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Glycated hemoglobin (HbA1c) is a well-established bio-
marker for assessing efficacy of new therapeutic agents for 
diabetes.1–4 It is a good marker of long-term glucose control 
and reflects the integrated mean glucose concentration over 
the past 8–12 weeks.3 HbA1c is thereby a less variable mea-
sure of mean glucose in the clinical trial setting compared 
with daily glucose measurements. Thus, it represents the 
main efficacy biomarker used in diabetes trials.1,2 Compared 
with glucose, accurate evaluation based on HbA1c needs 
longer treatment periods, due to the longer time needed to 
reach steady state. This generally causes late-phase trials to 
have a duration of 12–24 weeks, where 12 weeks may be too 
short to reach steady-state HbA1c and 24 weeks significantly 
increases the time and cost of development. To improve the 
utilization of data from these shorter trials, where HbA1c has 
not always reached a stable level, models of glucose and 
HbA1c homeostasis have been suggested.5–8

One approach for predicting HbA1c utilizes the steady-
state relations between glucose and HbA1c obtained by 
regression techniques. However, this approach is hampered 
by trial-to-trial differences in the glucose–HbA1c relation,9 
leading to a wide range of predicted mean HbA1c values. In 
addition, a clear difference in the glucose–HbA1c regression 
line was seen between the conventional and the intensive 
treatment groups in the Diabetes Control and Complications 
trial,10,11 a finding which we have confirmed using in-house 
data (unpublished data). This inadequacy of classical regres-
sion techniques in predicting HbA1c calls for more advanced 
methods for predicting HbA1c at steady state.

The first models for glucose and HbA1c were developed 
to understand the biochemical reactions and the dynamic 
relationship,12–14 whereas a recent approach in this field 
integrates loss of HbA1c due to erythrocyte turnover and 

chemical degradation.9 Other models integrate the glucose–
HbA1c relationship into a description of drug pharmacokinet-
ics and pharmacodynamics based on clinical data,15 which 
offers a framework for prediction of HbA1c based on clinical 
trial data. A recent attempt in this direction also integrates 
hemoglobin levels into a pharmacokinetics/glucose/HbA1c/
Hb model.5

In this work, we used an approach for predicting HbA1c at 
steady state using the dynamic relation between glucose and 
HbA1c during the first 12 weeks of treatment. The approach 
was validated using clinical trial data (mean plasma glucose 
(MPG) from 24-h profiles and serial measurements of HbA1c) 
for several different treatments of patients with type 2 diabe-
tes. We optimized the model as a tool for end-of-trial HbA1c 
prediction, and we focused on model validation and charac-
terization of the predictive performance. The aim of the study 
was to include only the most dominant factors for explaining 
the glucose–HbA1c relationship. No covariate factors were 
included, thus restricting the model to predict results in simi-
lar patient populations. In this study, we specifically focused 
on the ability to predict the end-of-trial HbA1c in phase III/IV 
trials based on data up to 12 weeks.

RESULTS

Model diagnostics and predictive performance of the final 
structural model (Figure 1) were assessed using data from 
four trials including 2,265 individuals with type 2 diabetes 
(Table 1). For diagnostic purposes, the median and the vari-
ability of model simulations were compared with those of the 
observations within the range of 12 weeks using a visual 
predictive check (VPC) (Figures 2 and 3). For evaluation of 
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predictive performance, data up to 12 weeks were applied 
for prediction of HbA1c at end-of-trial. Neither glucose nor 
HbA1c data after 12 weeks were used when predicting 
HbA1c at end-of-trial. Baseline characteristics of each arm in 
the trials are presented in Table 1.16–19

