetic mapping) with a customized 
title and x and y labels. (d) A spaghetti plot for Theoph data (nlme package). (e) Add a mean line to the spaghetti plot. (f) A spaghetti plot by 
covariate (body weight category) using facet_grid().
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common examples: (i) spaghetti plots and (ii) plotting a line 
connecting mean values across levels of a factor.

The first example can be coded as follows:

library(nlme)

head(Theoph)
Grouped Data: conc ~ Time | Subject

Subject Wt Dose Time conc
1 1 79.6 4.02 0.00 0.74
2 1 79.6 4.02 0.25 2.84
3 1 79.6 4.02 0.57 6.57
4 1 79.6 4.02 1.12 10.50
5 1 79.6 4.02 2.02 9.66
6 1 79.6 4.02 3.82 8.58

# Figure 1(d)
�ggplot(data=Theoph, aes(x=Time, y=conc,
group=Subject)) + geom_line() + 
�labs(x=“Time (hr)”, y=“Concentration 
(mg/L)”)

This produces separate lines for each level of Subject with-
out having to define an aesthetic.

For case (ii), consider the problem of adding a line that con-
nects the means of each group (note: for this case, we need a 
nominal time postdose (ntpd) to calculate mean values, and the 
R-code to calculate “ntpd” is provided in the Supplementary 
Material online). The default behavior in ggplot2 is to ignore 
a call to geom_line() when the x variable is a factor; to get 
around this, we use the group = 1 aesthetic, which is used 
to plot an overall “average” line across the levels of the factor.

# Figure 1(e)
�p �<- ggplot(data=Theoph, aes(x=Time, 

y=conc, group=Subject)) + 
geom_line() + 
�labs(x=“Time (hr)”, y=“Concentration 
(mg/L)”) +  
stat_summary(fun.y=median, geom=“line”, 
aes(x=ntpd, y=conc, group=1), 
color=“red”, size=1)

print(p) # “p” is a ggplot object

Notice this plot (plot object) is saved as “p” (you can 
name it whatever you like, e.g., plot1, my.plot, etc); we 
will call it “p” in the following code.

Once you have created a plot (plot object) as above, it is 
easy to create a multipanel plot conditioned by a covariate, 
such as DOSE or SEX (see “Faceting” section).

# create a flag for body weight
�Theoph$WT <- ifelse(Theoph$Wt<70, “WT < 
70kg”, “WT >= 70kg”)

# Figure 1(f)
p + facet_grid(.~WT)

Let us save this plot as “plot1” for later use (for “Multiple 
Plots on One Page” section).

plot1 <- p + facet_grid(.~WT)

CORE ELEMENTS of ggplot2

Generating a ggplot graphic entails an ordered sequence 
of transformations from data units to graphical units and back. 

Three types of transformations occur in the process of render-
ing a graph, in the following order: (i) scale transformations, 
which convert from data units to graphical units used by the 
computer; (ii) statistical transformations, which reduce input 
data to a form required by a geom, and (iii) coordinate transfor-
mations, which manipulate the coordinate system of a graph. 
The system underlying ggplot2 enacts a training process that 
coordinates all of the layers and transformations before render-
ing the graphic. The final graph applies inverse transformations 
on positional axes and legends so that the labels are expressed 
in the original data units. Each element of the system described 
below contributes in some way to the training process.

geoms and stats
In ggplot2, geoms are functions that convert transformed 
numeric data to some type of geometric object, such as points, 
lines, bars, or box plots. The functions that transform the input 
data into a form that can be used by geoms are called stats. 
Strictly speaking, stats and geoms are independent of one 
another; however, every geom in ggplot2 has a default stat. 
For example, both geom_bar and geom_histogram use 
stat_bin as their core stat function, whereas geom_con-
tour() has stat_contour() as its default stat. Usually, a 
geom is called to produce a ggplot layer, but it is possible to call 
a stat function directly to perform both the necessary statisti-
cal transformation and the rendering of the geometry through 
the geom = argument of the stat function. Typical usage of a 
stat_ function within a ggplot() call entails some type of 
data reduction, followed by a call to the geom = argument, 
which triggers the visualization. An example of this feature is 
shown in the code that generates Figure 1, but many more 
examples are shown in the online help pages for the stat_ 
* functions of ggplot2 cited in the references.

Mapping and setting aesthetics
To visualize data conditioned by the values of one or more 
grouping variables, e.g., SEX or DOSE, we can (i) associ-
ate (or map) individual values of a grouping variable to cor-
responding values of an aesthetic, such as color, size, or 
shape; or (ii) create separate panels for each value/level of 
a grouping variable, which is covered in the “Faceting” sec-
tion. For illustration, suppose we want to map SEX to color 
(“colour” is used in the example code here following Hadley 
Wickham’s ggplot web page (http://had.co.nz/ggplot2) and 
his book, but “color” works as a substitute for “colour.”); to do 
this, use aes()to define the mapping:

ggplot(Data, aes(x, y, colour = SEX))

This reveals a few more properties of aesthetics in ggplot2 :

•	 Aesthetics fall into two general groups: positional and 
non-positional.

•	 By default, each mapped aesthetic defined inside 
aes() produces a guide to aid interpretation of the 
graph: for positional aesthetics, the guide is a scaled 
axis, whereas for non-positional aesthetics, the default 
guide is typically a legend.

•	 All mappings inside aes() are actually transforma-
tions in the mathematical sense (i.e., 1–1 and onto) so 
that the inverse mappings are uniquely defined.

http://had.co.nz/ggplot2
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In the above example, the default behavior would be to set 
up positional axes for both x and y, and to produce a legend 
for color.

