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Abstract
In this paper we consider a problem from hematopoietic cell transplant (HCT) studies where there
is interest on assessing the effect of haplotype match for donor and patient on the cumulative
incidence function for a right censored competing risks data. For the HCT study, donor’s and
patient’s genotype are fully observed and matched but their haplotypes are missing. In this paper
we describe how to deal with missing covariates of each individual for competing risks data. We
suggest a procedure for estimating the cumulative incidence functions for a flexible class of
regression models when there are missing data, and establish the large sample properties. Small
sample properties are investigated using simulations in a setting that mimics the motivating
haplotype matching problem. The proposed approach is then applied to the HCT study.
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1 Introduction
For the medical studies involving competing risks, one often wishes to estimate and model
the cumulative incidence probability, the marginal probability of failure for a specific cause.
The cumulative incidence curves and cause specific hazard functions for all causes contain
the same information but are represented in a different ways and thus leads to different
interpretations. Both quantities are generally of interest. Let λ1(t; z) be the cause-specific
hazard of a cause one event and λ2(t; z) be the cause-specific hazard of an event of other
causes than one, where both hazards are conditionally given by a set of covariates z.
Assuming that cause one is the primary cause of interest, the cumulative incidence curve for
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cause one, that is the probability of experiencing cause one before time t, given covariates z
which is given by

where ε indicates the type cause of failure. Recently, several new methods have been
developed to directly model the cumulative incidence probability of a specific cause of
failure (Fine and Gray 1999; Scheike et al. 2008; Scheike and Zhang 2008).

The aim of this paper is to consider the situation where there are missing covariates for all
individuals. We consider data from a hematopoietic cell transplantation (HCT) study. HCT
is a life saving procedure for many cancer patients. With shrinking family sizes, the lack of
human leukocyte antigen (HLA) matched sibling is common, and this has increased the use
of alternative donor graft sources. One of the alternatives is to use a donor who is not from
the patient’s family. Unfortunately, in addition to its curative effect, HCT also has
potentially lethal complications, especially for unrelated transplants. Severe graft-versus-
host disease (GVHD) is one of the major causes of treatment related death. To reduce
GVHD and to increase engraftment, a fully HLA-matched graft needs to be selected. For
this purpose, the genotypes of the patient and potential donors are determined. Scientists
found that many of the more than 400 genes have immune-related functions, and haplotypes
that share the same HLA alleles may also share discrete blocks of highly conserved
sequences in linkage disequilibrium with those HLA alleles. HLA haplotype analysis has be
considered in a HCT study (Petersdorf et al. 2007).

For the HCT data, the donor and patient HLA-genotypes are fully observed and matched,
but haplotypes are unknown in current practice, since standard genotyping techniques
cannot distinguish the two homologous chromosomes of an individual, thus they cannot
determine the haplotype pairs, that is the specific sequence of nucleotides on the
chromosomes. In a fully HLA-matched unrelated transplant, the donor and patient have
identical genotypes, but may not necessarily have matched haplotype pairs. For example,
consider HLA loci A and B. Suppose the donor and patient have identical genotypes of G =
{ A = (1, 3), B = (7, 8)}. There are two potential haplo-types that are consistent with this
genotype, namely (h1, h2) = ((A1, B7), (A3, B8)) and ((A1, B8), (A3, B7)). When the donor
and the patient have identical haplotypes, then they are haplotype matched in addition to
being genotype matched. Otherwise, they are haplotype mismatched. With more HLA loci
considered the number of possible haplotypes corresponding to a single genotype is much
larger; Petersdorf et al. (2007) give a detailed example with three loci A, B and DRB1.
Laboratory techniques have been used to determine haplotypes, but these methods required
for HLA haplotyping are technically complex and not easily adaptable for routine diagnostic
use. The method previously described by Petersdorf et al. (2007) requires the manual
purification of intact, long strand (2 Mbp-long) DNA, construction of probe-based DNA
arrays, and hybridization of long strand DNA to solid phase probes. These are very complex
techniques that are not easily adaptable to routine diagnostic testing and would be
challenging even for advanced research laboratories, and often these methods are cost-
prohibitive (Fallin and Schork 2000). The existence of a haplotype matching effect on
transplant survival outcomes among fully HLA-genotype matched unrelated transplants has
not been fully investigated.