Structural model for MPG and HbA1c
The structural glucose–HbA1c model uses MPG and HbA1c 
data as dependent variables (Figure 1). MPG was obtained from 
8- to 11-point (24 h) glucose profiles and MPGss, MPGbase, and 
MPGposttreatment were estimated in the model (Table 2). MPGss,  
MPGbase, and MPGposttreatment are parameters defining MPG 
at steady state (before treatment is initialized), MPG at ran-
domization, and MPG after full effect of treatment, respec-
tively. The model is an indirect response model in which MPG 

stimulates the formation rate (kin_HbA1c) of HbA1c. The total 
stimulation of HbA1c production in vivo (kin_HbA1c) is driven by 
MPG + β, where β is a parameter that expresses the inter-
cept between MPG and HbA1c at steady state. Elimination 
of MPG and HbA1c are both represented as first-order pro-
cesses governed by kout_MPG and kout_HbA1c, respectively. The 
development of this model was performed on an extensive 
in-house database with data from different phases of drug 
development of both approved and nonapproved drugs 
under investigation. The selection of the model was based 
on objective function value and predictive performance in 
the form of HbA1c prediction error, assessed by comparing 
the mean of the individual predictions vs. the mean of the 
observations of HbA1c. As a step in the development, the 
predictive performance when using fasting plasma glucose 
(FPG) vs. using MPG was compared, and the mean predic-
tion error was ~0.5 and ~0.4% when using FPG and MPG, 
respectively (details not shown). The parameters reflecting 
glycosylation of hemoglobin (kin_HbA1c and kout_HbA1c) were fixed 
to 0.081% per mmol/l per week and 0.226 per week, respec-
tively. For each trial presented in this article, all parameters, 
except kin_HbA1c and kout_HbA1c, were estimated using a nonlinear 
mixed-effects approach as done for the development of the 
model (Table 2). To assess the impact of keeping kin_HbA1c and  
kout_HbA1c fixed, we re-estimated these, which caused signifi-
cantly worse HbA1c predictions. Furthermore, a sensitivity 
analysis was performed, by changing each of the two param-
eters by ±25%, which resulted in mean HbA1c prediction 
errors across the different arms ranging from 0.1 to 0.3%.

In this article, the predictive performance and validation 
of the model were assessed specifically by estimating the 
model from data up to 12 weeks and evaluating HbA1c pre-
dictions at end-of-trial (week 24–28).

Model validation
The model was applied to four different trials, and VPCs were 
generated for each arm by simulation of MPG and HbA1c, 
respectively (Figures 2 and 3). The VPCs were obtained by 
simulating predictions from the model based on 12-week data 

Table 1   Summary of trials included in validation 

Treatment type Arm Trial and arm—short name N HbA1c at baseline Reference  

Basal insulin Insulin glargine (comparator) Trial1-arm1 259 8.6 16

Basal insulin Insulin detemir Trial1-arm2 248 8.6

Premixed insulin Novo mix Trial2-arm1 99 9.7 17

Basal insulin Insulin glargine (comparator) Trial2-arm2 110 9.8

GLP-1 analog + biguanide + TZD Liraglutide 1.8 mg + metformin + rosiglitazone Trial3-arm1 176 8.6 18

Biguanide + TZD Metformin + rosiglitazone (comparator) Trial3-arm2 159 8.4

GLP-1 analog + biguanide + TZD Liraglutide 1.2 mg + metformin + rosiglitazone Trial3-arm3 170 8.5

GLP-1 analog + biguanide Liraglutide 0.6mg + metformin Trial4-arm1 238 8.4 19 

GLP-1 analog + biguanide Liraglutide 1.8 mg + metformin Trial4-arm2 234 8.3

SU + biguanide Glimeperide + metformin (comparator) Trial4-arm3 232 8.3

Biguanide Metformin Trial4-arm4 116 8.4

GLP-1 analog + biguanide Liraglutide 1.2 mg + metformin Trial4-arm5 224  8.4

The first two trials are insulin trials, whereas the last two are part of the development program of liraglutide (GLP-1 analog).
GLP-1, glucagon-like peptide-1; TZD, thiazolidinedione.

