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Genes with common profiles of the presence and absence in disparate genomes tend to function in
the same pathway. By mapping all human genes into about 1000 clusters of genes with similar
patterns of conservation across eukaryotic phylogeny, we determined that sets of genes associated
with particular diseases have similar phylogenetic profiles. By focusing on those human
phylogenetic gene clusters that significantly overlap some of the thousands of human gene sets
defined by their coexpression or annotation to pathways or other molecular attributes, we reveal the
evolutionary map that connects molecular pathways and human diseases. The other genes in the
phylogenetic clusters enriched for particular known disease genes or molecular pathways identify
candidate genes for roles in those same disorders and pathways. Focusing on proteins coevolved
with the microphthalmia-associated transcription factor (MITF), we identified the Notch pathway
suppressor of hairless (RBP-Jk/SuH) transcription factor, and showed that RBP-Jk functions as an
MITF cofactor.
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Introduction

The hundreds of eukaryotic genomes now sequenced allow the
tracking of the evolution of human genes, and the analysis of
patterns of their conservation across eukaryotic clades.
Phylogenetic profiling describes the relative sequence conser-
vation or divergence of orthologous proteins across a set of
reference genomes. Proteins that functionally interact in
common pathways or in protein complexes can show similar
patterns of relaxation of conservation in phylogenetic clades
that no longer require that complex, pathway, or function, or
conversely show similar levels of relative conservation in
organisms that continue to utilize those functions. Phylogenetic
profiling has been used to predict gene functions (Eisen and
Wu, 2002; Enault et al, 2004; Jiang, 2008), protein–protein
interactions (Sun et al, 2005; Kim and Subramaniam, 2006),
protein subcellular location (Marcotte et al, 2000; Pagliarini
et al, 2008), cellular organelle location (Avidor-Reiss et al, 2004;
Hodges et al, 2012), and gene annotation (Merchant et al, 2007).

A number of improvements to phylogenetic profiling
have increased its sensitivity and selectivity (Ruano-Rubio
et al, 2009; Pellegrini, 2012). A modified phylogenetic

profiling method that uses a continuous measure of relative
conservation in each species revealed many new components
of the Caenorhabditis elegans RNAi machinery (Tabach et al,
2013). Because of the primacy of human health in the
biomedical enterprise and in primary research, the sum total
of genetic and biochemical annotation for the human genome
is much larger than that of C. elegans. Furthermore, because so
many genome-scale gene expression experiments are done in
human cell lines, many of which are tumor derived, there are
thousands of gene sets defined by coexpression under a wide
range of conditions available using the human genome as a
reference. We therefore used the continuous-scale phyloge-
netic profiling method to map human genes into coevolved
clusters. Our goal was to use this evolutionary mapping of
human genes to systematically identify uncharacterized
disease and pathway genes while revealing connections
between different diseases and biological function groups. To
establish the phylogenetic profile of every human protein-
coding gene, we surveyed 86 disparate eukaryotic genome
sequences, from animals, fungi, plants, and protists, and
generated a continuous scale for conservation that is also
normalized for evolutionary distance between each species.
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On the basis of this phylogenetic profile, we sorted 19 017
human proteins into clades of conservation and divergence in
the other 85 genome sequences.

The phylogenetic profile revealed many gene clusters already
known to function in pathways. To globally study the
significance of patterns of coevolution in different classes of
functional gene groups, we analyzed 46600 gene sets, ranging
in size from 3 to 200 genes, collected in the Molecular
Signatures Databases (MSigDB) (Subramanian et al, 2005).
These gene sets include genes that are significantly changed in
expression in tumors (Brentani et al, 2003; Segal et al, 2004;
Subramanian et al, 2005), gene coexpressed under similar
conditions, genes that bear similar transcriptional or miRNA
regulatory sequences (Xie et al, 2005; Matys et al, 2006), or
genes annotated to function in similar processes based on the
pathway and ontology databases such as GO (Ashburner et al,
2000), KEGG (Ogata et al, 1999), REACTOME (Matthews et al,
2009), and BIOCARTA. We found that for 20% of these 6600
functional groups, the genes that constitute them have a
significant overlap with the gene sets defined only by having
similar phylogenetic patterns of conservation and divergence.
Importantly, particular clusters of coevolved genes were
frequently associated with several functional groups, including
groups with no obvious overlap, defined for example by
coexpression under some condition and common GO terms. In
this way, the phylogenetic profile gene set could be used as a
signal-to-noise filter to help discern molecular function from for
example coexpression or other molecular signatures.

Because the clustering of human genes based on their
phylogenetic profiles overlapped so significantly with the
annotation in the MSigDB, we sought to discern similar
statistically significant overlap with a Mendelian genetics
database, on the assumption that genes that mutate cause a
similar phenotype are expected to act in the same pathway and
are therefore likely to show the similar patterns of phylo-
genetic conservation and divergence. We therefore asked
whether the genes so far implicated in any particular disease
have more similar phylogenetic profiles than would be
expected of genes selected at random. We could ask this
question for any one disease or we could ask it for all diseases
in parallel. Our analysis of the phylogenetic clustering of the
current set of thousands of genes so far implicated in a wide
range of diseases revealed 4100 disease classifications that
contain multiple genes that are significantly correlated with
each other in the phylogenetic profile clusters.

To generalize the phylogenetic analysis of human genes and
intersect this analysis with the similar intersection with
molecular signature gene clusters, we developed an alternative
clustering protocol that first classified human genes into 1076
coevolved clusters of 3–193 genes bearing similar patterns of
conservation or divergence across 86 disparate species. We
then detected statistically significant overlap between these
coevolved clusters and groups of human disease genes bearing
the same Human Phenotype Ontology (HPO) terms. Many of
the human phylogenetic profile clusters included an over-
representation of annotated disease genes for particular
diseases. Diseases with associated genes that overlapped
phylogenetic gene clusters with the highest statistical signi
ficance included mitochondrial diseases, molybdoenzymes,
heme biogenesis, or genes associated with cell migration and

adhesion. Interestingly, we found that wide range of diseases
intersected the phylogenetic profiles. The human genes we
delineate here that phylogenetically cluster with the subset of
human disease genes identified to date constitute prime
candidate genes in which to expect mutations as more humans
with various diseases are sequenced.

In parallel, we tested the overlap between each of the 1076
human phylogenetic clusters and the 6600 molecular signa-
tures gene clusters and found that 20% of the molecular
signatures clusters showed highly significant overlap with
phylogenetic profile clusters. In many cases, the same
phylogenetic profile cluster overlapped both human genetic
disease gene clusters and molecular signature clusters,
strongly informing the molecular pathway that is aberrant in
these human genetic diseases.

The human phylogenetic profiles could also be used to
query particular genes implicated in one particular disease or
pathway for candidate other loci to act in the same pathway.
For genes implicated in melanoma, we experimentally tested
one of the genes that clusters with a transcription factor
implicated in progression of melanoma, microphthalmia-
associated transcription factor (MITF). The transcription
regulator RBP-Jk (SuH) had a phylogenetic profile very similar
to that of MITF. The predicted function of RBP-Jk in the MITF
pathways was validated by demonstration of a protein–protein
interaction between RBP-Jk and MITF and by experiments
showing the requirement for RBP-Jk in MITF transcriptional
regulatory activity. Similarly phylogenetic profiling revealed a
meiosis-specific chromatin localization for the previously
uncharacterized gene ccdc105. Thus, phylogenetic profiling
provides a high-resolution view of the evolutionary interplay
of human genes and identifies candidate genes involved in
signaling pathways and human disease.

Results

Normalized phylogenetic profiling

To systematically identify new human disease genes, we
adapted our method of normalized phylogenetic profile (NPP)
analysis, previously employed to study the small RNA path-
ways in C. elegans (Tabach et al, 2013), to study human genes.
We used data from 86 high-quality fully sequenced eukaryotic
genomes from animal, plant, fungal, and protist phyla. The use
of many species increased the statistical power and variance
between the conservation of genes in these many genomes;
most importantly, this reduced noise due to accidental missed
annotation of a gene sequence in one genome sequence (see
Materials and methods). To improve the sensitivity for the
identification of coevolved proteins, we used a continuous
scale of similarity between proteins (Enault et al, 2003; Tabach
et al, 2013) that significantly improved the performance in
prokaryotes (Enault et al, 2003) compared with a binary
method. Normalized phylogenetic profiling uses a continuous
scale of conservation that detects even small evolutionary
changes by taking into account the evolutionary distances
between the organisms and the protein lengths. For example,
while sequence similarity of 40% between a human protein
and its mouse ortholog may be relatively poor conservation, a
very few protist proteins (o600) have 40% similarity to their
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human orthologs. For each human protein, we calculated the
normalized protein BLAST (Blastp) bit score between the
human query protein and the most similar protein in each
organism (Figure 1A). The result is a human-centered NPP that
represents a matrix of the gene products of 19 017 genes and
how they are conserved or diverge across the genome
sequences of 86 species (Supplementary Table S1). For
example, in the heat map of conservation scores (Figure 1A),
there are about 2000 H. sapiens proteins that are conserved in
all animals but not in fungi, plants, or protists. Other H.
sapiens proteins are conserved in some fungi but not in others.
Members of the same protein families tend to exhibit similar
patterns of phylogenetic conservation and therefore tend to
cluster together in the hierarchical clustering, an almost trivial
result for members of gene families. In many cases, however,
genes in phylogenetic clusters have no homology to other

genes in that cluster; only their pattern of conservation in some
genomes and divergence in other genomes is correlated,
indicating that they are probably comaintained by selection in
some genomes and under less stringent selection is some
genomes. The change in relative selection on particular
proteins or particular domains of proteins is likely to result
from the specializations of organisms to particular ecological
niches, where certain pathways are no longer required and can
now diverge.