In HCT studies, aGVHD (acute GVHD) and death without aGVHD are two competing risks,
and cancer recurrence (relapse) and treatment-related-mortality (TRM, defined as death
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without relapse) are another pair of commonly studied competing risks. It has not been fully
investigated whether there is a haplotype matching effect on cumulative incidence function
of aGVHD, TRM and relapse among those HLA-genotype fully matched unrelated
transplants. If a positive beneficial haplotype matching effect can be identified then patient
and physician should search for a haplotype matched donor among those available to
improve the transplant result. It has been shown that the probability of a HLA-haplotype
match is around 80 % among the HLA-genotype matched patients and donors in the HCT
setting (Petersdorf et al. 2007).

The Petersdorf et al. (2007) analysis was based on observing the haplotype directly and was
carried out as a simple logistic regression analysis or a simple Cox regression analysis. They
showed that haplotype mismatched HCT had a higher aGVHD rate and a lower relapse rate,
and had no effect on TRM and overall mortality. Their study was based on a relative small
sample size with 246 cases. This is the only available study for the haplotype matching
effect. Their results have not been confirmed by others. Recently, Scheike et al. (2008)
proposed using inverse weighting technique to directly model the cumulative incidence
function and proposed a class of flexi-ble regression models. In this paper we study the
haplotype matching effect for the competing risks data only based on HLA-genotype data,
this makes it possible to directly use the vast amounts of available data for studying the
possible effects of haplotype match. We also stress that there are many other related blood
and marrow transplant treatments that have similar issues, and where the methods we
develop here can be used. We here develop our techniques for the HCT study, and consider
a similar cohort of patients with HLA-genotype identical unrelated HCT for leukemia. The
data was selected from the center for international blood and marrow transplant research
(CIBMTR). More generally our techniques can make use of already available data and lead
to new knowledge in the field. Our analysis indicates that haplotype matching has same
direction of effects as in the Petersdorf, but are non significant for all events. To further
verify our conclusion, we consider a simulation study, which shows that proposed method
works well.

We have in earlier work assessed the effect of haplotype match on the overall survival in
HCT studies using missing data techniques for hazard estimation (Scheike et al. 2010,
2011). Also Flanders et al. (2005) considered testing of haplotype association on the hazard
scale based on genotype data. These techniques can not be directly applied in a competing
risks setting because the competing risk may also depend on the unobserved haplotye match
thus leading to dependent censoring if the cause specific hazard is estimated. We also stress
that we here consider the cumulative incidence regression models that models the absolute
risk of experiencing the different causes of death in the competing risks setting and that this
quantity depends on the underlying cause specific hazards for all causes.

The paper is structured as follows. In Sect. 2 we develop a model and show how one can
estimate the parameters of the model and derive the asymptotic results that can be used for
inference. Simulation results to examine the small sample performs are presented in Sect. 3.
Section 4 contains a worked example based on HCT data. Finally, Sect. 5 contains some
discussion.

2 Model specification
Let T̃i and Ci be the event time and right censoring time of the i th individual and let ε̃i ε {1,
2} denote the failure type. Let Ni (t) = (T ̃i ≤t, ε̃i = 1) be the underlying counting process
associated with cause 1 and define the indicator Δi = (T̃i ≤ Ci) that is one when the
observation is uncensored. Note that Ni (t) are not fully observed for censored individuals.
However, the observed counting process, {Δi Ni (t)} are computable for all t. In addition to
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the risk covariates (Xi, Zi), we also observe the common genotype of the patient and donor,
that we denote Gi. We assume that we observe n independent identically distributed (i.i.d.)
replications of {(Ti, εi, Xi, Zi, Gi), i = 1,…, n}, where Ti = min(T̃i, Ci), εi = ε̃i Δi, Xi = (1,
Xi,1,…, Xi,p)⊤, and Zi = (Zi,1,…, Zi,q)⊤. We assume that (T ̃i, ε̃i) are independent of Ci given
covariates of (Xi, Zi, Gi).

Let Hd = (H d1, Hd2) and H p = (H p1, H p2) be the underlying unobserved haplotype pairs
for the donor and patient, respectively. To assess the effect of haplo-type matching, we
consider various regression models for the cumulative incidence function on the form

(1)

for a known link function g and a known regression function g1.