Figure 1   The model is an indirect response model where the 
production of HbA1c is stimulated by mean plasma glucose (MPG) 
through the parameter kin_HbA1c that is fixed to 0.081%/mmol/l 
per week. The model is initialized in steady state, at the time of 
the screening visit, where MPGss is the value for MPG (see Table 2  
for parameter values). MPG is assumed to change during a 
washout/run-in period toward MPGbase typically obtained at the 
baseline visit. MPGposttreatment is the stable glucose value obtained 
after introducing the experimental treatment. kout_MPG is the rate 
constant defining the rate of treatment onset on MPG. The 
parameter kout_HbA1c defines the output rate constant for HbA1c and 
is fixed to 0.226 per week. The present model further introduces 
a parameter β that allows an offset in the linear relationship 
between MPG and HbA1c in steady state. Thus, kin_HbA1c is 
stimulated by MPG + β (see model code in Supplementary 
Material online).

MPG

HbA1c
Kin_HbA1c Kout_HbA1c

Kout_MPG



www.nature.com/psp

Modeling the Relation Between MPG and HbA1c
Møller et al.

3

for each arm, 500 times. Thus, the VPCs present a predictive 
check of the consistency between the model and observed 
data within the range of the data (up to 12 weeks). The VPCs 
performed on the insulin trials (Figure 2) and glucagon-like 
peptide-1 trials (Figure 3) show that both the median and the 
variability of the MPG and HbA1c data were captured well by 
the model simulations.

For evaluation of predictive performance, we evaluated 
the ability of the model to predict mean HbA1c at end-of-trial 
(Table 3) for subjects with an HbA1c assessment at end-of-
trial. The second and third columns in Table 3 present the dif-
ference between the mean of the individual predictions and 
the mean of the individual observations in each arm. Values 
in column 2 were obtained using the model estimated on all 
data, whereas values in column 3 were obtained using the 
model estimated on 12-week data only. Thus, it is expected 
that the values in column 2 are numerically lower than the 
ones in column 3. HbA1c, at end-of-trial, was predicted with 
a mean prediction error of 0.06% (ranging from 0.0 to 0.13%) 
and 0.14% (ranging from 0.01 to 0.24%), when using all data 
(full model) and 12-week data only, respectively. To compare 
the observed vs. predicted variance of HbA1c at end-of-trial, 
variance ratios are presented in columns 4 and 5. The vari-
ance ratio was 0.94 (range: 0.88–0.98) and 0.89 (range: 
0.75–0.96) using the full model and 12-week data, respec-
tively. This indicates a slight underprediction of the variance 
(see Methods for calculation).

For further evaluation of the model, we investigated 
whether conclusions regarding treatment outcome in terms 
of efficacy compared with comparator could be drawn based 
on 12-week data (Figure 4). Calculations of mean ∆HbA1c 
and corresponding confidence intervals for each comparison 
are shown for observations (black dots/lines) and predictions 
based on 12-week data (gray dots/lines). Similar conclusions 

based on predictions of end-of-trial (from 12-weeks data) and 
observed data were obtained for all arms.

DISCUSSION

Our aim was to propose and validate a model for predict-
ing the dynamic relation between glucose and HbA1c within 
a trial of antidiabetic treatment. The predictive performance 
was evaluated by estimating the proposed model on 12-week 
data and predicting end-of-trial (24–28 weeks) HbA1c. The 
model was validated on phase III/IV trials to evaluate predic-
tions of HbA1c at steady state, which are rarely obtained dur-
ing earlier phases of clinical drug development. The model 
was able to predict HbA1c at end-of-trial (24–28 weeks) with 
a mean prediction error of 0.14% ranging from 0.01 to 0.24% 
across the different treatment arms.

