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SUMO conjugation is known to occur in response to double-
stranded DNA breaks in mammalian cells, but whether SUMO
deconjugation has a role remains unclear. Here, we show that the
SUMO/Sentrin/Smt3-specific peptidase, SENP7, interacts with
the chromatin repressive KRAB-associated protein 1 (KAP1)
through heterochromatin protein 1 alpha (HP1a). SENP7 pro-
motes the removal of SUMO2/3 from KAP1 and regulates the
interaction of the chromatin remodeler CHD3 with chromatin.
Consequently, in the presence of CHD3, SENP7 is required
for chromatin relaxation in response to DNA damage, for
homologous recombination repair and for cellular resistance to
DNA-damaging agents. Thus, deSUMOylation by SENP7 is
required to promote a permissive chromatin environment for
DNA repair.
Keywords: homologous recombination; HP1a; KAP1;
SENP7; SUMO
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INTRODUCTION
Mammalian double-strand break (DSB) repair is achieved by two
main mechanisms; non-homologous end joining (NHEJ) or
homologous recombination (HR). NHEJ ligates broken ends
together, whereas HR requires a homologous template. Isoforms
of the small ubiquitin-related modifiers (SUMOs, also called
Sentrin/smt3) are covalently conjugated to various proteins in the
mammalian DNA damage response. SUMO2 and 3 are 97%
identical (referred to as SUMO2/3), whereas SUMO1 is more
distantly related. SUMO2/3, but not SUMO1, readily forms
polymers on substrates (polySUMO).

SUMOylation often acts to increase the interaction of modified
proteins with those bearing SUMO interaction motifs (SIMs),
having the consensus: V/I/L-V/I/L-x-V/I/L. SUMOylation can alter
the function of individual proteins and groups of proteins,
changing the efficacy of intracellular pathways [1]. In the
response to DSBs, SUMOylation is essential for the proper
recruitment of several repair factors [2].

Higher-order organization of chromatin also influences DNA
repair. Chromatin-associated SUMO-modified proteins can recruit
repressor complexes such as LSD1/CoREST1/HDAC [3] and the
nucleosome remodelling and deacetylation (NuRD) complex [4].
Such repression must be released to promote relaxation and allow
DNA repair [5,6]. Both global and local chromatin structure is
loosened following induction of a DNA lesion [5,6], whereas in
heterochromatic DNA, relaxation is necessary for HR proficiency [7].

In this study, we addressed whether a role for SUMO
deconjugation exists in the repair of DSBs. The removal of
SUMO from a target is performed by members of the SUMO/
Sentrin/Smt3-specific peptidases (SENP) family of cysteine
proteases, and by at least two non SENP proteases [8–10].
SENP1/2/3/5 deconjugate mono SUMO1/2/3, whereas SENP6/7
are specialized chain-editing enzymes [11,12]. SENP1 and 2 have
indirect roles in DNA repair by regulating the NF-kB pathway
and p53 levels [13,14]. SENP6 is reported to inhibit RPA70
SUMOylation [15], and SENP7 is a chromatin-associated protein
that interacts with HP1a [16–18]. Here we report that SENP7 is
specifically required for HR repair. We reveal that SENP7
regulates chromatin relaxation induced in response to DNA
damage, through KRAB-associated protein 1 (KAP1)-associated
chromatin remodellers.