The ability of phylogenetic profiling to cluster proteins
based on the function is demonstrated by the clustering of
proteins known from previous biochemical or genetic analysis
to function in pathways. For example, the phylogenetic profile
matrix clustered many of the TCA cycle genes (Figure 1B), with
the loss of the TCA cycle genes in some protists is the hallmark
of this phylogenetic cluster (Alberts et al, 2002; Munnich,
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Figure 1 Phylogenetic profiles. (A) Phylogenetic profiles of 19 017 human genes across 86 eukaryotic genomes. The matrix was normalized by the evolutionary
distances between organisms and the protein length and clustered using average linkage. The entry values are between 0 and 1 where 1 (dark blue) represents 100%
identity and 0 (white) corresponds to no detectable homolog. (B) Phylogenetic profile of TCA cycle genes. The specific core profile (green rectangles) is defined mainly by
genes lost across three protists: C. parvum, G. intestinalis, and E. histolytica. The detailed analysis of the phylogenetic profile predicts more subtle functions as well. For
example, IDH1 and IDH3 function at the same step in the cycle (Supplementary Figure S1), but the gene with the core profile, IDH1, functions more centrally. A less
conserved gene, IDH3, has a tissue-specific function. (C) Phylogenetic profile of genes (red box) that include the descriptor respiratory paralysis (HP:0002203).
Mutations in these genes cause defects in heme biogenesis and porphyria disorders. Mutations in five other genes with a similar phylogenetic profile (pink box) cause
porphyria or coproporphyria. Ten more genes (gray box) with similar phylogenetic profiles are predicted to mediate heme biogenesis and to cause porphyria-like
symptoms when defective. (D) Phylogenetic profile of genes associated with urinary xanthine stone and sulfite oxidase deficiency HPO classifications (red and pink
boxes) in addition to 18 genes with similar phylogenetic profiles (gray box). Of these 18 genes, MOSC2 and MOSC1 were recently identified as a new family of
molybdenum enzymes. AOX1 is associated with xanthine urinary stones although a function was not assigned by the HPO database. Mutations in the HGD gene cause
alkaptonuria disease. (E) Conservation pattern of the human genes MITF and RBP-Jk in 86 organisms. The scores are between 0 and 1, with 1 representing 100%
identity and 0 corresponding to no detectable homolog.

Phylogenetic mapping of disease-pathway proteins
Y Tabach et al

& 2013 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2013 3



2008). About 80% (18/23) of the TCA cycle genes are
conserved in most eukaryotes (Supplementary Figure S1, blue
circled genes) but are lost in the protists C. parvum,
G. intestinalis, and E. histolytica (Figure 1B). These protists
lack mitochondria, the cellular organelle that mediates aerobic
metabolism, but have mitosomes, organelles that are probably
degenerate mitochondria (Tovar et al, 2003). Other genes
that share the same profile but are not annotated be TCA
cycle genes are known to interact with the TCA cycle
(Supplementary Figure S2). As expected, most of these
proteins, such as ATP synthase, cytochromes, and pyruvate
dehydrogenase, are energy metabolism genes. Other genes
that map to this phylogenetic cluster but are not annotated to
be metabolic genes may nevertheless directly interact with the
TCA cycle and mitochondria. For example, the multivesicular
body sorting proteins CHMP4C and CHMP4B have a very
similar phylogenetic profile to the TCA cycle genes. These
endosomal proteins may mediate mitophagy, which may no
longer operate in the protists with vestigial mitosomes. Thus,
the TCA cycle phylogenetic profile example shows that
phylogenetic profile analysis clusters genes that are already
known to function together and identifies new factors that may
be associated with this function.

Different classes of functional gene groups have
distinct coevolution patterns

The TCA cycle is an extreme example of a well-studied, highly
annotated molecular pathway that overlaps significantly with
the phylogenetic profile classification of human genes. To
systematically query the overlap between our phylogenetic
profiling of human genes and many other analyses of human
molecular pathways, we tested for significant overlap between
the groups of 3–200 genes assigned to 6600 MSigDB
(Subramanian et al, 2005) gene sets and the phylogenetic
profile clusters defined by our analysis. MSigDB gene sets come
from various sources including GO (Ashburner et al, 2000),
REACTOME (Matthews et al, 2009), BIOCARTA, and KEGG
(Ogata et al, 1999) pathway databases. In addition, they include
groups of genes coexpressed under different conditions as well
as microarray-derived sets of genes differentially expressed in
cancers (Brentani et al, 2003; Segal et al, 2004; Subramanian
et al, 2005) and genes sets that share promoter (Matys et al,
2006) or 30UTR miRNA motifs (Xie et al, 2005). While some of
the molecular signature gene sets correspond to GO/KEGG term
annotation, with comparable levels of biochemical and genetic
research distilled into the gene sets, other gene sets are much
more provisional clustering of functions, for example, genes
that are coexpressed under the same perturbation or genes
bearing the same cis-regulatory sequence. For those gene sets
that might include secondary responses or entries such as
particular transcription factor or miRNA binding sites that
might have true targets present in a haze of false targets, we
expected to see less significant overlap with our phylogenetic
profile gene compared with the well-curated gene sets.

To determine whether the multiple genes assigned to a
specific MSigDB classification are significantly coevolved, we
developed metrics for quantifying the statistical significance of
the coevolution pattern in a set of genes. We calculated

coevolution scores for the genes assigned to each MSigDB
group, termed Co10 (see Materials and methods). Briefly, we
defined for each gene the 10 non-homologous genes that are
most phylogenetically correlated with it (the 10 nearest
neighbors when correlating phylogenetic conservation across
86 genomes compared). Then for a group of genes in an
MSigDB classification, we counted the number of times these
genes were found in each other’s 10 nearest neighbors in the
phylogenetic profile (Figure 2A, blue x’s). The P-value was
estimated by performing the same operation on 1000 000
random groups (Figure 2A, red and brown dots). The Co10
scoring system scores significantly any MSigDB gene group
with a substantial fraction of its member genes having similar
phylogenetic profiles. For the NPP with 86 organisms, 340 out
of 6600 MSigDB gene groups had Co10 scores higher than
those of the 1000 000 random sets of the same size
(P-valueso10� 6), and 1277 sets had q-values of 0.05 (see
Materials and methods), implying an upper boundary of 5%
false positives (q-values are the name given to the adjusted
P-values found using an optimized false discovery rate (FDR)
approach). As expected, different MSigDB categories con-
tained different percentages of significantly coevolved groups
(Table I; Supplementary Table S2). For example from the KEGG
pathway subcategory, 20% of the KEGG groups have multiple
members that are significantly coevolved. It is noteworthy for
example that among the top 25 KEGG subgroups that cluster
phylogenetically are intensively studied signaling pathways
such as the MAP kinase Wnt, VEGF, and cytokine as well as
biochemical pathways such as porphyrin biosynthesis
(Supplementary Table S2). Interestingly, we also found many
coregulated gene sets to be significantly coevolved. For
example, a significant fraction of the 251 genes with FOXC1
(forkhead box C1) binding sites in their promoter regions are
coevolved. Mutations in FOXC1 cause various glaucoma
phenotypes including primary congenital glaucoma, auto-
somal dominant iridogoniodysgenesis anomaly, and Axenfeld-
Rieger anomaly. In addition, coevolved gene sets contain
binding sites for AP4 or the uncharacterized promoter
sequences SMTTTTGT, TTTNNANAGCYR, or WTTGKCTG
(Supplementary Table S2). Finally, the target genes of several
microRNAs, for example, mir-218, mir-524, and mir-30 family
are also significantly coevolved. Thus even though co-
expressed genes or genes that are regulated by the same
microRNA are less likely to have similar phylogenetic profiles
since expression patterns differ substantially among even
closely related primate species (Khaitovich et al, 2006), we can
easily see that the genes bearing this cis-regulatory sites show
a significant phylogenetic clustering. These results suggest
that coevolved genes tend to gain additional and new
regulation by gaining promoter and microRNA sites.