Another important feature of aesthetics is that they can either 
be mapped inside aes()or set outside of aes() inside the call 
to a geom. A mapping uniquely associates values of a variable 
with default values of an aesthetic; by contrast, setting refers to 
assigning a single value to an aesthetic. Here is an illustration 
of the difference between mapping and setting aesthetics:

Data <- data.frame(x1 = 1:12,
				    y1 = 0.5*1:12 + rnorm(12),
				�    drug = rep(factor(c(“A”, 

“B”,“C”)), each=4))

# Figure 2(a)
�ggplot(Data, aes(x = x1, y = y1, size=3, color= 
“darkblue”)) +

geom_point()

Figure 2a maps x1 and y1 to the positional aesthetics x 
and y, and maps “3” and “darkblue” to size and color, respec-
tively, creating two new factors named “3” and “darkblue,” 
each with one level. The first color in the default color pal-
ette is assigned to the points (pink). Because new factors (“3” 
and “darkblue”) are created on the fly and mapped inside the 
ggplot() call (regardless of whether you wanted it or not), 
ggplot() automatically creates legends for size and color, 
as seen in Figure 2a.

To avoid this “feature,” you need to set size and color out-
side of aes() in the layer call:

# Figure 2(b)
ggplot(Data, aes(x=x1,y=y1)) +

geom_point(size=3, color=“darkblue”)

For another example of the difference between map-
ping and setting aesthetics, we can map color to levels of 

a grouping variable for all layers and set size, line type, etc. 
separately in distinct layers:

# Figure 2(c)
ggplot(Data, aes(x=x1, y=y1, color=drug)) +
geom_point(size=3) +
geom_line(size=0.5, linetype=2)

The above code creates Figure 2c. Factor “drug” is mapped 
to color, which assigns the default ordering of colors in ggplot2 
to levels (“A,”, “B,” and “C”) in its defined order. Points and 
lines are drawn accordingly, and a corresponding legend is 
created by default to associate colors with drug names.

GUIDES

In the grammar of graphics, a guide is a graphical object that 
aids in the interpretation of a statistical graphic. There are 
two classes of guides: positional and nonpositional. A posi-
tional guide is an axis, a reference (i) to the range of values 
in a single direction if the variable to which it is mapped is 
continuous or (ii) to the levels of a factor, if discrete. A non-
positional guide is usually a legend, which illustrates the 
relationship between individual values of an aesthetic and its 
corresponding variable values.

Point shape and line type are discrete aesthetics, which 
means that they cannot be mapped to numeric variables 
(must be either factor or character variables). Point size is 
continuous, and therefore, it must be mapped to a numeric 
variable. Color and fill aesthetics, on the contrary, may be 
mapped to either discrete (e.g., “red,” “blue,” etc.) or continu-
ous variables (color gradient). In a legend guide, continuous 
values are discretized into bins whose number can be con-
trolled by the user. To get a smooth range of (fill) colors, a 
color bar guide is available.

The guides() function in ggplot2 allows a user to manipu-
late various aspects of a legend or color bar guide, typically in 

Figure 2  Mapping and setting aesthetics in ggplot2. (a) Variables that are not in the data set are mapped to color and size inside aes, which 
creates new factor variables on the fly and produce a plot with unwanted legends. (b) Correct settings for color and size. (c) Map the levels of 
the “drug” variable to color and set size and line type in separate geom calls.
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conjunction with the guide_legend and guide_colorbar 
functions. The online help page for guide_legend6 has a 
fairly comprehensive set of useful examples that go beyond 
the intended scope of this article.

Positional guides can assume several forms. In scatter 
plots, for example, both positional guides are continuous. 
In the special case of a time-related scatter plot, one of the 
axes (usually horizontal) may represent a date or a date–time 
object. In a strip chart or a Cleveland dot chart, one of the 
axes is discrete, whereas the other is continuous. You may 
want to represent a continuous axis in a suitably transformed 
metric such as a logarithmic or square root scale.

Scale functions
Each mapped aesthetic produces a default guide. Scale 
functions allow a user to control the rendering of a guide, 
whether positional or nonpositional.

The scale functions in ggplot2 have the following common 
arguments:

•	 breaks: the set of values that are used to define the 
tick locations in an axis guide or the unique values of a 
legend guide;

•	 values: the desired values of the aesthetic in a legend 
guide;

•	 labels: the desired set of labels in an axis or legend 
guide.

Other arguments may be present in individual functions to 
handle specific properties of a scale.

Positional axes tend to have the form scale_dir_type, 
e.g., scale_x_discrete, scale_x_date, or scale_y_
continuous (e.g., Figures 5 and 7). Certain scale 
transformations are built in, such as scale_x_sqrt or 
scale_y_log10, but most scale transformations now need 
to be defined through the scales package, which is beyond 
the scope of this article. In a positional axis scale, breaks 
would generally represent the desired locations of tick marks, 
and labels would represent the tick labels to be associated 
with the breaks. For dates or transformed continuous scales, 
manual specification of the labels is a common practice.

Legend-related scale functions are modified through scale 
functions of the form scale_aes_type, such as scale_
fill_gradient, scale_colour_identity, or scale_
shape_manual. The way in which these arguments are 
applied depends somewhat on the type of scale selected. 
For legend guides associated with discrete variables such as 

Figure 3  Controlling appearance and customizing plot. (a) Changing color and shape of points. (b) Adding legend and title, changing 
background.
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factors, breaks typically represent unique values of the vari-
able (e.g., factor levels), values represent the values of the 
aesthetic to be mapped to breaks, and labels represent the 
desired labels in the legend guide. For continuous aesthetics, 
the corresponding scale functions have different sets of argu-
ments, e.g., range substitutes for breaks and/or values.