RESULTS AND DISCUSSION
SENP enzymes are involved in DSB repair
We first examined the effect of SUMO2 deconjugation mutants
on HR repair. Despite the presence of endogenous SUMO2/3,
expression of the deconjugating mutant (Q90P) or SENP6/7
binding mutant (N68A/D71H) [19,20] impaired HR repair
(supplementary Fig S1A–C online). This implicates deconjugation
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of SUMO in HR. Next, we measured HR and NHEJ DSB repair in
cells depleted for each SENP. All but SENP3 and SENP5 small
interfering RNA (siRNA) treatment reduced repair proficiency
in these assays (Fig 1A,B, supplementary Fig S1D,E online).
Given the effects of the N68A/D71H mutant and reduced
repair efficiency in SENP6/7-depleted cells, we focused on
the chain-editing SENPs. Perturbation of the cell cycle can
indirectly influence repair. While SENP6 siRNA perturbed cell
cycle kinetics, we observed little impact of SENP7 siRNA
(supplementary Fig S1F online). Indirect impairment of the
cellular response to DSBs might also occur as a consequence of
trapping SUMO on substrates (Fig 1C) [11], potentially reducing
free SUMO2/3 for de novo conjugation required in DNA damage
response signalling. Therefore DNA repair assays in SENP6- or
SENP7-depleted cells in which RFP-SUMO2 and SUMO3 were
expressed were performed. This revealed that SUMO2/3 improved
repair in SENP6/7-depleted cells, but did not fully restore HR in
SENP7-depleted cells (supplementary Fig S1G and H online). This
suggests the effects on HR following SENP7 depletion are not
wholly caused by an indirect impact through SUMO homeostasis.
To examine whether the enzymatic activity of SENP7 is required,
we complemented knockdown with siRNA-resistant Flag-SENP7.
Expression of WT, but not catalytic mutant (C992A), restored
HR (Fig 1D), thus the impact of SENP7 siRNA on HR is through
SENP7 protease loss.

Poor HR repair slows clearance of gH2AX foci following
DNA damage. After treatment with topoisomerase poison,
camptothecin (CPT), gH2AX foci clearance was slowed in
SENP7-depleted cells (Fig 1E). We next examined the ability of
proteins required to signal and repair DSBs to recruit to gH2AX-
decorated DNA. Recruitment of 53BP1, BRCA1 and the formation
of RPA foci in G2 cells were similar in SENP7 siRNA and control-
treated cells (supplementary Fig S1I online). However, RAD51
accumulation was severely restricted (Fig 1F–H). Therefore, early
signalling events appear normal, but later steps such as RAD51
loading, invasion or homology search are impaired in SENP7-
depleted cells. Similar findings have been noted in Drosophila
heterochromatin and in human cell depletion of the p400, ATPase
chromatin remodeller. Under these circumstances DSB signalling is
not lost but inhibits RAD51-mediated repair [21,22]. Consolidating
these observations, we found that SENP7-depleted cells were
sensitive to IR, CPT and the PARP inhibitor, 4-amino-1-8 naphthali-
mide (Fig 1I). These data show a requirement for the SUMO2/3 chain
editor SENP7 in the response to DSBs and in HR repair.

SENP7 SIMs and HP1a interaction promotes HR repair
SENP7 contains seven potential SIMs outside the catalytic
region. We mutated all of these to generate SIM-less-SENP7 and
derivatives in which SIM sequences were re-introduced (Fig 2A;
supplementary Fig S2A online). These changes had no impact on
the subcellular localisation of the mutants, nor adversely affected
expression (Fig 2A). SIM-less-SENP7 was unable to rescue
HR repair (supplementary Fig S2B online), but inclusion of
SIMs 6/7 restored the majority of the repair efficiency (Fig 2B). The
fragment of SENP7 protein encompassing SIMs 6 and 7 interacted
with polySUMO2 whereas the SIM mutant (supplementary
Fig S2A online) did not (Fig 2C), indicating this region promotes
interaction with SUMO2. Together these data suggest SUMO
interaction contributes to the activity of SENP7 in HR repair.