Many other gene sets (480%) did not significantly overlap
with the phylogenetic profiles of human genes. These gene sets
may include many genes that act in multiple gene pathways,
essentially obscuring the phylogenetic profile signatures, or
may correspond to gene groupings that do not correspond to
actual molecular pathways. For example, among gene sets that
barely registered in this analysis, in the sub-category
‘positional gene sets’, which maps genes based on the
chromosomal location, there were only two significant
(P-valueo10� 6) phylogenetically clustered gene sets, o1%
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of the total number of groups in this sub-category. The most
two significant sets contain 450 keratin proteins, several
chemokine, and Schlafen family members on chr17q12. And
chromosomal band, chr6p22, is enriched with histones and
olfactory receptors.

Thus, phylogenetic profiling can be used to shift through
thousands of molecular signature gene groupings to discern

those gene sets that may correspond to pathways and to
highlight the particular genes in any molecular signature group
that have the strongest phylogenetic profile signatures. To
examine the impact of the number of species included in the
phylogenetic profile on the power to detect overlap with
MSigDB, we repeated the analysis with genome sequences
of 86 disparate species (the full set, Figure 2A), and groups of

Figure 2 Coevolution scores (Co10) and q-values for MSigDB gene sets. (A–E) Scatter plots of the Co10 scores (y axis) and the number of genes (x axis) in each
classification of the MSigDB sets (blue x’s) were calculated using normalized phylogenetic profiling (NPP) with 86, 64, 43, and 22 organisms. Binary phylogenetic profiles
were calculated with 86 organisms. The blue x’s represent the Co10 scores of human gene sets from MSigDB, which includes KEGG-annotated sets such as MAP
kinase signaling-annotated genes or ribosomal-annotated genes. The dots represent the distribution of Co10 scores associated with 100 000 randomly generated gene
sets derived from randomized MsigDB gene lists. The color scale of the dots represents the number of random groups found at that position (red—one random group to
purple when 410 random groups with the same size have the same Co10 score). The white lines represent the average of the random data (bold line) and 1–4 standard
divisions from the average. (F) The q-value distribution of the MSigDB sets obtained using NPP with 86, 64, 43, and 22 organisms and BPP with 86 organisms.

Table I Number and percentage of significant coevolved MSigDB groups in different methods

Collections Subcollections No. of
groups

q-valueso0.05 P-valueo10� 6

NPP (86
organisms)

NPP (64
organisms)

NPP (43
organisms)

NPP (22
organisms)

BPP (86
organisms)

NPP (86
organisms)

NPP (64
organisms)

NPP (43
organisms)

NPP (22
organisms)

BPP (86
organisms)

C1: positional
gene sets

Positional gene sets 320 10 3% 9 3% 6 2% 4 1% 4 1% 2 1% 3 1% 1 0% 1 0% 0 0%

C2: curated
gene sets

Chemical and genetic
perturbations

2365 250 11% 208 9% 193 8% 159 7% 33 1% 47 2% 40 2% 43 2% 34 1% 9 0%

BioCarta 217 41 19% 34 16% 27 12% 7 3% 8 4% 2 1% 3 1% 3 1% 1 0% 3 1%
KEGG 186 98 53% 93 50% 85 46% 61 33% 22 12% 38 20% 34 18% 31 17% 24 13% 6 3%
REACTOME 430 163 38% 159 37% 154 36% 110 26% 58 13% 67 16% 71 17% 60 14% 63 15% 23 5%

C3: motif gene sets MicroRNA targets 219 54 25% 41 19% 43 20% 20 9% 0 0% 4 2% 5 2% 1 0% 1 0% 0 0%
Transcription factor targets 584 143 24% 135 23% 89 15% 54 9% 5 1% 6 1% 6 1% 2 0% 4 1% 0 0%

C4: computational
gene sets

Cancer modules 443 81 18% 77 17% 71 16% 76 17% 33 7% 25 6% 23 5% 23 5% 27 6% 8 2%

Cancer gene
neighborhoods

427 149 35% 132 31% 141 33% 108 25% 22 5% 48 11% 46 11% 51 12% 48 11% 9 2%

C5: GO gene sets GO biological process 793 136 17% 121 15% 100 13% 64 8% 42 5% 38 5% 28 4% 30 4% 16 2% 7 1%
GO cellular component 215 50 23% 41 19% 43 20% 40 19% 9 4% 18 8% 18 8% 19 9% 8 4% 3 1%
GO molecular function 395 102 26% 99 25% 93 24% 70 18% 38 10% 45 11% 37 9% 40 10% 21 5% 8 2%
Total 6594 1277 19% 1149 17% 1045 16% 773 12% 274 4% 340 5% 314 5% 304 5% 248 4% 76 1%
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64 species (Figure 2B), 43 species (Figure 2C), and 22 species
(Figure 2D). A small but consistent difference of at least 10%
more significant molecular signature groups with overlap of
phylogenetic profiles detected favored the use of data from
all 86 organisms (Table I). In addition, inclusion of more
organisms in phylogenetic clustering improved the ability to
separate functional gene groups from random sets of genes as
reflected by the improved P-values when more organisms are
used for the phylogenetic profiling (Figure 2F). Although we
did not systematically compare the NPPs with other methods,
Enault et al (2003) showed that normalizing the phylogenetic
profiles in prokaryotes increases the number of Ecocyc
enzymes identified as being evolutionarily related by about
25% compared with the binary (absent/present) form of
phylogenetic profiling. Even more importantly, while our
analysis identified that 20% of the GO groups are significantly
coevolved, several studies have claimed that mouse or
human phylogenetic profiling does not create functionally
cohesive clusters and was informative for only a small
fraction of GO terms (Loganantharaj and Atwi, 2007; Ko and
Lee, 2009; Ruano-Rubio et al, 2009). To demonstrate the
difference between binary and normalized phylogenetic
profiling approaches, (see Materials and methods) we
repeated the analysis using the binary method of phylo-
genetic profiling with the same 86 organisms (Figure 2E).
Using the normalized phylogenetic profiling method, we
found 4.5 times more functional groups that are significantly
coevolved than using the binary method (Table I). The use of
NPPs reduced the variance dramatically in the random
grouped Co10 scores compared with the binary method
(Figure 2A–E, red dots). In fact, the difference between the
methods is so significant that normalized phylogenetic
profiling performs significantly better with only 25% of the
organisms than binary profiling using the full set of organism
comparisons (Figure 2F).

Phylogenetic profile analysis of genes sets with
similar disease phenotypes

Phylogenetic profile analysis has previously been a powerful
tool for the study of human Bardet-Biedl syndrome (Mykytyn
et al, 2004) and mitochondrial diseases (Pagliarini et al, 2008).
Just as phylogenetic profiling could detect significant overlap
with about 20% of the molecular signatures gene groups, we
sought to detect a similar fraction of the smaller set of genes
annotated at present to be variant in human genetic diseases.
Even though only a subset of human disease loci have been
identified at this intermediate stage in human genetic analysis,
we expected to detect similar phylogenetic profiles for the
known genes for any disorder for which multiple genes have
been implicated. For many human gene variants, including
many that have been assigned to specific genetic loci, a suite of
symptoms are associated with descriptors such as ‘ataxia’ or
‘alveolar cell carcinoma-associated’ in various data sources.
Such descriptors have been systematized in the HPO database
(Robinson and Mundlos, 2010). The different HPO groups
include genes that cause similar symptoms or phenotypic
manifestations as characterized by the curated data from the
OMIM (On Mendelian Inheritance in Man) database, or OMIM.

For example, 215 human genes have the descriptor ‘ataxia’
associated with them in the HPO database. In a specific
example, missense and deletion mutations in the inositol
1,4,5-triphosphate receptor (ITPR1) are the cause of spinocer-
ebellar ataxia 15, and the OMIN/HPO file for ITPR1 uses the
word ataxia 12 times. Thus, ITPR1 is one of the 215 genes
associated with the HPO ataxia term.

To identify the HPO groups that contain a significant fraction
of human genes with similar phylogenetic profiles, we
calculated the Co10 scores, P-values, and q-values for each
HPO group that contains between 3 and 500 genes, similarly to
as described for the MSigDB analysis. As in the analysis of the
MSigDB data, use of all 86 organisms and the normalized
phylogenetic profiling method detected the most significant
overlap between HPO groups and phylogenetic profiles (data
not shown).