The aesthetics for which scale functions exist are color, 
fill, shape, size, linetype, and alpha, the last of 
which applies when alpha transparency is mapped to a vari-
able. Two types of scale functions that apply to all aesthetics 
are identity and manual: an identity scale is appropriate 
when the desired values of the aesthetic are defined in the 
input data frame; on the contrary, a manual scale is appro-
priate when you want to customize the breaks, values, 
and/or labels used in a legend. Additional scale types spe-
cific to color and fill aesthetics include brewer, gradient, 
gradient2, gradientn, grey, and hue.

ggplot2 has a predefined set of default values for aesthet-
ics. For example, the first default shape is a closed circle 
(pch=16 in base graphics), the next is a closed triangle 
(pch=17), and so on. A list of values for the primary aes-
thetics is given in Appendix B of the ggplot2 book,1 found at 
http://ggplot2.org/book/appendices.pdf.

We use the data set d3 (which contains mean CONC 
by TIME conditioned by DOSE) to illustrate how to change 
default shapes and colors using scale_functions.

p <- �ggplot(d3, aes(x=TIME, y=CONC, 
shape=DOSE)) +
geom_line() + geom_point(size=3) +
�geom_errorbar(width=.1, 
aes(ymin=CONC-ci, ymax=CONC+ci))

#Figure 3(a)-left panel
print(p)

To change the shape of points:

#Figure 3(a)-middle panel
p + scale_shape_manual(values=c(1,2,7))

Observe that you need to have mapped DOSE to shape 
in the original ggplot() call before using scale_shape_
manual. Note that the defined values in scale_shape_
manual are pch (point character) values from par() in base 
graphics.

Similarly, if you want to change the color for each dose 
(Figure 3a, right panel), the DOSE variable needs to be 
mapped to color in the ggplot() call, e.g.,

p �<- ggplot(d3, aes(x=TIME, y=CONC, 
shape=DOSE, color=DOSE)) +
geom_line() + geom_point(size=3) +
�geom_errorbar(width=.1, aes(ymin=CONC-
ci, ymax=CONC+ci)) +
scale_shape_manual(values=c(1,2,7)) +
�scale_colour_manual(values=c(“black”, 
”red”,”darkblue”))

#Figure 3(a)-right panel
print(p)

Because the same variable is mapped to both shape and 
color, the scales are merged if they have the same title, 
breaks, and labels.

THEMES

The theming system in ggplot2 controls the nondata aspects 
of a ggplot, primarily its general appearance. The system was 
overhauled in version 0.9.2 of the package so that it now sup-
ports relative sizing and inheritance of theme elements.

The key concept in the theming system is the theme, or 
more precisely, theme function. Every ggplot is controlled by 
a theme function that controls the general appearance of a 

Figure 4  Coordinate system (coord_flip). (a) First attempt to create a forest plot before swapping the x and y axes. (b) Flip a plot using 
coord_flip(). (c) Reorder the variable based on the relative effect and add a title, axis labels, etc. to polish a plot.
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ggplot. The default is theme_grey, which produces a light 
gray background with white gridlines. There are several rea-
sons1 why it was selected as the default theme: (i) the white 
gridlines aid in the judgment of position but have little visual 
impact and can easily be “tuned out”; (ii) the gray background 
gives the plot a similar color (in a typographical sense) as 
the remainder of the text, ensuring that the graphics fit in 
with the flow of the text without standing out over a bright 
white background; (iii) the gray background creates a con-
tinuous field of color, which ensures that the plot is perceived 
as a single visual entity. The default theme function can be 
changed globally either in an R session with theme_set() 

or within a ggplot() call by invoking the desired theme 
function. We will consider the latter in this section.

A theme function is composed of theme elements, which 
are individual nondata components of a graphic, such as 
axis.text, axis.ticks, legend.key, legend.
position, and panel.background. To alter specific 
theme elements in a ggplot() call, we use the theme() 
function. Each argument of theme() is a pairing of a spe-
cific theme element with a function call that modifies one or 
more properties of the theme element. There are four ele-
ment functions: element_text(), element_rect(), 
element_line(), and element_blank(). Most theme 

Figure 6  Annotations in plots. (a) Add text (labels) layer for outlier points; (b) new annotation function annotation_custom(): insert an 
image (semilog scale plot) into the original plot (normal scale).
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elements are associated with one of the first three ele-
ment_*() functions; element_blank() sets all properties 
associated with a theme element to NULL.

You can specify/change the position of the legends as 
shown below (Figure 3b, left panel):

#Figure 3(b)-left
p + theme(legend.position=“top”)

You can also specify the x and y location as proportions of 
the graphics page (not the graphics region) and add a title 
using ggtitle (Figure 3b, middle panel):

#Figure 3(b)-middle
p + theme(legend.position=c(0.8,0.8)) +
ggtitle(“pharmacokinetic Profile of Drug X”)

�#save this plot for later use (section 
“Multiple Plots on One Page”)
plot2 <- p + theme(legend.position=c(0.8,0.8))

To remove the gridlines:

p + theme(panel.grid.minor=element_blank(),
panel.grid.major=element_blank())

To change the background color:

�p �+ theme(panel.background = element_
rect(fill = “#003DF5”))

In the new system, there are 38 theme elements, some 
of which are nested within others. The three primary theme 
elements are text, line, and rect, and most (but not all) 
elements are associated with these. Theme elements con-
tain one or more properties arranged in a list structure. The 
default values are typically defined in the primary elements, 
and changes are defined as needed in the nested elements. 
To see what a complete theme function looks like in the new 
theming system, type theme_grey() at the R prompt. A 
complete list of available arguments and definitions of theme 
elements can be found in the online help pages (http://docs.
ggplot2.org/current/theme.html).