SENP7 contains a conserved HP1-box (PxVxL) (Fig 2D) required
for interaction with HP1 [16,18]. To address the role of SENP7
chromatin localization and HP1 binding in HR, we mutated
the sequence. However, mutant protein located to the cytoplasm
(Fig 2E,F) and similarly siRNA depletion of heterochromatin
protein 1 alpha (HP1a) resulted in a loss of endogenous SENP7
from the nucleus (supplementary Fig S2C online). Nuclear
localization of the mutant could be restored by treatment with
the CRM1 inhibitor, Leptomycin-B (LMB) or by substitution of
residues in the nuclear export sequence (NES) adjacent to the
HP1-box (Fig 2E,F) indicating that the interaction with CRM1
mediates SENP7 nuclear export when the HP1-box is mutated.
Nuclear localization of the HP1-box mutant, whether by
co-mutation of the NES or by LMB treatment, failed to restore
interaction with HP1a (Fig 2G; supplementary Fig S2D online).
In addition, the ability of SENP7 to co-purify with chromatin
required its HP1-box, suggesting localisation through HP1a
(Fig 2H). HR repair in SENP7-depleted cells could not be restored
by expression of SENP7-HP1-box mutants (Fig 2I), suggesting HP1
interaction and chromatin localization of SENP7 are significant in
its promotion of DNA repair.

SENP7 regulates SUMO2 modification of KAP1
Despite several attempts, we were not able to detect changes in
endogenous HP1a SUMOylation following SENP7 depletion.
Therefore, we reasoned that SENP7 substrates might include
proteins that are co-enriched with HP1a. KAP1 is modified by
auto-SUMOylation, interacts with HP1a [4,23] and can be both
mono and polySUMOylated [24,25]. Immunoprecipitation of
WT-SENP7 revealed a weak interaction with endogenous KAP1,
but no KAP1 was precipitated with NESm-HP1m-SENP7 (Fig 3A),
suggesting SENP7–KAP1 interaction requires HP1 binding.
Strikingly, SENP7-C992A interacted robustly with KAP1 in an
HP1-box-dependent manner (Fig 3A,B). The fact that SENP7
C992A did not show increased interaction with HP1a suggests
that the interaction with KAP1 is both through HP1a binding and
secondarily through the SENP7 catalytic domain, consistent with
an enzymatic trap (Fig 3C).

We noted higher-molecular weight species of KAP1 when the
SENP7 catalytic mutant was overexpressed, potentially represent-
ing SUMO-KAP1 (Fig 3A inputs). To test the influence
of endogenous SENP7 on KAP1-SUMOylation, we purified
His-SUMO2 conjugates in denaturing conditions and probed for
KAP1. Further SUMO2 modifications were evident in untreated
and CPT-treated cells when SENP7 was depleted (Fig 3D).
In addition polySUMOylated KAP1 could be deSUMOylated
in vitro by SENP7 (Fig 3E), whereas mono-SUMOylated KAP1
could not (supplementary Fig S3A,B online). Together, these data
indicate that the degree of polySUMO2-conjugated KAP1 is
regulated by the associated protease, SENP7. We envisage that
HP1a is responsible for tethering SENP7 to chromatin, and that
SENP7 acts to restrain the levels of local SUMO2/3 conjugates on
proteins such as KAP1.

SENP7 regulates CHD3 association with chromatin
SUMO1ylated KAP1 recruits the NuRD complex ATPase com-
ponent CHD3 and the histone methyltransferase SET domain,
bifurcated 1 (SETDB1) contributing to chromatin condensation [4,6].
Condensed chromatin state is relieved on DNA damage by
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Fig 1 | The SENP7 protease is required for HR repair. (A) Chain-editing SUMO proteases SENP6 and SENP7 are required for DSB repair. HeLa DR3-GFP

(HR repair) and EJ5-GFP (NHEJ) reporters were treated with non-targeting control, BRCA1, SENP6 or SENP7 siRNA before transfection with Sce-I.

(All bars throughout show standard error about the mean of three independent experiments). (B) Knockdown efficiency of SENP6/7. HEK293 expressing

Flag-SENP6/SENP7 and treated with indicated siRNA. (C) Depletion of SENP6 and SENP7 increases SUMO2/3 conjugates. HEK293 transfected with

indicated siRNA and lysates probed with SUMO2/3 antibody and anti-b-actin. (D) siRNA-resistant WT-SENP7, but not catalytic mutant, C992A, can

compensate for SENP7 depletion in HR repair assays. HeLa DR3 depleted of endogenous SENP7 before transfection with Sce-I, RFP and siRNA-resistant

Flag-SENP7. % HR repair relative to non-targeting control is shown. Inset shows WB of Flag-SENP7 expression and b-actin loading control.