Our analysis revealed 156 out of 3413 HPO classifications
(Figure 3, see Supplementary Table S3 for the entire list of
HPO and their P-values) that contain multiple genes that are
significantly correlated with each other in the phylogenetic
profile clusters (q-valueso0.05). Among HPO classifications
with the most significant associated gene clustering
(P-valuesp10� 6), we found hypoglycemia (HP:0001943,
with 80 genes), abnormality of mitochondrial metabolism
(HP:0003287, with 39 genes), cerebral edema (HP:0002181,
with 24 genes), respiratory paralysis (HP:0002203, with
3 genes), and abnormality of blood glucose concentration
(HP:0011015, with 88 genes). The significant HPOs (q-
valueso0.05) map in several clusters that share groups of
coevolved genes (Figure 4; Supplementary Table S4). Two of
these clusters that include many of the most significant HPOs
(Figure 4) share large sets of mitochondrial genes. These data
suggest that the phylogenetic signature of mitochondrial
genes and mitochondrial-associated symptoms define the
strongest signal in this phylogenetic profile analysis. There are
many disease loci in these phylogenetic clusters that are not
understood to be mitochondrial diseases but in fact may have a
mitochondrial disease basis. Other clusters are defined either
molecularly, for example genes coding for molybdoenzymes or
heme biogenesis genes, or phenotypically by associations with
pathologies, such as aberrant bone epiphyses (Figure 4).

One HPO classification that has the most significant overlap
with the phylogenetic profile is respiratory paralysis
(HP:0002203). Respiratory paralysis is the main cause of
death in patients with genetic deficiencies in the enzymes of
the heme biosynthesis pathway such as the porphyria
disorders. We examined the other proteins with similar
profiles to the known heme biosynthetic genes. These proteins
include all five known genes in which mutations cause
porphyria disorders. All these genes share very similar
phylogenetic profiles, amusingly, given our laboratory exper-
tise in C. elegans, the hallmark of which is loss of these genes
in the Nematoda among the animals and in some protists
(Figure 1C, pink square). In addition to these known heme
biosynthetic genes, there are 10 other genes (Figure 1C, white
square) with similar phylogenetic profiles. Three of these
genes are ORM1-like genes, previously implicated in sphingo-
lipid biosynthesis and asthma (Breslow et al, 2010). Our data
suggest that the sphingolipid defects of ORM1 mutations in
yeast may have a connection to heme biogenesis as their
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molecular basis. Interestingly, the organisms that have lost
these heme pathway genes, for example, L. scapularis (deer
tick), nematodes, C. parvum and G. intestinalis (intestinal

parasites), Leishmania (a blood cell parasite), and T. brucei
(the cause of African trypanosomiasis) obtain heme from their
hosts or from bacterial food sources.

Figure 4 Many of the diseases associated with high coevolution scores share genetic components. Significant HPOs (q-valueo0.05) witho100 genes are present as nodes.
The color code scale represents the Co10 significance score from gray (q-value¼ 0.05) to cherry (P-valueo10� 6). The size of the HPO reflects the fraction of coevolved genes
out of the all the genes in the HPO (i.e., the genes that contribute to the Co10 score). Two HPOs are connected by edge if they share two or more coevolved genes (see
Supplementary Table S4), such that the number of the shared genes reflected in the edge width and color, with more genes are represented by a thicker and darker line.
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Systematic identification of genes that coevolve
with known pathways and diseases

In the mapping of genes classified by HPO groups or by

MSigDB groups to phylogenetic clusters, we noted that some of

the same genes were correlating with distinct diseases and

distinct molecular signature gene groups. For example, a set of

4–6 nuclearly encoded mitochondrial proteins constitute the

overlap with MSigDB groups such as KEGG oxidative

phosphorylation and HPO terms such as abnormal cerebro-

spinal fluid, not an obvious mitochondrial disorder to the

untrained eye. The correlation of MSigDB pathways with

human disease classifications promised to illuminate both the

possible biochemical and molecular pathways that might be

aberrant in diseases not as well understood as mitochondrial

disease and to highlight particular genes from within a

phylogenetic profile that might be tested for mutations in

various human genetic diseases. To systematically identify

other gene pathways that have coevolved with known

genes associated with diseases, or related pathways, we

phylogenetically clustered (see Materials and methods)
all the human genes, into 1076 coevolved clusters
(Supplementary Table S5). Thus, genes with similar patterns
of conservation in the 86 other genomes analyzed were
grouped into clusters of phylogenetic similarity, each contain-
ing between 3 and 193 coevolved genes. We then tested
whether the lists of genes in each of the coevolved cluster
significantly overlapped the lists of genes assigned by HPO
human genetic or MSigDB molecular pathways analysis.

Compared with random sets of genes, these phylogenetic
clusters have an astonishing overrepresentation of genes
associated with similar HPO groups (Figure 5A and B). We
termed these phylogenetic clusters that are enriched with
disease genes in PhyloDisease clusters. Homologous proteins
that have high sequence similarity, by definition, have similar
phylogenetic profiles. Those profiles with multiple gene family
members can inflate the overlaps we measured. To eliminate
the effect of homologous genes, we calculated the over-
representation of P-values conflating members of gene family
into one instead of multiple proteins of the same family (see
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Materials and methods; Supplementary Table S6, columns L
and M) and used this P-value as our main filter of significance.
After correcting for multiple testing and removing the
statistical complication of paralogous genes, we identified 54
PhyloDisease clusters (Supplementary Table S6). Each of these
clusters contains coevolved genes that associate significantly
with one and frequently several HPO disease classifications.
The genes in the same PhyloDisease clusters are strong
candidates for roles in those same disorders.

The connection between the malfunction of biological
networks and disease symptoms is not fully understood in
many cases. To associate a possible biological function to the
PhyloDisease clusters, we tested whether the genes in these
clusters are enriched for known biological function. We
therefore determined which particular molecular signatures
gene clusters overlap the same human phylogenetic profile
clusters as those overlapped by human disease HPO gene
clusters. The interleaved highly significant human phyloge-
netic clusters that overlap either MSigDB or HPO clusters are
shown in Figure 6 (and in the Supplementary Information, we

show a figure of how a particular intersection of MsigDB or
HPO clusters with phylogenetic clusters is generated). Of the
54 PhyloDisease clusters, 48 clusters contained an over-
representation of genes that also significantly overlapped
genes grouped in MSigDB to have a known biological function
or coregulation under particular conditions. In general,
coevolved clusters have a significantly overrepresentation of
genes that share biological function (Figure 5C and D).

Mapping human genes into coevolved clusters uncovered
many known and many unexpected connections between
different diseases and functional gene groups (Supplementary
Table S6). The strongest signal (Figure 6B), as expected from
our previous analysis, was generated by the 6 mitochondria-
related clusters: cluster 474 (complex I), cluster 305 (complex
I), cluster 21 (TCA cycle), and clusters 8, 220, and 19
(mitochondria membrane and other mitochondrial subassem-
blies). The genes in these clusters are also associated with a
wide range of disease symptoms (HPOs), such as cerebral
edema, coma, acidosis, Babinski sign, vomiting, and abnormal
pyramidal tracts in addition to defects in metabolic processes

  <10–710–610–50 10–410–30.010.1

P-values 

B  Mitochondria C  Ribosome evolution and co-evolved groups 

B

C

D  RAS signaling and E2F targets co-evolved
 cluster 

E  Immune response

F  Muscle stiffness   

Insulin secretion 
Abn acid-base homeostasis 
Acidosis 
Dystonia 
Lactic acidosis 
Mitochondrial envelope 

KEGG Huntington's 
KEGG Alzheimer's 
KEGG Parkinson's 
Hyperreflexia Abn  
Cerebrospinal fluid 
Abn cerebrospinal fluid

Abn optic nerve 

Respiratory chain complex I 
Spasticity 
Coma 
Vomiting 
Lethargy 
Hypoglycemia 

Cardiomyopathy 
Amyotrophy 
Babinski sign 
Epilepsy 
Strabismus 
Hypertrophic cardiomyopathy 
Decreased liver function 

Abn cell physiology 
Abn mitochondrial metabolism 
Ptosis 
Macrocephaly 

Abn urine homeostasis 

Reactome metabolism of amino acids

Abn carboxylic acid metabolism 
Reactome metabolism of amino acids

TCA cycle 
KEGG pyruvate metabolism 

Aging kidney down

F
un

ct
io

na
l g

en
e 

gr
ou

ps
 (

G
O

, K
E

G
G

, R
E

A
C

TO
M

E
, c

o-
ex

pr
es

se
d 

ge
ne

s,
 m

iR
N

A
 a

nd
 T

F
 ta

rg
et

s)
 