Several theme elements are associated with measure-
ment units, defined in terms of the unit() function from 
the grid package. These elements can be modified directly, 
but the grid package needs to be loaded first or an error 
is thrown. Some examples include axis.ticks.length, 
plot.margin, and legend.key.size. For example,

theme(axis.ticks.length = unit(0.1, “in”))

ggplot2 also natively supports two additional built-in theme 
functions: theme_bw() and theme_classic(). All of the 
graphs produced thus far in this article have used theme_
grey; theme_bw is a slight variation that replaces the 
gray panel background with a white one, whereas theme_ 
classic is designed to mimic a base graphics plot. A 
number of other theme functions for use in ggplot2 can be 
accessed from the ggthemes package authored by Jeff 
Arnold.7 Below is an example that replaces the default theme 
function with theme_classic() (Figure 3b, right panel):

#Figure 3(b)-right panel
p + theme_classic() +
theme �(legend.position=c(0.8,0.8),  

�legend.key = element_rect(fill=NA, 
color=NA))+ 

�ggtitle(“pharmacokinetic Profile of  
           Drug X”)

AXIS AND MAIN TITLES

ggplot2 lets you define titles in several ways. The simplest 
method is to use separate functions to define x, y, and main 
titles: xlab(), ylab(), and ggtitle(), respectively. Each 
takes a character string as its sole argument. A more gen-
eral labeling function is labs(), which lets you define not 
only x, y, and title but also the text of legend titles named 
by aesthetic, e.g.,

labs(x = �“Type”, y = “Concentration”, title =  
“Main title”, colour = “Gender”, 
linetype = “Method”)

This provides a cleaner mechanism for titling in ggplot2 
and is recommended when you want to specify several titles 
for axes, legends, and/or main titles.

POSITIONAL ADJUSTMENTS

Positional adjustments are used to overcome two types of 
problems that occur in the process of rendering graphics: 
overplotting of points at the same or nearby locations and 
arrangement of a collection of graphical objects, particularly 
in the case of bar charts. In the former case, a common rem-
edy is to jitter points, which is implemented by either geom_
jitter() or by use of the position_jitter() function 
within geom_point(). Other positional adjustments include 
stack, dodge, fill, and identity. In the case of a bar 
chart with multiple groups associated with a fill aesthetic, any 
one of these can be taken as the value of the position = 
argument. The default, stack, produces a vertically stacked 
bar chart; dodge produces side-by-side bar charts, fill is a 
special case of stack where, in each group, the sum of the 
bar values is 100%, and identity stacks bars according 
to the ordering of the levels of the stacking variable.

Two examples of jittering points in ggplot2 are shown in the 
code chunk below:

�ggplot(subset(d7a, group == “AD”), aes(x =  
     Month, y = RESP)) + geom_jitter()

�ggplot(subset(d7a, group == “AD”), aes(x =  
   �  Month, y = RESP)) + geom_point(position 

= position_jitter(width = 0.5))

COORDINATE SYSTEMS

ggplot2 contains six functions that specify or modify coor-
dinate systems in two-dimensional (2D) plots: Cartesian 
(coord_cartesian, default), equal-scale Cartesian coor-
dinates (coord_equal), interchange of x and y Cartesian 

http://docs.ggplot2.org/current/theme.html
http://docs.ggplot2.org/current/theme.html
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coordinates (coord_flip), transformed Cartesian coordi-
nates (coord_trans), map projections (coord_map), and 
polar coordinates (coord_polar).

For example, suppose we want to ascertain the relative 
impact of covariates on certain parameters such as clearance 
(CL) in population pharmacokinetic analysis and the relative 
effects (magnitude) on area under the concentration–time 
curve or the peak plasma concentration (Cmax) with concomi-
tant medications such as Cytochrome P450 3A4 (CYP3A4) 
inhibitors. In these situations, a forest plot (also known as 
a tornado plot) is helpful as a visual guide to interpret the 
results. We can create one easily using coord_flip().

Assume that we have a data set “d4” as shown below, 
where x is the name of a covariate in the population pharma-
cokinetic analysis, y is the estimated relative change from its 
reference value, and ylo and yhi are the 2.5th and 97.5th 
percentiles of a bootstrap confidence interval.

>d4
x y ylo yhi

1 age 0.942 0.899 1.020
2 body weight 1.442 1.220 1.752
3 gender 1.123 1.059 1.197
4 CYP2D6 0.995 0.867 1.123
5 medication 0.981 0.940 1.025
6 diabetes 1.064 1.011 1.117

We start by creating an error bar plot and use geom_
hline() to add reference lines (horizontal line) at 0.8, 1.0, 
and 1.25 to visualize a range of 80–125% (Figure 4a). In 
this example, we assign the output of the call on the right 
to an object “p”, which is of class gg and ggplot; it is 
common practice to assign the output of a ggplot()call 
to an object and add layers to it (with optional intermediate 
assignments):

#Figure 4(a)
p �<- ggplot(d4, aes(x=x, y=y)) + 

geom_point() +
	� geom_errorbar(aes(ymin=ylo, 
ymax=yhi),width=0.2) +

	� geom_hline(yintercept=1, col=“darkblue”) 
+geom_hline(yintercept=c(0.8,1.25), 
linetype=2)

print(p) # “p” is a ggplot object

To flip the axis, use coord_flip()(Figure 4b).