(E) Clearance of gH2AX foci after CPT treatment. U2OS depleted of SENP7 and treated with 1mM CPT (1 h), before washing and recovery. Cells stained

against gH2AX. % cells with 45 foci were scored. (F–H) RAD51 foci are reduced in SENP7-depleted cells. U2OS transfected with siRNA before 2.5 Gy
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(G). Representative images of IR-treated cells are shown in (F). Immunoblot from parallel experiment lysed and blotted with RAD51 (H). (I) SENP7

depletion sensitizes cells to IR, CPT and PARP inhibition (4AN). Clonogenic assay of HeLa treated with indicated siRNA followed by doses of 4AN, IR

or CPT. 4AN, 4-amino-1-8 naphthalimide; CPT, camptothecin; DSB, double-strand break repair; HR, homologous recombination; IR, ionizing radiation;

NTC, non-targeting control; PARP, poly ADP ribose polymerase; siRNA, small interfering RNA; UT, untreated; WB, western blot; WT, wild type.
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phosphorylation of KAP1 by ataxia telangiectasia mutated (ATM)
protein kinase [5]. The phosphorylated KAP1 site is reported to
reduce the influence of SUMO1-KAP1 by competing with the SIM
of CHD3 for the interface with SUMO1, and in consequence
reduce CHD3-KAP1 interaction and promote CHD3–NuRD
complex dispersion and chromatin relaxation [6].

We tested whether the CHD3-SIM might also bind polySUMO2
using CHD3 peptides. The carboxy-terminal fragment bound to
polySUMO2 in a manner dependent on its SIM motif
(supplementary Fig S3C online), indicating binding to SUMO2
as well as SUMO1. Similarly, the CHD3 C-terminus was able to
purify KAP1 from SENP7-depleted cells (supplementary Fig S3D
online). We next examined whether chromatin association of
CHD3 is regulated by SENP7 or polySUMO2-KAP1. In control
cells, treatment with neocarzinostatin (NCS) increases the
proportion of soluble CHD3, while decreasing the proportion on
insoluble chromatin. In SENP7-depleted cells, this redistribution
does not occur (Fig 3F). We fused 4xSUMO2 to C-terminal
KAP1 to generate a mimic of polySUMO2-KAP1. In cells
expressing this construct, the proportion of CHD3 in the soluble
fraction was similarly unaffected by NCS treatment and
the insoluble chromatin fraction did not decrease (Fig 3G).
These findings correlate SENP7 activity and the restriction
of KAP1-SUMO2 modification, with promoting reduced
CHD3–chromatin interactions.

DNA damage-associated remodelling requires SENP7
HDACs and the ATPase associated with the NuRD complex
promote chromatin condensation [26], predicting that SENP7 is
likely to regulate chromatin state. Consistent with this notion,
prolonged SENP7 depletion has been reported to induce
chromatin condensation [18]. We examined chromatin state
after SENP7 depletion and found acute depletion did not have a

gross effect (Fig 4A). However, after NCS treatment, or following
a single euchromatic break, chromatin accessibility was
reduced in SENP7-depleted cells (Fig 4A and B), indicating
that SENP7 is required for chromatin relaxation in response to
DNA damage.

To address whether SENP7 acts to promote DNA repair through
its impact on chromatin remodeler recruitment, we co-depleted
SENP7 and CHD3 before examining chromatin condensation,
HR repair and resistance to PARP inhibitor. In each case,
co-depletion of CHD3 bypassed the need for SENP7 (Fig 4C–E,
supplementary Fig S3C online); therefore, SENP7 acts to counter
chromatin condensation by the CHD3–NuRD complex and
promote DSB repair.

Recruitment of the histone methyltransferase, SETDB1, also
occurs via SUMO1-KAP1, [4] and we speculate SETDB1
interaction with chromatin might be similarly increased in the
presence of polySUMO2-KAP1. Increased SETDB1 association
would be an explanation for the enlarged HP1a chromatin
deposits seen following SENP7 depletion in the human cells [18].
Thus SENP7 might act to prevent heterochromatin spread over time.