FPG has previously been applied as the main driver for 
the glycosylation process;5 and under the development of 
the presented model, we compared the performance using 
FPG and MPG, and MPG was shown to be superior. From 
a prediction point of view, this was in line with our expec-
tations because (i) MPG is derived from more than one 
glucose measurement making it less sensitive to measure-
ment errors compared with FPG and (ii) contrary to MPG, 
FPG may produce bias for trials where changes in HbA1c 
are mainly resulting from changes in postprandial rather 
than fasting glucose. The strong predictive performance 
obtained using MPG observed in our study is further sup-
ported by the higher correlation found between MPG and 
HbA1c compared with other glucose measures such as 
FPG or PPG.20

The number of samples needed to obtain a robust measure 
of MPG can vary depending on the meal sizes, frequency, and 
response of the subjects during the day. A premeal sample and 

Figure 2   Visual predictive checks for mean plasma glucose (MPG) over time (left) and HbA1c (right) of each arm of the insulin studies16,17 
presented in Table 1. The arm numbers are followed from left to right, so left is arm 1 and right arm 2. Further descriptions can be found in 
Table 1. Solid gray (light) line presents median of predictions and shaded area presents 95% confidence interval for predictions as predicted 
without uncertainty in parameter estimates. Median and 95% confidence interval of observations are presented by black dots and whiskers. 
Week 0 corresponds to the week of randomization.
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a postprandial sample at each meal should be sufficient, but 
an additional sample at bedtime is generally recommended, 
and it may be considered to take a sample during the night as 
well. The timing of the measurement of the postprandial glu-
cose is crucial and will be affected by a subject’s response to 
insulin. Postprandial glucose peak time is typically reported to 
be around 1 h for healthy subjects. For type 1 diabetics, lacking 
endogenous insulin secretion, the peak time of glucose after a 
meal will depend on the pharmacokinetics and pharmacody-
namics of the administered exogenous insulin. By contrast, in 
subjects with type 2 diabetes, who typically secrete insulin, a 
delayed postprandial glucose peak time as well as a prolonged 
duration of hyperglycemia after a meal will typically be seen. 
The accuracy of MPG calculation based on a profile with only 
one postprandial sample will thus be highly sensitive to when it 
is taken and sampling at suboptimal time may lead to underes-
timation of both the peak and duration of hyperglycemia.

We found slight differences between trials and individuals 
in both the slope and intercept of the relation between MPG 
and HbA1c at steady state, as shown previously for type 1 
diabetes subjects.10 This led us initially to test models in which 
kin_HbA1c and/or kout_HbA1c were estimated in each arm—but these 
models resulted in significantly worse end-of-trial HbA1c pre-
dictions (from 12-week data) than the final model, in which 
these parameters were fixed. By contrast, per-individual esti-
mation of the intercept (β in the model) provided improved 
predictions, and was thus implemented in the model.

Our study shows accurate prediction of changes in HbA1c 
following initiation of antidiabetic treatment. Investigation of 
these changes required inclusion of pretreatment data, which 
cannot be assumed to be at steady state because of short-
term changes during the run-in/washout period. The inclusion 
of non–steady-state data thus required the use of a dynamic 
model rather than a regression model. Moreover, a flexible 

Figure 3   Visual predictive checks for mean plasma glucose over time (left) and HbA1c (right) in each arm of the glucagon-like peptide-1 
analogue studies18,19 presented in Table 1. The arm numbers are followed from left to right and top to bottom and descriptions are found in 
Table 1. Solid gray (light) line presents median of predictions and shaded area presents 95% confidence interval for predictions as predicted 
without uncertainty in parameter estimates. Median and 95% confidence interval of observations are presented by black dots and whiskers. 
Week 0 corresponds to the week of randomization.
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initialization was required to include pretreatment data. This 
flexible initialization was obtained by estimating the pretreat-
ment glucose at steady state (MPGss), which cannot be veri-
fied by data since sampling of glucose profiles is rarely done 
at screening. Clearly, data with 24-h glucose profiles sampled 
at screening could be valuable to further validate the model 
of MPGss before treatment.

Theoretically, HbA1c at steady state may depend not only 
on the corresponding glucose at steady state but also on the 

patient characteristics. A previous analysis based on con-
tinuous glucose profiles performed by Nathan et al.21 inves-
tigated whether age, sex, diabetes type, race/ethnicity, and 
smoking status affect this relation. No difference in the linear 
relation between the different groups was found. In this analy-
sis, we did not investigate how covariates influence the rela-
tion between glucose and HbA1c.