#Figure 4(b)
p + coord_flip()

Observe that all mapped geometries (points, error bars, 
and lines) are flipped, and the x and y axes are swapped.

To polish this plot, let us change the size and shape of 
points, add a main title and axis label, and sort the lev-
els of the covariate by the magnitude of the relative effect 
(Figure 4c).

#Figure 4(c)
ggplot(d4, aes(x=reorder(x,y), y=y)) +
	geom_point(size=3, shape=15)+

	�geom_errorbar(aes(ymin=ylo, 
ymax=yhi),width=0.2)+
	�geom_hline(yintercept=1, col=“darkblue”) +
	�geom_hline(yintercept=c(0.8,1.25), line-
type=2) + coord_flip() +
	�labs(title=“Estimated Impact of  
    Covariates on CL”,x=“”,y=“Change  
    Relative to Reference Value”)

If you want to create a forest plot with a box plot, the same 
logic can be applied. Therefore, the R-code looks as shown 
below (and save it as “plot3” for later use):

plot3 �<- ggplot(d4, aes(x=reorder(x,y))) +
         �geom_boxplot(aes(ymin=ylo, 

lower=ylo, middle=y, upper=yhi, 
ymax=yhi), stat=“identity”) +

geom_hline(yintercept=1, col=“darkblue”) +
�geom_hline(yintercept=c(0.8,1.25), line-
type=2) +
coord_flip() +
labs(title=“Estimated Impact on CL”,
    �x=“”,y=“Change Relative to Reference 

Value”)

print(plot3)

FACETING

The concept of conditioning plots by the levels of one or more 
factors is called faceting in ggplot2. There are two faceting 
functions: facet_wrap() and facet_grid(). Both use 
a formula to determine the layout, and both share a com-
mon argument scales =, but otherwise, they are separate 
entities.
facet_grid() is capable of generating a 2D grid of 
graphics panels―by column and/or by row. For example, 
facet_grid(.~ group) generates multipanel plots per 
level of a factor group by column, but facet_grid(group 
~.) will generate plots by row. The dot (.) indicates that no 
variable is specified for that side of the formula. By specify-
ing both sides, such as facet_grid(group ~ sex), a 
2D grid of multipanel plots by group and by sex will be pro-
duced. In contrast, facet_wrap() reshapes a 1D ribbon 
of plots into a 2D arrangement. Instead of a 2D grid of pan-
els associated with the level combinations of two variables, 
facet_wrap() creates a string of panels and “wraps” 
them into  the graphics region like a ribbon, patterned on 
how the lattice behaves. You can specify ncol and/or 
nrow to control the arrangement of panels. You could write 
facet_wrap(~ group, ncol=4)to create a graph with 
four panels per row. The default (if you do not specify ncol 
or nrow) action is to attempt to lay out the panels as close 
to a square as possible. The default action is to start in the 
top left corner, moving left to right and then down, start-
ing each new row from the left. The argument as.table 
= TRUE controls this ordering. Setting it to FALSE initiates 
wrapping from the bottom left corner of the graphics region 
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and upward (see Supplementary Material online for the 
example code for facet_wrap()).

Here is an illustration to visualize complex clinical data 
(e.g., multiple dose levels, different drugs, etc.). You can 
choose aesthetic mappings to distinguish behavior among 
subgroups in a single graphics region or use faceting to 
separate group-wise behavior into multiple subpanels. In 
the former case, choose one or more of (fill) color, point 
shape, line type, and/or size as aesthetics to map to vari-
ables. A legend is automatically created for each defined 
nonpositional mapping.

Data set d5 contains summary information from several 
clinical studies (mean response value at each time point, 
number of patients for each treatment arm, etc.). To visual-
ize the trend for each drug using smooth lines, map the 
color aesthetic to levels of the factor DRGN (drug name) 
and use the weight argument to influence the shape of 
a locally weighted smooth curve that weights Response 
(RESP) with reference to the number of patients (NTRT) in 
the data set (Figure 5a).

#Figure 5(a)
ggplot(d5,aes(x=WEEK, y=RESP, colour=DRGN)) +
	� geom_smooth(aes(weight=NTRT), size=1.5) +
	� scale_x_continuous(“Time (week)”, 
breaks=c(0,12,24,52))+

	� scale_y_continuous(“Response”, 
breaks=c(-6,-4,-2,0,2,4,6,8))

Instead of using color to differentiate each drug group, we can 
use facet_grid() to create multiple panels, one per group. 
This would be useful for visualizing the data by taking observa-
tion weights into account. For example, in Figure 5b, with mean 
values taken from the literature (summary data), the sizes of 
the data points represents their “weight”—i.e., greater size of 
the point represents more patients in the arm of the study mak-
ing up the data point. This type of display is easily created with 
geom_point() using the size argument in aes (Figure 5b).