These flexible models allow some covariates, X (H d, H p), to have time-varying effects and
other covariates, Z (H d, H p), to have constant effects. This distinction becomes very
important for the latter application to the HCT study data. Model (1) contains the Fine and
Gray (1999) proportional subdistribution hazards model as a special case and Scheike and
Zhang (2008) used this model to provide goodness-of-fit procedures for model identification
and to check whether a specific covariate has a time-varying effect. The proposed models
rely on the unobserved haplotype pairs for the patient and donor. The specific covariate
designs we have in mind are to model the effect of matching haplotype nonparametrically,
by letting x (H d, H p) = {1, x, I (H d = H p)}, or parametrically by letting z(H d, H p) = {z, I
(H d = H p)}.

Commonly used “cloglog” and “log” link functions can be considered here, which lead to a
semiparametric multiplicative model

(2)

and a semiparametric additive model

(3)

respectively.

When the haplotype model that links the observed genotype to the haplotype frequencies can
be identified, then we can estimate these parameters consistently and derive the large sample
properties.

To model the haplotype matching effect based on observed genotype data, we also need a
model that relates the observed genotypes to the underlying haplotypes. With the haplotype
pair H = (h1, h2), we assume Hardy-Weinberg equilibrium such that

where πi, i = 1,.., K gives the frequencies of the considered haplotypes. Based on this we can
infer the conditional distribution of the underlying haplotypes given the observed genotype,
P(H = h|G = g). Specifically, P{H = (hi,hj)|G = g} = P{H = (hi, h j: hi * h j = g)}/P(G = g),
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where hi * h j = g means that the haplotypes hi and h j are consistent with observed genotype
g, and P (G = g) = Σhi,hj:hi*hj = g P{H = (hi, h j)}. In the HCT data we have a very large
haplotype space (with many haplotypes) and limited observed data. We therefore make
further simplifying assumptions about the haplotype frequencies letting several rare haplo-
types share common frequencies in our model specifications concerning the haplotype
frequencies that follows in the next section.

For the fully observed covariate V = (X, Z, G), the cumulative incidence function has the
form:

where h p * hd ε G if h p1 * h p2 = hd1 * hd2 = g ε G. The last equality follows by the
assumption that the risk covariates do not affect the haplotype distribution given the
genotype, and the patient and donor have independent haplotypes given G. The last
assumption is consistent with the fact that the donor and patient are unrelated, but for related
donor and patient this part of the expression must be changes appropriately.

To estimate the parameters of the underlying model (1) we consider an inverse probability
censoring weighting method as used in Scheike et al. (2008). This is based on the fact that

where SC (t |X i, Z i, Gi) is the survival distribution for the censoring time. We will for
simplicity in the presentation assume that the censoring distribution does not depend on any
of the observed covariates, denoted as SC (t).

These calculations show how the basic principle for modelling the missing data relies on
computing the conditional mean of the missing covariate, (Hd, Hp), given the observed data
(X, Z, G). It is evident how our approach more generally deal with missing covariates in the
context of cumulative incidence estimation, but we here focus on the haplotype match
problem that has been motivating our developments.

2.1 Estimation
We suggest a simple and robust two-stage procedure for estimation, where we first estimate
the haplotype-probabilities and then use these estimated frequencies for estimating the
regression parameters given in model (1) for the cumulative incidence functions. This will
lead to some loss of efficiency but keeps things simple, and in our experience this loss of
efficiency will typically be minor.

To estimate the haplotype parameters we consider the log-likelihood of the genotype data Πi
P (Gi = gi). We consider the logistic regression model for the haplotype frequencies,
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where (α1,…,αK–1)⊤ = Xθ, and X is a design matrix of size (K –1) × m, with m ≤ K–1 and
θ = (θ1,…,θm)⊤

Let Ũθ(θ) = Σi Ũθ,i (θ), where Ũθi (θ)is the score of the log-likelihood for the i th subject. θ̂

is estimated by solving Ũθ(θ̂) = 0. By standard asymptotic theory of the MLE,  is
asymptotically normal and asymptotically equivalent to

where Uθ,i (θ) = (θ)}−1 Ũθ,i(θ), and (θ) = −∂Ũθ(θ)/∂θ.

Now, given θ̂ we can solve score equations for η(t) and γ simultaneously using inverse-

censoring weighted technique. Let  be the n × 1 vector of P1(t; xi, zi, gi) for i
= 1,…, n, let R(t) be the n × 1 vector of adjusted responses Δi Ni (t)/ŜC (Ti), and let Dη (t,
η(t),γ,θ) and Dγ (t,η (t),γ, θ) be matrices with with the i th rows equal to Dη,i (t,η (t),γ, θ) =
∂P1(t; xi, zi, gi)/∂η (t) and Dγ,i (t, η(t),γ) = ∂P1(t; xi, zi, gi)/∂γ, respectively. Define similarly
Dθ (t, η(t),γ, θ) as the matrix with i th row equal to ∂P1(t; xi, zi, gi)/∂ θ.