A major part of the recently published models linking glu-
cose to HbA1c have also taken into account the turnover of 
the red blood cells (RBCs). Three different approaches have 
been considered: (i) a homogenous life-span model,22 (ii) a 
random destruction model,6 and (iii) a transit-compartment 
model, which takes into account variation in life-span of 
RBC.5 A comparison of the models (based on both clinical 
data and direct measures of biotin-labeled RBCs) revealed 
that an extended version of the transit-compartment model 
with 12 compartments was superior for description of RBC 
survival.7 Although the choice of RBC model was shown 
to impact predictions of HbA1c in a clinical trial, our results 
suggest that accurate predictions can still be obtained in a 
population with type 2 diabetes subjects without inclusion of 
difference in RBC life-span.

The presented model differs from previously proposed 
models in the sense that it is a dynamical model that needs 
serial samples of both HbA1c and MPG to provide successful 
predictions of HbA1c at steady state. Potentially, the use of 
more data can improve both the precision and the accuracy of 
predictions compared with a steady-state solution as the one 
derived by Samtani et al.8 or a model using solely MPG val-
ues.7 Clearly, this also leads to longer run times for this model. 
This is a minor issue as the model can estimate and simulate 
trials with >500 patients in around 3–4 h. Therefore, we do 
not consider the implementation of the presented model as a 
potential bottleneck in a drug-development application.

Applications for drug development
Potentially, the presented model has both within-study and 
between-study applications in drug development. Thus, it is 

Table 2  Typical values of parameter estimates and (CV%) from estimation 
performed on 12-week data from each trial 

Parameter 
(unit) Trial 1 Trial 2 Trial 3 Trial 4

kout_MPG (week−1) 0.098 (88) 0.051 (77) 0.19 (62) 0.19 (61)

kin_HbA1c (%/
mmol/l/week)

0.081 (fixed) 0.081 (fixed) 0.081 (fixed) 0.081 (fixed)

kout_HbA1c (week−1) 0.226 (fixed) 0.226 (fixed) 0.226 (fixed) 0.226 (fixed)

β (%/mmol/l) 11.6 (14) 11.1 (16) 11.9 (13) 12.1 (12)

MPGss (mmol/l) 12.5 (17) 15.0 (27) 10.9 (22) 11.0 (18)

MPGbase (mmol/l) 9.31 (25) 16.3 (35) 11.1 (21) 10.9 (22)

MPGposttreatment 
(mmol/l)

7.28 (13) 7.32 (13) 7.31 (22) 8.7 (18)

7.46 (13) 8.04 (13) 9.66 (22) 7.94 (18)

7.49 (22) 8.19 (18)

11.2 (18)

8.07 (18)

Residual error 
MPG (CV%)

13 12 13 13

Residual error 
HbA1c (CV%)

4 4 4 4

SEM (%) was 10–12% for kout_MPG and ~1–3% for other parameters across 
studies. η-shrinkage on kout_MPG ranged from 12 to 63%, whereas η-shrinkage 
on other parameters ranged from 6 to 26%. ε-shrinkage on HbA1c and MPG 
were in the range 32–41 and 8–15%, respectively.
kin_HbA1c, formation rate of HbA1c; kout_HbA1coutput rate constant for HbA1c; 
kout_MPG, rate constant defining the rate of treatment onset on MPG; MPG, mean 
plasma glucose; MPGbase, MPG at randomization; MPGposttreatment, MPG after full 
effect of treatment; MPGss, MPG at steady state (before treatment is initialized).