Co-evolved gene clusters 

A Keggaminoacyl tRNA biosynthesis 
Kegg RNA degradation 
DNA repair 

Kegg ribosome 
Reactome insulin synthesis and secretion 
Reactome influenza life cycle 
Reactome peptide chain elongation 
Translationinitiation complex formation

Co-expressed with EIF3S6 
Co-expressed with DAP3 
Translation 
Upregulate Multiple myeloma hyperploid 

Co-expressed with TPT1 
Co-expressed G22P1  

V$TCF1P motif 
V$E2F Q3 motif 
RAS GTPASE ACTIVATOR ACTIVITY 
REACTOMERHO GTPASE CYCLE 
CTGTTAC, MIR-194 

Chr12q13 
V$ELK1 01 motif 

36
8

Abn peripheral nervous system 
Muscle stiffness 
Neonatal hypotonia 
V$TEF1 motif
V$MEF2 motif

Feeding difficulties 
Coma 
Reduced consciousness/confusion 

28
4

44
2

31
2

8
22

0 19 99
3

47
3

47
4

30
5 21 27
9

33
1 30 12 24
3

24
2 13 15 24
7 8

Response to virus 
Alzheimer’s disease

Ion homeostasis 
Chemical homeostasis  
Cellular homeostasis 

KEGG chemokine signaling pathway
G protein coupled receptor binding 
Behavior
Locomotory behavior 
Chemokine activity 
Reactome peptide ligand binding receptors 
Reactome G2-M transition 
Reactome centrosome maturation 
Dendritic cell maturation down 
Reactome G alpha I signaling events 
NFKB targets fibroblast up 

57
0

57
6

67
5

10
50

D

E

F

Figure 6 (A) Heat map of the overlap between coevolved clusters and functional and disease gene sets (rows). Each dot in row i and column j represented the P-value
of the overlap between functional/disease group (in row i) and coevolved cluster (in column j). The color code represents the P-values indicating the significance of the
overlap. The white boxes delineate the indicated insets representing coevolved clusters that are associated with either (B) mitochondria, (C) ribosome (D) RAS signaling,
and E2F (E) immune response, or (F) muscle stiffness. The data can be found in Supplementary Table S5.

Phylogenetic mapping of disease-pathway proteins
Y Tabach et al

& 2013 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2013 9



like insulin secretion, valine, leucine, and isoleucine degrada-
tion, or genes for which expression is downregulated during
kidney aging. Some of these disease symptoms are associated
with specific mitochondrial subpathways (i.e., hypertrophic
cardiomyopathy coevolves with complex I genes), while others
such as abnormal acid-base homeostasis are correlated with
many mitochondrial functions (Figure 6B). Many of the HPO
descriptors are known to be associated with mitochondrial
defects; for example, the association between neurodegenera-
tive diseases such as Huntington’s, Alzheimer’s and Parkinson’s
and mitochondrial defects (Lin and Beal, 2006). Our results
show clear overlap (P-valueo10� 6) between neurodegenera-
tive disease proteins that show patterns of coevolution with
mitochondrial proteins. (Figure 6B; Supplementary Table S6).

Cell-cycle and cancer genes also emerged from this analysis.
One of the most significant overlaps between MSigDB groups
and phylogenetic clusters was cluster 102 that overlaps for
example multiple MSigDB groups including for example
coexpression on microarrays with the APEX1 DNA repair
nuclease or coexpression with the PRKDC DNA directed kinase
and includes the cell-cycle regulatory genes CCT4, CCT5,
CDK2, IARS, MCM6, PPP1CC, PSMA1, and YWHAQ. Another
phylogenetic cluster strongly associated with both disease
genes and molecular attributes contains many ‘RAS GTPASE’
genes. RAS is one of the most common oncogenes in human
cancer—mutations that activate RAS are found in 20–25% of
human tumors and up to 90% in certain types of cancer
(Goodsell, 1999). RAS family genes are found in cluster 368;
the genes in this coevolved cluster are enriched with E2F and
ELK1 binding motifs in their promoters and mir-194 binding
motifs in their 30UTRs (Figure 6D). The E2F family has a
crucial role in the control of cell-cycle and cancer progression
in p53 and RAS pathways (Milyavsky et al, 2005; Tabach et al,
2005). The microRNA mir-194 has a role in the p53 pathway
(Takwi and Li, 2009) and suppresses metastasis of mouse liver
cancer cells (Meng et al, 2010).

Another phylogenetic cluster 867, with 69 genes with
similar patterns of evolutionary conservation, overlaps both
HPO terms and MSigDB terms with high significance
(Supplementary Table S6). The genes that overlap ADAMTS2,
FERMT1, and ITGA6 are annotated by MSig to be involved in
focal adhesion, consistent with the protease and integrin
annotation, and the HPO terms implicate this cluster in the
related assembly of skin and gingiva and blood vessels. The
genes of this cluster are also upregulated in neural crest cells
and in lung metastasis and overrepresented in the KEGG small
cell lung cancer module.

Ribosomal proteins are clustered into six distinct coevolved
clusters, the hallmark of which is extremely high conservation
in nearly every organism (Figure 6C). Cluster 30 groups
ribosomal proteins (RPL4, RPS12, RPS15A, RPS4X, RPS4Y1,
and RSL24D1) with aminoacyl-tRNA synthetase proteins
(CARS, CARS2, LARS, SARS, and SARS2) and RNA degradation
proteins (ENO1, ENO2, ENO3, EXOSC2, PAPOLA, PAPOLB,
and PAPOLG). These three coevolved clusters have a probable
function in modulating protein expression and mRNA levels.

The binding motifs of two transcription factors LHX3 (LIM
Homeobox) and TITF1/NKX2-1 (thyroid transcription factor 1)
are significantly overrepresented in the promoters of the genes
in the phylogenetic cluster 469. Disruption of Nkx2-1 in mice

results in ablation of the pituitary gland (Takuma et al, 1998),
and LHX3 is required for pituitary development. Mutations in
the LHX3 gene cause combined pituitary hormone deficiency 3.
The protein expression levels of both TFs are almost identical
and both highly expressed in blood plasma and the kidney
(Supplementary Figure S3). Several pathologies are associated
with cluster 469, for example ‘xanthine urinary stone’,
molybdenum cofactor deficiency, myoclonic spasms, lens
dislocation, and kidney stones; these disease symptoms are
caused by mutations in the genes (MOCS1, MOCS2, GPHN,
XDH, and GPHN) that are coevolved (Figure 1D) and have roles
in molybdenum cofactor biosynthesis and xanthine biogenesis.
Cluster 469 predicts other genes to act in molybdenum cofactor
synthesis or xanthine biosynthetic pathways (Supplementary
Table S5; Figure 1D, gray box) (Wahl et al, 2010). Aldehyde
oxidase 1 (AOX1) is associated with xanthine urinary stones
(Gok et al, 2003) but was not assigned to the ‘xanthine urinary
stone’ phenotype by the HPO database. AOX1 is involved in the
metabolism of the drug thiopurine as are two other proteins
encoded by genes in this group, XDH and MOCOS. Another
gene, HGD, is active chiefly in the liver and kidneys and can,
when mutated, cause alkaptonuria, a disease associated with
prostatic and renal stones (Introne et al, 1993).

Two other clusters 576 and 675 (Figure 6E) have an
overrepresentation of chemokine and other immune-related
genes; cluster 442 groups together coevolved genes that have
roles in coma, hypotonia, and muscle stiffness are regulated by
several transcription factors, for example, TEF1, MEF2, and
NKX25 (Figure 6F).