The regression functions η(t) and regression parameters γ can be estimated based on the
following estimation equations for fixed θ:

(4)

(5)

where τ is the last event time point. Note that the estimates of η(t) will be piecewise constant
functions that change their value only after events of type one, so we only need to consider
the score equations for η(t) in the jump times.

The large sample properties in the case of known haplotype parameters, θ, follows the
developments of Scheike et al. (2008) and Scheike and Zhang (2008). We show that how the
asymptotics are changed due to the additional uncertainty that comes from the estimates of
the haplotype frequencies.

For known θ, we have shown that the distributions of  and  are
asymptotically equivalent to the following i.i.d. decomposition of

respectively, where
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and detailed formula of (W1i (t), W2i) and its consistent estimates (Ŵ1i (t), Ŵ2i) are given in
Scheike et al. (2008) and Scheike and Zhang (2008).

For unknown θ, based on a two-stage approach using the MLE θ̂ and under regularity

conditions, it therefore can be shown that  and  are jointly
asymptotically Gaussian, both zero mean, and with distributions that are asymptotically
equivalent to

respectively, where

Let  (t), Ŵη,i (t),  and Ŵγi be the estimators of their population counter parts by plugging

estimates of all needed quantities. The asymptotic distributions of  and

 are asymptotically equivalent to the following conditional multiplier version of

the i.i.d. decompositions  and ,
respectively, where E1,.., En are i.i.d. standard normals. It follows that the asymptotic

variance of  and  can be estimated consistently by

respectively, where a⊗ 2 = aa⊤.

A (1 - α) × 100 % asymptotic confidence band for η̂(t) over a fixed time interval can be
constructed using resampling technique. These resampling results can be used to construct
confidence band for the predicted cumulative incidence function as in Scheike et al. (2008).

3 Simulation study
To investigate the fixed sample properties we did a simulation study that mimics the data
example analyzed in Sect. 4. We considered 3,712 patients with genotypes equivalent to the
observed ones. Based on the haplotype frequencies described earlier we then sampled
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haplotype pairs consistent with the observed genotypes for both patient and donor, and then
simulated a cumulative incidence function of additive form with approximately 815 events
of interest for different levels of the effect of haplotype match. We generate data from a
semiparametric multiplicative model (2),

with γ = {−0.5, −0.3, −0.1, 0, 0.1, 0.3, 0.5}. Observed coverage probabilities are reported in
Table 1.

The results of the simulations are given in Table 1. We see that the estimator is almost
unbiased for all considered levels of the effect size. The variance is well estimated and the
coverage is close the nominal level. All in all we conclude that the finite sample
performance is quite good in a sample size similar to the one in the considered data.

4 HCT patients
Petersdorf et al. (2007) studied the effect of MHC haplotype match based on 246 leukemia
patients who received a HLA-genotype fully matched unrelated HCT from 1986 to 2003.
Their analysis was based on observing the haplotypes directly. This is a very costly and
time-consuming procedure (Fallin and Schork 2000). They identi-fied 191(78 %) and 55(22
%) transplants were haplotype matched and miss-matched, respectively. They demonstrated
that haplotype matched transplant had a lower incidence rate of grade III–IV aGVHD (odds-
ratio=0.22, p < 0.0001) and a higher cancer relapse rate (hazard-ratio=2.22, p = 0.03), but
had no impact on the TRM and overall mortality. In this study, we show how modeling of
the missing haplotype data can also be used to address these issues. For the illustration
purpose, a similar transplant patient cohort was selected from the statistical center of the
center for international blood and marrow transplant research (CIBMTR). The analysis has
not been reviewed or approved by the Advisory or Scientific Committee of the CIBMTR.
The CIBMTR is comprised of clinical and basic scientists who confidentially share data on
their blood and bone marrow transplant patients with CIBMTR Data Collection Center
located at the Medical College of Wisconsin. The CIBMTR is a repository of information
about results of transplants at more than 450 transplant centers worldwide.