#Figure 5(b)
p �<- ggplot(d5, aes(x=WEEK, y=RESP)) + 

geom_point(aes(size=NTRT), shape=1, 
  alpha=0.4) + 
geom_smooth(aes(weight=NTRT)) + 
scale_x_continuous(“Time (week)”,    
  breaks=c(0,12,24,52))+ 
scale_y_continuous(“Response”,    
  �breaks=c(-6,-4,-2,0,2,4,6,8)) + 

facet_grid(.~DRGN)

p + theme(legend.position=“none”)

facet_grid()uses common (same range) scales in all 
plots by default, but one can produce different ranges for 
each plot by using scales=“free”. To limit this freedom 
to one direction, one can specify “free_x” or “free_y”. 
ggplot2 supports an additional argument, space=“free”, 
to adjust the width or height of each panel in proportion to 
the maximum extent of the x and/or y scales; the free_x 
and free_y options also apply here. For example, in 
Figure 7, in the “Miscellaneous” section, the EMCI group 
(early mild cognitive impairment) only has data up to 24 
months; therefore, this plot only takes one-third of the 

space of the width of the normal elderly (NL) group (where 
data is available up to 72 months).

ANNOTATION

Annotation refers to textual or graphical embellishments of a 
ggplot object, including such things as text labels, fitted equa-
tions, P values, tables, pictures, or inset graphics. It is pos-
sible to tailor annotations on a facet-by-facet basis with a bit 
of extra work.

The primary way to add text data to a ggplot is through 
geom_text. Its basic syntax is as follows:

�geom_text(data, aes(x, y, label), size, 
     hjust, vjust, ...)

The x and y arguments define the locations where the 
centers of text strings are located, and label designates 
the variable name associated with the text strings. The argu-
ments outside aes() correspond to the (constant) size of 
the text string along with its horizontal and vertical justifica-
tions relative to its location. If any of these are mapped to a 
variable, then they should be placed inside aes().

It is often the case that only a few text strings are desired 
in a graph (e.g., outlier identification); therefore, a common 
practice is to create an external data frame that contains 
(at least) variables corresponding to the (x, y) locations and 
labels. If the strings are to be distributed among facets, then 
you should include a variable with the same name as the 
faceting variable. This data frame can then be passed into the 
geom_text() call as its data = argument. If the variable 
names are not the same as those of corresponding aesthet-
ics in the ggplot() call, then they need to be defined as 
aesthetics in geom_text().

To illustrate this, let us create a WRES (weighted residu-
als) vs. PRED (predicted) plot using a data set “d6a.” First, 
create a scatter plot using geom_point(), and then add 
a layer of horizontal lines using geom_hline() as follows:

p �<- ggplot(data=d6a, aes(x=PRED, y=WRES)) +  
      geom_point(shape=1) +

	       �geom_hline(yintercept = 0, 
color=“red”) +

	       ��eom_hline(yintercept = c(-
5,5),linetype = 2)

Next, create a separate data frame (subset of “d6a”), 
which only contains outlier subjects:

outlier <- d6a[abs(d6a$WRES)> 5,]

Add a layer to p using geom_text() with outlier as 
the input data frame. Use label=ID to place the subject ID 
(identity) numbers in the plot along with the x and y loca-
tions inside aes(), which could be omitted because these 
are the same as in the original ggplot() call. Note also that 
vjust (vertical justification) is used to adjust the location of 
the labels (Figure 6a).

#Figure 6(a)
p �+ geom_text(data=outlier, aes(x=PRED, 

y=WRES, label=ID) ,vjust=1, size=3, 
color=“red”)
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�#saved for later use (section “Multiple 
Plots on One Page”) 
�plot4 <- p + geom_text(data=outlier,  
   aes(x=PRED, y=WRES, label=ID), vjust=1,  
   size=3, colour=“red”)

In contrast, the annotate() function is typically used 
to add single features to a ggplot object such as a single 
text string, a rectangle, a segment, or any geom that can be 
defined in terms of a vector. No mapping is allowed in an 
annotate() call. Assuming you have already a plot saved 
in an object “p”, an example usage is:

#add text “hello”
�p + �annotate(“text”, x=20, y=7, label= 

“hello”, col=“red”, size=12) +
�
�#add arrow (requires the grid package to 
be loaded for unit())
�p �+ �annotate(“segment”, x=20, y=5, 

xend=48, yend=7,col=“red”, size=2, 
�arrow = arrow(angle=30, 
length=unit(0.2, “in”)))

#add shaded area
p� + �annotate(“rect”, xmin=25, xmax=30, 

ymin=-Inf, ymax=Inf, 
fill=“blue”, alpha=0.2)

PLOT IN PLOT (annotation_custom)

In more recent versions of ggplot2 (v-0.9.0 or later), a func-
tion called annotation_custom() was introduced to allow 
insertion of an image (graph, table, or other graphical object 
of interest) into a plot.

Assume that we want to create a pharmacokinetic concen-
tration profile plot from a data set named “d6b” and add 
a log-scale version of the same plot in a corner. The code 
below illustrates how to create such plots step by step.

Step 1: Create the initial plot (normal scale) and save it as 
an object p1:

p1 �<- ggplot(d6b, aes(x=TIME, y=CONC, 
    group=ID)) + geom_line() +
   � labs(x=“Time (hr)”, y=“Concentration 

(ng/mL)”)

Step 2: Create a semilog plot as the second plot and save 
it as p2:

p2 <- p1 +
�scale_y_log10(“log - Concentration 
(ng/mL)” ,
 breaks = c(1,10,30,100,300))

Step 3: To add this plot as a image into the first plot, “read” 
the plot information using ggplotGrob(). This requires 
loading the grid and gridExtra packages.

library(grid)
library(gridExtra)

g �<- ggplotGrob(p2) #image information is 
saved as “g”

We can now insert the second plot into the first with anno-
tation_custom() by specifying its bounding box locations 
xmin, xmax, ymin, and ymax (Figure 6b):

#Figure 6(b)
p1 + annotation_custom(grob = g,
xmin = 20, xmax = 48, ymin = 300, ymax = 640)

You can also insert pictures, maps, or a (raster) image into 
a plot. See more details in Section 4 of the ggplot2-0.9.0 tran-
sition guide8 or the online help.