Phylogenetic profiling identifies a new
MITF-associated factor

While phylogenetic profiling could be used to seek the
particular diseases with the strongest phylogenetic profile
overlap, we could also query for particular known components
of diseases whether they have similar phylogenetic profiles to
any other genes. The proteins with the same profile are much
more likely to act in the same pathway. As an example, we
used phylogenetic profiling to investigate the role of MITF, the
master regulator of the melanocyte lineage that also serves as a
driver for melanoma (Garraway et al, 2005). MITF both directs
melanocytes toward terminal differentiation and paradoxically
promotes their malignancy. Although the role of MITF in the
melanocyte lineage is established, the mechanism by which
MITF promotes these two seemingly contradictory roles is
mostly unknown, and the identification of MITF coregulators
is probably the key to solving this puzzle. We ranked B20 000
human proteins based on their phylogenetic correlation
with MITF (Supplementary Table S7). Several of the highly
correlated genes encode known MITF paralogs for example,
the bHLH-family proteins TFEB, TFEC, and TFE3
(Supplementary Table S7). MITF forms either a homodimer
or a heterodimer with TFEC and TFEB, when binding to DNA
(Levy et al, 2006). From the phylogenetically correlated genes
with no homology to MITF and no previous indication of a
function related to that of MITF, we looked for genes that have
higher probability to interact as transcription cofactor with
MITF. For that we filtered for nuclear localized proteins that

Phylogenetic mapping of disease-pathway proteins
Y Tabach et al

10 Molecular Systems Biology 2013 & 2013 EMBO and Macmillan Publishers Limited



are known to act as transcription regulators. We found that the
transcription factor Suppressor of Hairless (also known as
RBP-Jk and SuH) and Forkhead box protein R2 (FOXR2) met
these criteria. To increase our confidence that either RBP-Jk or
FOXR2 could be a cofactor for MITF, we looked for co-
occurrence of the promoter binding sites of MITF and either
RBP-JK or FOXR2. We found that RBP-Jk DNA binding sites are
significantly enriched (P-valueo1.3�10�7, see Materials and
methods) in known MITF target gene promoters (Levy et al,
2006) (Supplementary Table S8). Transcriptional coexpression
studies also support a role for RBP-Jk in MITF function.
Among the 50 most coevolved genes to MITF in the
phylogenetic profile, RBP-Jk showed the highest correlation
to MITF across 100 different expression data sets (P-value¼ 1
� 10�19), calculated using Multi-Experiment Matrix (MEM)
for gene expression similarity searches across many data sets
(Adler et al, 2009).

RBP-Jk functions downstream of Notch signaling in
Drosophila, C. elegans, and mammals (Tanigaki and Honjo,

2010) and although RBP-Jk is more conserved than MITF
across the 86 organisms analyzed, their phylogenetic profiles
are similar (Figure 1E). We experimentally validated RBP-Jk
function in the regulation of the known MITF target gene,
TRPM1 (Miller et al, 2004). We found that RBP-Jk occupies the
TRPM1 promoter but its interaction with this promoter is MITF
dependent (Figure 7A; Supplementary Figure S4 and
Supplementary Table S9 for list of primers and siRNA
sequences). Although RBP-Jk occupancy is MITF dependent,
MITF occupancy was unchanged after RBP-Jk depletion
(Supplementary Figure S4b). Moreover, RBP-Jk occupied a
region without any known RBP-Jk DNA binding sites,
suggesting DNA interaction via protein complex with MITF.
Indeed we found, using coimmunoprecipitation, that MITF
and RBP-Jk proteins interact directly in the cell (Figure 7B).
RBP-Jk depletion caused a decrease in Pol-II occupancy on the
gene locus (Figure 7C) and a decrease in TRPM1 mRNA levels
(Figure 7D). To further examine whether MITF and RBP-Jk
activities are mutually dependent, we tested their cooperation
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in activation of gene expression. Mutations in MITF binding
sites in TRPM1 caused a loss of RBP-Jk-mediated promoter
activation (Figure 7E), and RBP-Jk depletion caused a decrease
in MITF-mediated transcriptional activity. Together, these
observations suggest that MITF recruits RBP-Jk to the
promoter site to enhance transcriptional activity. RBP-Jk is a
central mediator of Notch signaling (Liang et al, 2002)
that interacts directly with other transcription factors (Obata
et al, 2001; Beres et al, 2006) including Myc (Agrawal et al,
2010). MITF is a member of the same basic helix-loop-helix
zipper (bHLH-Zip) superfamily (Steingrimsson et al, 2004)
as Myc. Also in support of these data, Notch signaling,
and RBP-Jk activity in particular (Aubin-Houzelstein et al,
2008), has been implicated in melanocyte differentiation
(Schouwey et al, 2011). Our finding indicates that RBP-Jk
directly affects MITF transcriptional activity and demonstrates
the ability of normalized phylogenetic profiling to discover
novel cofactors.

Phylogenetic profiling identifies ccdc105 as a
meiosis-specific chromatin localization gene

Proteins that constitute components of specialized multi-
protein complexes are also expected to have similar

phylogenetic profiles. As a test for the use of phylogenetic
profiles to generate candidate components of such protein
complexes, we analyzed proteins of the synaptonemal com-
plex. The synaptonemal complex is specialized for meiotic cell
divisions and is essential for proper meiotic recombination
and segregation (Fraune et al, 2012). The known protein
components of the synaptonemal complex clustered strongly
with other, with known meiotic proteins as well as
with a number of previously uncharacterized proteins
(Supplementary Figure S5a). Several of these newly identified
proteins share a predicted coiled-coil secondary structure that
is also shared by many known proteins of the synaptonemal
complex (Costa and Cooke, 2007; Fraune et al, 2012). Since
meiosis is limited to germ cells that produce spermatozoa and
oocytes, meiotic genes should be expressed in the germ cell
lineage (Schramm et al, 2011). We analyzed the mRNA
expression pattern of these uncharacterized genes and found
that several are highly expressed in the testes and ovaries
(Supplementary Figure S5b). ccdc105 had a phylogenetic
profile most similar to the well-annotated synaptonemal
complex components and showed tissue-specific expression
in testes and ovary (Figure 8A and B; Supplementary
Figure S5a). CCDC105 protein colocalized with the hetero-
chromatin surrounding the centromeres in one of the extremes

Merge all and DAPI SYCP3
CREST

SYCP3
CREST

CCDC105

CCDC105

p

d

rs

rs

z

rs

Tissue-specific Ccdc105 gene expression

Ccdc105 characterization C D

E F

Hea
rt

Bra
in
Liv

er
Sple

en

Kidn
ey

Lu
ng
Thy

m
us

Te
sti

s
Ova

ry

Sto
m

ac
h

Ute
ru

s

M
us

cle

Ccdc105

To
ta

l
Cyt

o
Nuc To

ta
l

Cyt
o

Nuc

191

97

64

51

33

28

19

(kD)

Peptide 1 Peptide 3

anti-CCDC105

β-Actin

CCDC105 detec+on in testes

10 μm

10 μm 10 μm

10 μm

A

B
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throughout the meiotic prophase I, and its labeling pattern was used to identify cells in meiosis. Anti-CREST antibody labels centromeres and anti-CCDC105 antibody
(anti-peptide 1) is localized in a region where SYCP3 and CREST colocalize at diplotene stage (meiotic cells) and in clustered centromeres in round spermatids
(post-meiotic cells) (arrowheads in D and E). z, zygotene cells; p, pachytene cells; d, diplotene cells; rs, round spermatids. Bars represent 10 micrometers (mm).
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of the synaptonemal complex at diplotene (Figure 8C–F,
arrowheads). Diplotene is the stage of meiotic prophase I that
directly precedes the first chromosomal segregation. CCDC105
also colocalized with the heterochromatin of the clustered
centromeres in post-meiotic round spermatids (Figure 8C–F,
arrows). Together, these results suggest a role for CCDC105 in
late stages of meiotic prophase I and in spermatogenesis.
CCDC105 may be a variant in humans with infertility (Handel
and Schimenti, 2010).

Discussion

Phylogenetic profiling of human genes has been used
most successfully to date to discover genetic causes of
mitochondrial disease and disorders of ciliated neurons
(Mykytyn et al, 2004; Pagliarini et al, 2008). The discovery
that Bardet-Biedl syndrome is a disease of the cilia basal
body and that associated genes can be identified using
phylogenetic profiling accelerated the discovery of more cilia
disease loci. Our analysis of the overlap between human
genetic or molecular signatures gene clusters and the
human phylogenetic profile clusters we assembled identified
almost 1400 disease phenotypes, pathways, coexpressed
genes and other biological groups that are significantly
coevolved. By mapping a large fraction of human genes into
phylogenetic clusters, we found that many clusters are
associated with one or more diseases or functional gene
groups. In many cases, the coevolved clusters are associated
with multiple annotated biological functions and diseases,
which immediately suggest functional connections between
those diseases and pathways.

From the pattern of organisms that retain those genes and
those organisms that have lost those genes, the biological
context of the pathway can be inferred. For example, the
molybdenum cluster 469 that is associated with kidney stones
and involuntary muscle contractions has a phylogenetic
profile that shows a loss of these genes in those organisms
with few introns and no RNAi pathway, as if purine
biosynthetic demands are decreased in those organisms,
allowing the molybdenum-requiring purine biosynthesis
enzymes to be lost. The genes are needed in humans and
deficits in those pathways that cause the disorders above,
associated with purine biosynthetic defects. In our analysis of
86 eukaryotes, we were able to link multiple genes with
particular disease phenotype descriptions. We validated
experimentally our identified links between transcription
factor RBP-Jk and a master regulator of melanocyte differ-
entiation MITF and the suggested role of ccdc105 as a novel
meiosis-specific chromatin localization gene.