In contrast, murine Senp7 has been reported to maintain HP1a
chromatin deposits [17]. Mindful of the potential for species
differences, we examined if the role of SENP7 in DNA repair
is conserved in mice. siRNA to Senp7 reduced clearance of
gH2AX in murine NIH3T3 cells whereas gH2AX kinetics
were normal in cells treated with Chd3 and Senp7 siRNA
(Fig 4F). Thus the murine Senp7 also regulates DNA repair via
Chd3, indicating functional conservation.

DNA repair in heterochromatin is dependent on chromatin
remodelling. To specifically examine this compartment, we
counted gH2AX foci in chromocentres in NIH3T3 cells. gH2AX
foci were more prevalent within the chromocentres several
hours after induction of damage in Senp7-depleted cells than in

Fig 4 | SENP7 regulates chromatin decondensation required for HR repair. (A) SENP7 is required for chromatin relaxation in response to DNA

damage. HEK293 transfected with siRNA before treatment with NCS. Nuclei were incubated with MNase (0.25 U/5 min). Data are represented as %

signal/lane determined by densitometry. (B) SENP7 is required for localized euchromatin relaxation. Cells stably expressing oestrogen receptor-fused

IPpoI transfected with siRNA and treated with vehicle or 4-OHT to induce DSB’s. Euchromatin accessible to digestion was assayed using EpiQ assay.

Chromatin was digested and PCR amplification of the chromosome 1 site (DAB1 gene intron) adjacent to the IPpoI endonuclease target site was

undertaken. Graph shows Qc (amplification efficiency) of (digested/undigested) for vehicle/4-OHT treatment. (C) CHD3 depletion restores HR repair

in SENP7-depleted cells. HR repair assay performed as for Fig 1C. % GFP/RFP (HR repair) relative to GFP/RFP in NTC is shown. (D) CHD3 depletion

confers PARP-inhibitor resistance of SENP7-depleted cells. Clonogenic assay of HeLa transfected with indicated siRNA followed by treatment with

4AN. (E) CHD3 depletion restores chromatin decondensation in SENP7-depleted cells. Cells transfected with indicated siRNAs before NCS treatment

and MNase assay as in Fig 4A. (F) gH2AX clearance is restored by depletion of Chd3 in Senp7-depleted mouse cells. NIH3T3 transfected with NTC

or Senp7 siRNA, exposed to 2.5 Gy IR and allowed to recover for indicated times before staining with antibody to gH2AX. Cells with 45 foci were

counted (100 cells, in three independent experiments). (G). Model of SENP7 in promoting chromatin state in the presence and absence of DNA

damage. (i) SENP7 and KAP1 are co-located on chromatin. SENP7 constitutively deSUMOylates KAP1 preventing formation of polySUMO2/3-KAP1.

SUMO-KAP1 associates with NuRD subunit CHD3 and histone methyltransferase SETDB1 via SUMO interacting motifs. (ii) KAP1-SUMO homeostasis

is a two-step process by which SENP7 deconjugates the polySUMO2/3 KAP1 and other SUMO proteases, such as SENP1 deconjugate the mono-

SUMO2/3 KAP1. (iii) Following induction of DNA damage response, KAP1 is phosphorylated at Ser824 by ATM. KAP1 phosphorylation interferes with

CHD3SIM–SUMO-KAP1 interaction, allowing dispersion of CHD3–NuRD complexes resulting in chromatin relaxation and repair of DNA. (iv) In the

absence of SENP7, KAP1 is hyperSUMO2ylated. The increased SUMO2 conjugates in the vicinity of CHD3SIM negate the interference provided by the

negatively charged KAP1-pSer824 and CHD3–NuRD is not released from chromatin and remodelling does not occur. (vi) Potentially prolonged absence

of SENP7 promotes hyperSUMOylation of KAP1 leading to excessive remodeller accumulation and (through SETDB1) increased methylation of H3K9.