Table 3  Evaluation of HbA1c predictions at end-of-trial based on full and 12-week data 

Trial and arm—short name

Mean HbA1c (%) deviation Mean HbA1c (%) deviation Variance HbA1c (%) deviation Variance HbA1c(%) deviation

Full model 12-week model Full model 12-week model

Trial1-arm1 −0.01 −0.24 0.94 0.89

Trial1-arm2 0.02 −0.16 0.98 0.94

Trial2-arm1 −0.06 −0.15 0.88 0.81

Trial2-arm2 −0.06 −0.19 0.88 0.75

Trial3-arm1 −0.05 −0.13 0.97 0.89

Trial3-arm2 0.00 −0.02 0.98 0.94

Trial3-arm3 −0.03 −0.04 0.94 0.89

Trial4-arm1 −0.13 −0.22 0.96 0.90

Trial4-arm2 −0.13 −0.22 0.91 0.83

Trial4-arm3 −0.11 −0.13 0.95 0.93

Trial4-arm4 −0.05 −0.01 0.98 0.96

Trial4-arm5 −0.13 −0.18 0.94 0.91

All 0.06 0.14 0.94 0.89

Mean HbA1c (%) deviation calculated as mean of individual predictions subtracted by mean of individual observations. Variance deviation calculated according to 
proportional error model as: var /IPRE mean DV DV( ) + ( )σ σe

2 2⋅ .
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important that the predictive performance is seen in light of 
what is needed from a drug-development perspective. One 
way is to compare with the noninferiority margins of 0.3–
0.4% appearing in the regulatory guidance documents for 
the development of antidiabetic treatments.1,2 Relating our 
results to these criteria, we found the accuracy obtained to 
be within an acceptable range for direct applications in drug 
development.

For drug-development purposes and decision making, it is 
also important to obtain a correct measure of precision. In 
our study, we did not include parameter uncertainty in predic-
tions, which might be a reason for the higher precision in pre-
dictions. Including uncertainty in parameter estimates would 
result in a wider confidence interval, but it is not expected to 
impact the mean of the individual predictions.

Within-study prediction using the presented model could 
support the application of adaptive trial designs. At predefined 
time points, the model can be used for HbA1c prediction, and 
decisions could be made, for e.g., to change dosing, if a dose 
level is predicted to be inferior. Such a design would, com-
pared with a traditional parallel design, optimize the efficacy 
information. Furthermore, in such a design, it would be pos-
sible to maintain some patients on treatment for a long dura-
tion and thereby increase the safety information from the trial.

Moreover, in dose-finding trials where HbA1c cannot 
always be assumed to reach steady state, the ability to pre-
dict steady-state outcome based on early data would allow 
improved estimation of the dose–response curve and thus 
provides a basis for improved dose selection in phase III tri-
als. Furthermore, the use of a longitudinal modeling approach 
as applied here would ensure that individuals with long/short 
treatment duration will accurately support parameter estima-
tion, thus supporting the improved estimation of complete 
response in the studied population.

In this article, we have evaluated how the presented model 
can be used to predict within-study HbA1c using phase III/IV 
data. This enabled us to directly compare end-of-study pre-
dictions and observations. A future application of the model 
is to predict HbA1c across trials, for e.g., by predicting the 
outcome of phase III trial based on shorter phase II data.

In conclusion, we have presented and evaluated a model 
describing the dynamic relation between MPG and HbA1c fol-
lowing various antidiabetic treatments. The model predicted 
HbA1c at end-of-trial (24–28 weeks) based on 12-week data 
with high accuracy (0.01 to 0.24% prediction error in HbA1c 
in each arm) and can thus be used as a framework to support 
trial designs within late-stage drug development in the area 
of diabetes.

METHODS

Trial design and patients. Three phase III trials and one 
phase IV trial from a clinical database of already approved 
pharmaceuticals16–19 were used for the validation of the model. 
The trials were required to include glucose profile and HbA1c 
sampling at least three times up to end-of-trial, which depen-
dent on trial was delivered at 24, 26, or 28 weeks. MPG val-
ues were obtained from glucose profiles sampled 8–11 times 
during the day, using AUC0–24 h / 24 h or using an interpola-
tion of the relationship with FPG, as described below. Only 
trials with HbA1c sampling at baseline were included. The 
selected trials included treatment arms with oral antidiabetic 
drugs, glucagon-like peptide-1, and insulin—all administered 
to subjects with type 2 diabetes (Table 1). Only completers 
were included in the analysis set. All studies were conducted 
in accordance with the ethical principles in the Declaration of 
Helsinki.