The genome sequence of an organism reveals important
characters of its habitat, organelles, and biochemical pathways
that are maintained or lost compared with other genomes. For
example, parasites that have lost their heme biosynthesis
genes live in a heme-rich environment (for example, the
bloodstream). The loss of pathways or genes can highlight the
vulnerabilities of these organisms and offer potential ther-
apeutic strategies (Rao et al, 2005). Many primates have lost
their ability to synthesize vitamins now found in their diet.
Other pathways identified by phylogenetic profile analysis can

identify analogous vitamins and nutrients that might be
important to human health.

This analysis also highlights hundreds of genes (based on
their phylogenetic profile) as priority candidates to test
for association with particular pathways or diseases
(Supplementary Tables S5 and S6). Phylogenetic profile
analysis provides a dictionary of biological gene sets and is
more cost-effective and robust than other genome-scale
analysis methods such as mRNA expression, proteomics, and
RNAi screens, which are labor intensive, costly, and dependent
on experimental conditions. Nevertheless, the integration of
the coevolved clusters with B10 000 functional and disease
groups offers us a powerful way to find evolutionary and
functional interactions between different diseases and path-
ways (Figure 6) (Lee et al, 2011).

Phylogenetic profiling has the potential to reveal the
placements of hundreds of genes in protein complexes,
metabolic networks, and cellular processes. From a clinical
perspective, these opportunities to connect different diseases
or symptoms based on similar phylogenetic profiles have a
great potential to provide better understanding of human
diseases by highlighting those genes that cluster with known
causes of diseases. As we enter the stage of human genetics
when thousands of patients with a wide range of diseases will
be sequenced and compared with non-disease expressing
patients, there will be millions of gene variants revealed. If
some of the mutations detected in patients with particular
diseases map to loci with similar phylogenetic profiles as the
small subset of loci known to cause this disease, then the
problem of assigning genetic causes to such diseases may be
simplified.

Materials and methods

Species database generation

Protein-coding sequences for human genes were downloaded using
BioMart version 0.7 from the Ensembl project (release 60). Ensembl
includes both automatic annotation, in which transcripts are
determined and annotated genome-wide by automated bioinformatic
methods, and manual curation. When different splice variants existed
for a gene, the longest variant was used. The resulting 19 017 protein-
coding genes of human were compared using Blastp to all open reading
frames (ORFs) of 85 organisms (Supplementary Table S1). From the
existing genomes available in the Ensembl database (release 60), we
obtained a set of 53 fully sequenced eukaryotic genomes that represent
most eukaryotic clades with sequenced genomes. Since Ensembl has a
limited number of fungi and protists, 33 additional high quality
genomes form the NCBI genome database were added to supplement
the analysis. To get the most analytical power while at the same time
avoiding degradation in data quality due to incorrect or incomplete
genome annotation, we tried to use all available high-quality genomic
data across the eukaryotic tree of life, while applying certain filters to
remove poorly annotated genomes. The uses of nearly 90 high quality
genomes reduced the effect of occasional errors on the correlation
between the gene. As an additional quality control, we calculated the
correlation of the protein conservation among species. We removed
several species that showed low correlation with their closely related
species, like Nasonia vitripennis or Equus caballus, since low
correlation might reflect problems in the genome assembly or
annotation. Finally, the expected effect of random noise in our data
is to reduce rather than increase clustering, and as such, we believe
that random noise in general does not increase the likelihood chance of
having false positives. Hence, although noise in genomic annotation
data may weaken the significance of some coevolved clusters,
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genomes with moderate noise in their annotations can nevertheless
contribute overall to the significance of our phylogenetic clusters while
at the same time introducing little risk of predicting false associations.

Preprocessing and clustering the phylogenetic
profile

The Blastp comparison generates a Protein-Protein Best Hit Matrix of
size 19 017� 86 (85 organisms plus human) where each entry Pab is
the best Blastp bit score between a human gene ‘a’ and the top hit in
organism ‘b’. Preprocessing and normalization were applied to the
profile matrix before clustering or test for correlation between proteins
profile as we previously described (Tabach et al, 2013). The result is a
NPP matrix NPP that gives different organisms of similar weight,
independently of their global evolutionary relation to humans. The
normalized matrix NPP was used for the correlation tests and the
clustering process.

Calculation of the list of most correlated genes
(List10)

A Pearson correlation coefficient (R) was calculated using the NPP
matrix to generate a correlation matrix. High correlation can be the
result of coevolution or a by-product of homology between gene
sequences and in the later only corresponds to paralogous genes. To
remove phylogenetic profile correlation scores that resulted from
homology between the sequences of two human genes Gi to Gj, we
assigned R¼ 0 if the Blastp score was 4100 or if the sequence identity
between Gi and Gj genes was higher than 10%. List10 for Gi includes
the 10 genes without a significant sequence homology that were most
correlated with the particular gene.

Calculation of Co10 scores

To test whether sets of functional annotated genes are significantly
coevolved, we calculated a Coevolution (Co10) score. We determined
for each gene the 10 non-homologous genes (the 10 nearest neighbors)
that are most phylogenetically correlated with it (List10—see Materials
and methods). We also tested 20, 50, and 100 nearest neighbors and
this analysis yielded similar results (data not shown). Then for a group
of genes in, we counted the number of times these genes were found in
each other’s 10 nearest neighbors in the phylogenetic profile. High
Co10 scores indicate genes in a set that share similar phylogenetic
profiles across the species that were examined. To evaluate the
significance of the Co10 score for each functional set, we generated
1000 000 random sets of the same size as the curated set and calculated
Co10 scores for all the random sets. A P-value of o1�10� 6 was
obtained if the score of the curated sets was higher than any of the
scores of the 1000 000 random sets with similar size. To avoid biases
inherited from the databases that were used (HPO and MSigDB), the
random sets were generated only from the genes found in the database
that was tested (i.e., MSigDB or HPO database). To control for the
number of false discoveries found in the MSigDB and the HPO
database, we applied FDR procedure and calculated q-values. The
q-value is similar to the well-known P value, except it is a measure of
significance in terms of the FDR rather than the false positive rate. For
example, an FDR adjusted P-value (or q-value) of 0.05 implies up to a
limit of 5% false positive results.

Generation of binary phylogenetic profile and NPP
with different organism sets

To test for the effect of different numbers of species on the performance
of phylogenetic profiling, we resampled our data using 75, 50, or 25% of
our original species list. To keep similar phylogenetic representation of
the organisms that were used, we chose organisms from the entire
eukaryotic tree. From the entire list of organisms found in
Supplementary Table S1, we removed every fourth organism to generate
the 75% list (indices 1, 2, 3, 5, 6, 7, 9y). The 50% list was generated by

removing every second organism (indices 1, 3, 5y). The 25% list was
generated by inclusion of every fourth organism (indices 1, 5, 9, 13y).

Generation of coevolved gene clusters

For each protein A, we ranked the top 50 most correlated genes to it,
using Pearson’s correlation coefficient (R) on the NPP matrix. The
most correlated protein to A received a rank score of 50 and the others
the score of 49, 48, y, 1. The 50th protein got the rank score of one.
The other genes got the rank score of zero. Since the rankings are
asymmetric (i.e., Rank A to B is not necessary identical to the rank B to
A), a ranking score between two genes (ranksocreAB) was calculated.

ranksocreAB¼O(rank score A to B� rank score B to A).
We generated a ‘distance’ matrix M to define the correlation rand

between two genes A and B, such that each entry Mab¼ ranksocreAB.
Using the MATLAB environment, we clustered the data using the
following code:

Z¼ linkage(DistanceMatrix, ’weighted’, ’Euclidean’);
C¼ cluster(Z, ’cutoff’, 2);

this yield 1076 phylogenetic clusters with 3–193 genes.
Calculation of functional group enrichment in coevolved gene

clusters.
The significance of the overlap between the coevolved gene clusters

and the groups obtained from MSigDB and HPO database was
calculated using a hypergeometric test. To correct for multiple
comparisons, we applied an FDR procedure and calculated q-values.
We reported (Supplementary Table S6) only the significant overlap
with q-value o0.05. A similar phylogeny can be resulted from
sequence homology; to remove this effect, we calculated the
hypergeometric considering only one protein per family of protein
homologs (e.g., a group of 10 proteins, 5 of which have a sequence
similarity, would be considered to have a size of 6). Similarly, if the
overlap between the functional gene group (HPO or MSigDB) and
coevolved protein cluster contains homologous proteins, then we
considered only one protein per homolog family. Proteins are
considered to be in the same family if they have a blast score of
4100 or sequence identity larger than 10%. In Supplementary
Table S6, we reported only the functional groups that have overlap
with coevolved clusters of at least three protein families.