The example data consists of 3,712 leukemia patients (1,822 for acute myeloid leukemia
(AML), 982 for acute lymphoblastic leukemia (ALL) and 908 for chronic myelogenous
leukemia (CML)). All patients in the study were HLA-A, B, DRB1 allele matched in high
resolution with their donors and transplanted between 1995 and 2007. 1,651; 1,047 and
1,014 patients were transplanted in low, intermediate or high risk of disease statuses,
respectively. 647 Males patients received graft from a female donor. 81 % of patients
received myeloablative conditioning regimen, 53 % of patients were treated with
methotrexale (MTX) + cyclosporin (CsA) ± other or CsA± other for GVHD prophylaxis,
and 56 and 44 % of patients received bone-marrow (BM) or peripheral-blood (PB)
transplant, respectively.

The genotype data is based on high resolution classification of alleles at three-loci HLA-A,
HLA-B and HLA-DRB1. We consider two-stage procedure for this study. First, we need to
estimate the haplotype frequencies, πi or θ = (θ1,…,θm)⊤ (see Sect. 2). Two estimation
approaches can be considered. One is using MLE method based on current study data.
Potentially, we will have a very rich haplotype space. To reduce the total number of possible
haplotypes, some additional structure is needed. We here suggest to group the rare
frequencies into groups with a common haplotype frequency. Alternatively, we can also use
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other available data for estimation of the hap-lotype frequencies (Excoffier and Slatkin
1995; Hawley and Kidd 1995; Long et al. 1995). Clearly using this additional data leads to a
more accurate and stable estimation for the haplotype frequencies.

Both methods were used for this HCT study and gave similar results. In this paper, we report
the results based on the additional data for the estimation of the haplotype frequencies. The
National Marrow Donor Program (NMDP)’s existing potential donor pool as the
background population cohort. The NMDP is a nonprofit organization dedicated to creating
an opportunity for all patients to receive the bone marrow or umbilical cord blood transplant
they need, when they need it. Currently, there are about eight million volunteer adult donors
are registered in the NMDP’s potential donor pool. It is known that the haplotype frequency
is determined by racial category. The donor’s and patient’s racial categories are fully
observed for our study cohort and utilized in our haplotype frequency calculation. Among
3,712 HLA-identical unrelated HCT, the estimated average probability of haplotype
matching is 80.7 % which is similar to Petersdorf et al. (2007)’s report.

To excess the haplotype matching effect on aGVHD, TRM, relapse and treatment failure
which is defined as TRM or relapse, we fit the multiplicative model

(6)

where the first element of X is constant one, and adjusting remaining covariates X of disease
type (AML versus ALL versus CML), and covariates Z of patient age (>45 versus 19–45
versus ≤18 years old), disease status at pre-transplant (advanced disease versus low or
intermediate disease), donor–patient gender match (female to male versus other),
conditioning regimen (NST/RIC versus myeloablative), GVHD prophylaxis (MTX+CsA ±
Other or CsA±Other versus others), graft type (PB versus BM) and year of transplant (2002–
2007 versus 1995–2001). In our study sample, 815(22 %) patients developed grade III–IV
aGVHD, 1,488 patients died without aG-VHD and 1,409 patients were censored at end of
study. 2,268 Patients were considered as treatment failure in which 1,255 patients died in
compete remission (TRM) and 1,013 patients relapsed. Our analysis showed that haplotype
match has no effect on aGVHD, relapse, TRM and treatment failure (Table 2).

We also considered the model with non-parametric haplotype match effect where

(7)

where we subsequently performed a resampling test for the constant effect of H0: η0(t) ≡ η0
using a supremum Kolmogoroff–Smirnov test. If this test is significant it also suggests that
the haplotype match effect is significant with time-varying effect. We stress that the test
differs from the test for non-significant effects H0: η0(t) ≡ 0, that are not significant for all
outcome events. We note that haplotype match has non-significant effect on the probability
of aGVHD, relapse, TRM and treatment failure (see Table 2). Figure 1 shows the effect of
haplotype match versus haplotype mismatch for TRM, a negative (beneficial) effect for the
haplotype matched HCT within first 90 months of transplant and a positive late effect,
however, it is not significant since 95 % confidence band contains some straight lines. This
is further confirmed by non-significance of the constant effect test (H0: η0(t) ≡ η0, for a
constant η0). Constant haplotype matching effects have been observed in all other outcomes.
Thus, multiplicative model (6) with constant haplotype matching effect can be considered
for all outcomes, which validates the the parametric test from Table 2. This model validation

Scheike et al. Page 9

Lifetime Data Anal. Author manuscript; available in PMC 2013 November 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



is a critical an important part of such an analysis, and easily done by the developed
methodology.