Nonlinear mixed-effects model. Model development was per-
formed using nonlinear mixed-effects modeling. The software 
NONMEM (version 7.1.2 by ICON Development Solutions, Ell-
icott City, MD)23 with the first-order conditional estimation and 
the ADVAN13 (linear/nonlinear kinetics) subroutine was used. 
The programs PsN and Xpose were used to assess VPCs.24 
From each model, 500 data sets were simulated using final 
model parameters and the original data sets. The data were 
evaluated by graphical comparisons between the model pre-
dicted and the observed median and 95% prediction interval.

Comparison of competing models using the objective func-
tion values in likelihood ratio tests guided the model develop-
ment; however, predictive performance evaluation similar to 
those shown in this study was the primary tool used for model 
selection. Development was based on data originating from 
a large database of in-house clinical data consisting of both 
approved and nonapproved pharmaceuticals. This resulted in 
the structural model, linking MPG and HbA1c as presented in 
Figure 1 (see Supplementary Material online for model code).

MPGss, MPGbase, MPGposttreatment, kout_MPG, and β are treat-
ment- or trial-dependent parameters that were estimated for 
each individual, using a log-normal interindividual variability 
model, where the covariance matrix for the log-transformed 
parameters was block diagonal with a 2 by 2 block for MPGbase 
and MPGposttreatment and a 2 by 2 block for MPGss and β. Cor-
relation between MPGss and β is thought to originate from the 

Figure 4   Overview of prediction performance in each arm. Abscissa 
presents the percentage change in HbA1c (∆HbA1c) following 24–28 
weeks of treatment compared with main comparator (see description 
in Table 1). Each line presents 95% confidence interval for treatment 
effect vs. comparator calculated from observations (black) and 
predictions from 12 weeks (gray). Dots present mean difference in 
∆HbA1c between comparator and the specific arm.
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inclusion criteria, thus subjects with low MPGss and low β may 
be excluded due to low HbA1c, which may introduce a cor-
relation. A proportional residual error model was used for both 
MPG and HbA1c.

For most trials, FPG was measured more frequently than 
MPG, e.g., to facilitate titration of insulin doses. Thus, it was 
judged reasonable to utilize these FPG data to more precisely 
estimate the time course of glucose changes. To convert FPG 
into MPG, we used a linear relationship between individual 
FPG and MPG values. This relationship is, however, expected 
to be treatment and trial dependent, and will thus change from 
baseline to end-of-trial. To mitigate this error, any FPG value 
recorded at time points where no 8- to 11-point profiles were 
taken was transformed into two MPG values, one originating 
from the time point of the most recent profile and the other from 
the time point of the next coming profile. The MPG value pre-
dicted from the observed FPG value at the relevant time point 
was then obtained by linear interpolation of these two values.

Diagnostics and evaluation of predictive performance. For 
diagnostic purposes, we evaluated the final model by VPCs 
expressing median and variability of individual model-based 
simulations of MPG and HbA1c for each arm in each of the 
trials (Figures 2 and 3). To measure predictive performance, 
we evaluated the ability of the model to predict HbA1c at 
end-of-trial (24–28 weeks) using 12-week data. Therefore, 
for each individual, HbA1c was predicted from baseline up 
to 24–28 weeks dependent on the length of the specific trial 
using MPG and HbA1c samples up to 12 weeks.

The measure for predictive performance was calculated as 
the mean prediction error of the individual predicted minus 
observed HbA1c at end-of-trial for each arm. The variance of 
the predictions vs. the observations at end-of-trial was evalu-
ated by assessing a variance ratio calculated as follows:

var IPRE mean DV DV( ) + ( )σ σe
2 2⋅ / ,

where IPRE is the individual prediction and DV the observed 
value. These measures are presented in Table 3.

To also check whether the model could predict the outcome 
of each trial, the change in HbA1c was evaluated against 
comparator based on both predictions and observations 
(Figure 4). Confidence intervals and mean values for model 
predictions and observations were based on calculations of 
changes against comparator using individual predictions and 
measurements, respectively.
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