MSigDB and HPO database

The Molecular Signature Database (MSigDB v3.0) contains 6800 gene
sets collected from various sources such as online pathway databases
(KEGG, BIOcharta), Gene Ontology (GO groups), publications in
PubMed and genes that share cis-regulatory motifs or are coexpressed.
We used the 6594 sets with fewer than 500 genes. From each MSigDB
set, we removed the genes that were not annotated. The remaining
genes in each set were used to calculate a coevolution score and the
related P-value. The number of genes in each set after removing the
annotated genes was considered as the effective group size. The HPO
database was downloaded from http://www.human-phenotype-onto-
logy.org/contao/index.php/downloads.html in August 2012. To cal-
culate the probability that genes in a HPO group have similar
phylogenetic profiles to each other, we used a similar procedure as
described for the MSigDB.

Plasmids

pcDNA3-MITF and PGL4.11-TRPM1 promoter luciferase were
described in previous publications. pSG5-RBP-Jk was kindly provided
by Dr E Manet (INSERM U758, Unité de Virologie humaine, Lyon,
France).

Cell cultures, transfections, and luciferase
reporter assays

Human WM3526, WM3682, and WM3314 melanoma cells were
cultured in Dulbecco’s modified Eagle’s medium supplemented with
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10% fetal calf serum. Cells were transfected with jetPEIt for plasmids
or Hiperfect (QIAGEN) for the siRNAs targeting MITF (40 nm) or RBP-
Jk (10 nm) according to the manufacturer’s instructions. For luciferase
assays, cells were grown in 12-well dishes until 60–70% confluence
and then were transfected with 0.3mg pGL4.11-TRPM1 promoter
Luciferase, 0.01mg Renilla luciferase reporter (Promega) and RBP-Jk or
MITF expression vectors as indicated in figure legends. The total
amount of DNA was adjusted to equal amounts with empty vector. At
48 h after transfection, luciferase levels were measured using the dual
luciferase assay kit (Promega), and the firefly luciferase activity was
normalized to Renilla luciferase activity. Data are presented as mean
values±standard deviation (s.d.) for at least three independent
experiments done in duplicate relative to the level of luciferase activity
obtained in the presence of empty vector.

Coimmunoprecipitation and immunoblotting
analysis

For coimmunoprecipitation analyses, cells were solubilized in lysis
buffer (150 mM NaCl, 50 mM Tris, pH 7.5, 0.2% Nonidet P-40), and
extracts were clarified by centrifugation at 12 000 g for 30 min at 41C.
Total cell lysate (2 mg) was incubated with the specific antibody for
18 h at 41C and then incubated, with rotation, with protein-A beads
(Santa Cruz Biotechnology) for 2 h at 41C. Beads were collected by
centrifugation, washed three times in lysis buffer, and dissolved in
Laemmli buffer. Following SDS–PAGE, proteins were transferred onto
nitrocellulose membranes, and after blocking with 5% low-fat milk,
filters were incubated with the specific primary antibody. Anti-RBP-Jk
polyclonal antibodies were purchased from Cell Signaling and anti-
MITF monoclonal antibody was kindly provided by Dr David Fisher
(CBRC, MGH, Harvard University, Boston, MA, USA). Membranes
were washed in 0.001% Tween-20 in phosphate-buffered saline (PBS)
and incubated for 45 min with a secondary antibody. After washing in
Tween/PBS, membranes were subjected to enhanced chemilumines-
cence (ECL) detection analysis (Amersham Biosciences) using horse-
radish peroxidase-conjugated secondary antibodies (Santa Cruz
Biotechnology).

RNA purification and RT–PCR

Total RNA was purified using Trizol (Invitrogen) according to the
manufacturer’s instructions followed by treatment with RNase-free
DNase (Qiagen). For mRNA analysis, 100 ng RNA was subjected to
one-step RT–PCR using a QuantiTect RT-PCR kit (Qiagen) and
SYBRgreen Supermix (Roche). Primer sequences are listed in
Supplementary Table S6.

Chromatin immunoprecipitation

ChIP assays were performed with melanoma cells grown to logarith-
mic phase. Cells were subjected to 1% formaldehyde in PBS for 20 min
at room temperature with gentle shaking. Cells were then harvested by
scraping and homogenized in hypotonic buffer on ice using a Dounce
homogenizer. The nuclei were isolated by centrifugation over a 10%
sucrose pad. Nuclei were then spun down, resuspended in ChIPs
buffer and sonicated. Antibodies to RNA polymerase II CTD4H8
(Covance), MITF, RBP-Jk (AbCam), or Placental Protein 4 (Assay
Designs), as a non-specific control antibody, were added to a 10-fold
ChIPs buffer diluted sample and incubated on a rotator for 10 h at 41C.
Ultralink protein-A/G-beads (Pierce) were added to the sample and
a control sample and incubated for an additional hour at room
temperature. Immunoprecipitates were then washed twice with ChIPs
buffer, twice with 500 mM NaCl ChIPs buffer, and once with TE (pH 8).
The immunoprecipitates were released from the beads by incubating at
651C for 20 min in 1% SDS/TE and treated with proteinase K side by
side with an unprecipitated sample as an input control. Crosslinks
were released by heating at 701C for 10 h, and DNA was recovered by
extraction with phenol and chloroform in high salt buffer (0.6 M
sodium acetate, pH 8) and then ethanol precipitated. qRT–PCR was
performed to amplify fragments occupied by RBP-Jk, Pol-II, or MITF.

Buffers compositions were described previously. PCR primers span-
ning the TRPM1 promoter were employed as indicated: MITF binding
sites (Eboxes 1, 2, 3), intron 1 promoter region (int1 A, B) and RBP-Jk
binding sites (Rbox) region. RBP-Jk occupancy was calculated relative
to cells transfected with control siRNA (siCont), normalized to input
and represent mean±s.d. of three independent experiments. HES5
promoter primers were used as a positive control for RBP-Jk. For
negative controls, we used TRPM1 downstream primers and
performed ChIP with control antibody (Supplementary Figure S3b).

Promoter binding site analysis

A list of MITF target genes and promoter sequences of 2000 nucleotides
were downloaded from ensembl.org. Each promoter contained one or
more of the following MITF E-box sites: CATGTG, CACATG, CACGCG,
and CACGTC. Each promoter was searched for one of the following
RBP-Jk binding sites: TTCCCAC, ATGGGAG, TTCCCAG, and
TGGGAAT. Each MITF target gene listed in Supplementary Table S8
was labeled with a ‘yes’ if an RBP-Jk site was found, and ‘no’ if not. The
significance was calculated under the parameters that there exists an
MITF e-box of length 6 in each promoter of length 2000, each
nucleotide has an equal chance to be a, t, g, or c and that every possible
position for an RBP-Jk binding site of length 7 are statistically
independent of each other. The formula q calculates the probability
that one site of length R (RBP-JK binding site nucleotide length) exists
in a sequence of 2000 nucleotides with one MITF site of length M
(MITF binding site E-Box length). The formula s calculates the
probability that q occurs in 10 out of 13 MITF target genes.

q ¼ ð2001�M�RÞ=ð4RÞ

s¼ ð13C10Þ�ðq10Þ�ð1� qÞ3

Phylogenetic profiling of meiotic genes

Proteins that phylogenetic clustered together with one or more of the
meiosis-specific genes (synaptonemal complex genes), Sycp3, Sycp2,
Rec8, Sycp1, Syce1, Syce2, Syce3, and Tex12 were predicted to function
in meiosis. We tested these genes in mouse. For more accurate
predictions (although results were similar), we generated a phyloge-
netic profile of mouse proteins relative to the other 85 eukaryotes
(Supplementary Figure S5a). Candidate meiotic-specific genes were
selected if: (1) the candidate gene was not annotated to function in
meiosis or any other cellular process and (2) tissue expression profiles
were testes and/or ovary specific. We selected five genes that satisfied
these criteria. Using databases that report the mRNA expression levels
in testicle and/or oocytes, we found that genes 1700040L02Rik,
4930503L19Rik, 2010007H12Rik, Ccdc105, and Cenpw are expressed
in testicle and no function has been annotated for these genes (except
for Cenpw). To corroborate testes- and or ovary-specific expression,
RT–PCR assays were performed using a set of cDNAs from several
mouse tissues using specific primers to amplify the cDNA of each of the
five selected genes (Supplementary Figure S5c). Specific antibodies
were raised against two short peptides of CCDC105 (peptide 1: amino
acids 7–30 and peptide 3: amino acids 473–499). Spreading of meiotic
cells and immunoblotting, and immunolabeling of CCDC105 were
done as described before.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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