MISCELLANEOUS TOPICS
ggplot2 vs. other R graphics
There are four primary ways of creating a graph in R: (i) tra-
ditional (base) graphics, (ii) grid graphics (iii) lattice, and 
(iv) ggplot2. Each has its own strengths and weaknesses, but 
once you get over the learning curve, ggplot2 has a lot of ele-
gance and power. Traditional (base) graphics are easy to start 
with and very flexible, but when it comes to creating more com-
plex plots, the code quickly becomes cumbersome. By contrast, 
both lattice and ggplot2 are programmed in the grid graphics 
system developed by Paul Murrell through the grid package.4 
Both are designed to be more user-friendly when plotting mul-
tivariate data, which means that certain design decisions are 
hard coded; however, each package has its own philosophy 
of how to produce a graphic. The most noticeable difference is 
that the code to produce a lattice graphic is contained in a sin-
gle-function call, whereas in a ggplot2 graphic, several function 
calls are strung together, separated by a “+” operator. Both 
packages have a set of core functions that perform the bulk of 
the work (panel functions in lattice; stats and geoms in ggplot2). 
Panel functions are typically called within a high-level lattice  
function (e.g., xyplot, histogram), whereas geoms and 
stats are added to an existing ggplot object. Moreover, each 
package is an implementation of a particular theory of graph-
ics: lattice was originally a port of the Trellis graphics system9 
in S-PLUS to R by Deepayan Sarkar, whereas ggplot2 is an 
extension of the aforementioned Grammar of Graphics.2 The 
biggest advantages of  lattice over ggplot2 are as follows: (i) 
it has several functions for 3D graphics; (ii) you can write your 
own panel functions and pass them into a high-level lattice 
function call; (iii) it is faster than ggplot2; and (iv) in conjunction 
with the latticeExtra package, one can interactively edit a lattice 
object and add (superimpose) two compatible lattice objects 
together. However, some advantages of ggplot2 over lattice 
include the following:

•	 Panel functions in lattice can be tricky to write, espe-
cially for conditioning plots;

•	 It is much easier to tailor legends in ggplot2 than in  
lattice;

•	 Usually, modifying panels in a conditioning plot is much 
easier in ggplot2;

•	 ggplot2 accepts different input data frames in different 
panels—lattice does not;

•	 ggplot2 gives the user a simpler way to control the non-
data features of a graphic through its theming system;
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•	 The code to produce a ggplot is usually easier to read, 
write, and modify than the corresponding lattice code.

Figure 7 shows the differences in plot appearance using 
(i) ggplot2, (ii) lattice, and (iii) base graphics when creating a 
similar type of conditioning plot. The R code snippets to cre-
ate each plot are shown below.

#--ggplot2 version--#
ggplot(d7a, aes(Month, RESP)) +
geom_jitter(shape=1, alpha=0.2) +
�geom_line(data=d7b, aes(Month, RESP), 
col=“red”, size=1.2) +
�facet_grid(.~ group, scale=“free”, 
space=“free”) +
�scale_x_continuous(breaks=c 
(0,6,12,18,24,36,48,60,72))

#--lattice version--#
library (lattice)
�library (latticeExtra)## re-size panels  
           in a trellis object post-hoc

trellis.par.set(plot.symbol = list(pch=1, 
col=“black”, alpha=0.2))

lt <- �xyplot(RESP ~ Month|group, 
data=d7a, layout=c(4,1),panel = 
function(x,y,...){

panel.xyplot(x,y, col=“black”, cex=0.8,
�jitter.x = TRUE, jitter.y = TRUE, 
factor=2,...)

panel.loess(x, y, col=“red”, lwd=2,...)
}

�,scales = list(x = list(relation = 
“free”,
at=c(0,6,12,18,24,36,48,60,72),

cex=0.7))
   )

resizePanels(ls, w=c(6,2,6,3))

#--base graphics version--#
�par(mfrow=c(1,4), mex=0.7, 
mai=c(0.7,0.4,0.3,0.2))
group <- c(“NL”, “EMCI”, “LMCI”, “AD”)
for (i in group){
		 temp1 <- d7a[d7a$group==i,]
		 temp2 <- d7b[d7b$group==i,]
		� plot(jitter(temp1$Month), 

jitter(temp1$RESP)
		� ,xlab=“Month”, ylab=“RESP”, 

ylim=c(0,18), axes=FALSE)
		� axis(1, at=c(0,6,12,18,24,36,48, 

60,72))
		 axis(2)
		 box()
		� lines(temp2$Month, temp2$RESP, 

col=“red”, lwd=2)
		 title(i)
		 }

Let us examine the differences and similarities among the 
three methods step by step. First, it is easy to use different data 
sets in separate layers of a ggplot() call. In this example, 

geom_line() uses data=d7b instead of the one from the 
base layer (data=d7a). d7b is a summary data frame (see 
Supplementary Material online) containing mean values of 
RESP by Month; because it contains variables named Month 
and RESP, there is no need to modify aes() from the base 
layer, although no harm is done by including it. d7b is also used 
in the base graphics code with lines() to add mean lines to 
the existing plot, and temp2 is a subset of d7b created in each 
iteration of the for loop to select the data used to produce 
each subplot.

The lattice call can produce average lines internally with 
panel_average(); however, panel_smooth() is used 
in this example to maintain comparability with the other two 
graphs.