Based on fitted models, we can compute the predicted cumulative incidence functions (CIF)
of aGVHD, relapse, TRM, and leukemia-free survival probability for a given set values of
the covariates with 95 % confidence intervals and confidence bands. For the illustration
purpose, we compute the predicted CIF of TRM by haplotype matched versus miss-matched
for a patient with AML disease, transplanted in early or intermediate disease stage, donor–
patient gender match of male to male (MM) or (MF) or (FF), received myeloablative
conditioning regimen, CsA±Other for GVHD prophylaxis, and bone marrow graft source,
and transplanted between 2003 and 2007. Resampling method based on 1,000 realizations
was used to construct confidence band (See Fig. 2). Figure 2a shows the predicted CIF based
on constant multiplicative model (6). Figure 2b shows the predicted CIF based on the
alternative non-parametric haplotype match effect model (7), which is a more flexible model
allowing haplotype matching effect change over time. Figure 2b shows that haplotype
matched transplant has a lower cumulative incidence of TRM initially and a higher
incidence rate of TRM later although this change is not significant.

5 Discussion
We have demonstrated how to assess the haplotype matching effect on the competing risks
for hematopoietic cell transplant studies based on modeling of the missing data. This opens
up for using the huge amounts of available data for studying detailed aspects of the HLA
haplotypes on the outcome for blood and marrow transplants studies without cost-
prohibitive laboratory typing for the haplotypes for patient and donor.

Another situation where the effect of haplotype matching is of interest is transplantations
using umbilical cord blood (CB) which has recently been accepted as an alternative graft
source to bone marrow (BM) for HCT (Eapen et al. 2007). Most CB transplants are
mismatched at one or two HLA loci. For HLA-genotype mismatched unrelated transplants,
the haplotype pairs of the donor and the patient can be either matched on a single haplotype
or mismatched on both haplotypes. For example, with patient HLA-genotype G p = { A = (1,
3), B = (7, 8)} and donor genotype Gd = { A = (1, 3), B = (7, 13)} which are mismatched at
the B locus, it is possible that they share a single haplotype (A1, B7). As far as we know, the
question of whether there is an effect of a single haplotype matching versus both haplotypes
being mismatched for HLA-mismatched unrelated transplants has not yet been investigated.
The methods developed here can be used to study such questions.

We found no significant haplotype matching effect on grade III–IV aGVHD, relapse and
TRM when fitting a model with constant effects. A more careful model examination using
the non-parametric models validated these conclusions.

We have implemented the methods in the R-package HaploSurvival that is available from R-
forge.

An issue for further research is a further study of the robustness to incorrect modeling of the
haplotype distribution. Here it could be of interest to develop robust estimating equation
along the lines of Allen and Satten (2005) and Allen et al. (2005), but extending these
methods to our setting is not obvious.
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Fig. 1.
Effect of haplo-match for CIF of TRM with corresponding 95 % confidence bands (dashed
lines)
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Fig. 2.
Thick solid and dashed lines are the CIF of TRM for haplo-matched and haplo-mismatched
HCT, respectively. Light solid and dashed lines represent corresponding 95 % confidence
bands. a based on parametric model, and b non-parametric effect of haplo-match
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Table 1

Mean of estimates (mean est.), the standard deviation of estimates (sd. est.), the mean of estimated standard
errors (mean SE), and observed coverage of 95 % confidence intervals (coverage %) based on 1,000
realizations for different effect sizes (β)

γ Mean est. Sd. est. Mean SE Coverage (%)

−0.5 −0.470 0.097 0.097 94

−0.3 −0.277 0.063 0.065 93

−0.1 −0.089 0.049 0.051 96

0.0 0.000 0.041 0.041 95

0.1 0.093 0.050 0.050 94

0.3 0.285 0.065 0.063 95

0.5 0.479 0.087 0.088 94
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Table 2

Adjusted effect of HLA-A, -B, -CRB1 haplotype matching of risks of grades III–IV aGVHD, relapse, TRM
and treatment-failure after HCT from HLA-identical unrelated donors

Outcome exp(γ̂ 0) 95 % CI P-value Nonparametric test P-value

aGVHD III–IV 0.98 0.69–1.38 0.98 0.46

Relapse 1.03 0.76–1.41 0.83 0.94

TRM 0.93 0.69–1.24 0.62 0.27

Treatment-failure 0.99 0.77–1.25 0.91 0.15
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