The equivalent of panel_average() in lattice is pro-
duced in ggplot2 with the stat_summary() function:

#--replace--#
�geom_line(data=d7b, aes(Month, RESP),  
     col=“red”, size=1.2)

#--with--#
�stat_summary(fun.y = mean, geom = “line”,

colour = “red”, size = 1.2)

facet_grid(. ~ z) in ggplot2 is the analogue of the 
right-hand side of the conditioning formula (y ~ x | z) in 
lattice graphics. Base graphics have no built-in mechanism to 
create multipanel plots. Instead, par() or layout() is used 
to apportion the graphics region into subregions that accom-
modate multiple plots. for loops or apply family functions can 
be used to subset of the data by condition and create each 
plot, which are rendered in successive order according to the 
plot layout.

The most apparent difference among the three plots is 
how ggplot2 allocates space for the individual panels with 
a space = argument in a faceted plot, as described in the 
Faceting section. The only way one could replicate the 
behavior of the ggplot2 graph in Figure 7 with base graphics 
would be to (i) carefully define how to allocate the graphics 
space for each panel and (ii) write separate graphics code 
for each panel. In lattice, you can define such space as a 
post processing using resizePanels function in conjunc-
tion with latticeExtra package, however, there is no single 
argument in lattice to mimic ggplot2's behavior.

Two other features of Figure 7 are of note: “alpha transpar-
ency” and “jittering.” The alpha aesthetic ranges between zero 
(completely transparent) and one (completely opaque). Similar 
to jittering, alpha transparency is useful for handling overplot-
ted data, making it easier to see where the majority of points 
lie in a scatter plot. lattice also supports alpha transparency, 
but it needs to be set with trellis.par.set() and remains 
set as long as the trellis device is open (i.e., you need to close 
the current graphic device by dev.off() to undo the altered 
settings).

MULTIPLE PLOTS ON ONE PAGE

The gridExtra package is a convenient tool for positioning 
multiple plots on a page without having to learn the underly-
ing graphics system (grid).
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Once each plot is saved as a separate R object as shown 
in the previous example, it is easy to combine them on one 
page using grid.arrange(). We have already created 
four plots and saved them as plot1–plot4; you can place 
them in one page as follows:

library(gridExtra)

�grid.arrange(plot1, plot2, plot3, plot4,  
    ncol=2)

This creates a 2 × 2 plot (Figure 8). You can specify how 
many plots you want to display by column or by row using 
the ncol or nrow arguments, respectively.

Figure 7  Same plots using ggplot2, lattice, and base graphics. (a) ggplot2, (b) lattice, and (c) base graphics. AD, Alzheimer’s disease; EMCI, 
early mild cognitive impairment; LMCI, late mild cognitive impairment; NL, normal elderly; RESP, response.
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SAVING PLOTS

A ggplot object is a list composed of data components, 
mappings, layers, scales, etc. A ggplot object can be 
rendered in a graphics window or device with print(). 
The user may also save it to disk with ggsave(), a spe-
cial function in ggplot2 that saves the current ggplot. You 
can also use the typical R method to save a (gg)plot. For 
example,

ggsave(“myplot.pdf”)

is the same as:

pdf(“myplot.pdf”)
print(p) # p is a ggplot object
dev.off()

ggsave() outputs to various formats, such as png, 
pdf, etc. Grid graphics objects (including ggplots and trel-
lis objects) need to be wrapped inside a print() state-
ment when a graphics device is open; see R FAQ 7.22 for 
details.

Note that each method has different default settings for 
width and height. pdf() defaults to 7 inches for width and 
height, whereas ggsave() defaults to the dimensions of the 
current graphics device. It can be easily modified (set) by 
specifying width and height in the function call.

RESOURCES

There are many ggplot2 learning resources available online, 
in books, and in commercially available training courses. The 
list below provides several examples of material available to 
learn ggplot2, from beginner to more advanced levels.

•	 Hadley Wickham’s web page for ggplot2
http://had.co.nz/ggplot2
•	 ggplot2 help documentation

http://docs.ggplot2.org/current/
•	 ggplot2 book “ggplot2: Elegant Graphics for Data Anal-

ysis” by Hadley Wickham
http://amzn.com/0387981403
(all codes are available from the author’s website)
•	 Cookbook for common graphics by Winston Chang10

http://wiki.stdout.org/rcookbook/Graphs/
•	 ggplot2 (0.9.0) transition guide8

http://cloud.github.com/downloads/hadley/ggplots2/
guide-col.pdf

•	 ggplot2 mailing list
http://groups.google.com/group/ggplot2
•	 stackoverflow

http://stackoverflow.com/tags/ggplot2
•	 ggplot2 Wiki

https://github.com/hadley/ggplot2/wiki

Figure 8  Multiple plots (row × column) in one page using grid.arrange (gridExtra package).
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•	  lattice to ggplot2 conversion
http://learnr.wordpress.com/?s=lattice

CONCLUSION

ggplot2 combines the advantages of both base and lattice 
graphics and is able to create “publication-ready” plots. Con-
ditioning and shared axes are handled automatically, and you 
can build up a plot step by step from multiple data sources. It 
also implements a sophisticated multidimensional condition-
ing system and a consistent interface to map data to aes-
thetic attributes.

There are many advanced features in ggplot2, which are 
not covered in this article because it focuses on the core ele-
ments of ggplot2 with examples from pharmacometrics. Note 
that ggplot2 has been rapidly evolving over the past several 
years; therefore, refer to the most current help files (http://
docs.ggplot2.org/current/) as the canonical reference.
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