This results in spread of heterochromatin factors and condensed chromatin. 4AN, 4-amino-1-8 naphthalimide; DSB, double-strand break repair; GFP,

green fluorescence protein; HR, homologous recombination; IR, ionizing radiation; KAP1, KRAB-associated protein 1; NCS, neocarzinostatin; NTC,

non-targeting control; NuRD, nucleosome remodelling and deacetylation; PARP, poly ADP ribose polymerase; PCR, polymerase chain reaction; RFP,

red fluorescent protein; SETDB1, SET domain, bifurcated 1; siRNA, small interfering RNA.
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control-treated cells (supplementary Fig S3F online). This suggests
a further slower rate of DNA repair, or reduced mobility of
the damaged chromatin induced by Senp7 loss and suggests
a role for Senp7 in heterochromatic DNA repair in addition to
global and euchromatic environments.

By acute depletion of SENP7 and examination of the cellular
response to DNA damage, we have revealed a novel role for
a SUMO chain-editing protease in promoting a permissive
environment for HR repair. We propose a model in which
chromatin-associated SENP7 acts to restrict the degree of poly-
SUMO2/3ylation of local proteins, including KAP1, thereby
allowing the regulation of chromatin remodellers bearing SIM
motifs, such as CHD3, which in turn affect chromatin condensation
state (Fig 4Gi and ii).

SENP enzymes represent an aspect of the SUMO pathway
potentially accessible to small molecule inhibition, and these data
suggest that targeting SENP7 might have therapeutic potential to
enhance the efficacy of DNA-damaging agents. Further, as KAP1
has functions in transcription repression, particularly in epigenetic
regulation and retroviral silencing [27], we anticipate a role for
SENP7 in these processes.

METHODS
Statistics. All experiments were performed in triplicate, with error
bars denoting standard error of mean. For IF counting, a minimum
of 100 cells were counted per group in triplicate.
Plasmids and transfections. Full-length human SENP7 (CCDS2941)
was subcloned into pCDNA5/FRT/TO with N-terminal Flag
tag. Mutants were generated by site-directed mutagenesis unless
otherwise stated and verified by sequencing. KAP1-4xSUMO2
encodes a cDNA with myc tag, full-length human KAP1 and 4
SUMO2 tandem sequences starting at codon 11 (Lys) and finishing
with codon 98 (Gly) subcloned into pCDNA5/FRT/TO. The cDNA
was generated by gene synthesis (GenScript) and included multiple
silent mutations to reduce DNA sequence repetition. His-SENP7
SIM cDNA were generated by gene synthesis (GenScript) and
cloned into pET15b vector (Novagen). Plasmid transfections were
performed with Fugene6 (Promega) and siRNA with Dharmafect-1
(Dharmacon) according to the manufacturer’s instructions.
Cell culture and stable cell lines. All cells were maintained in
DMEM under standard conditions. SENP7 stable cell lines were
generated using the TRex-Flp-In HEK293 cell line system (Invitrogen).
HR/NHEJ repair assays, colony assays, MNase assays. HR/NHEJ
repair assays and colony assays were performed essentially
as for Butler et al [28]. For colony survival assays, cells were
treated with indicated doses of CPT or 4-amino-1-8
naphthalimide for 1 h before re-plating. For MNase assays,
cells were harvested and nuclei isolated in hypotonic buffer
(10 mM Tris–HCl, pH 7.5, 2 mM MgCl2, 3 mM CaCl2, 320 mM
sucrose, 1 mM DTT and complete EDTA-free protease inhibitor).
Nuclei were digested at 25 1C with MNase (0.025 U/ml) in
reaction buffer (10 mM Tris–HCl pH 7.5, 15 mM NaCl, 60 mM
KCl, 1 mM CaCl2 and 250 mM sucrose). The reactions were
stopped at 5 min with 20 mM EDTA and 2 mM EGTA. Genomic
DNA was purified and separated on 1.2% agarose gel. Lanes of
ethidium bromide-stained gels were scanned and profiles
representing band intensity were obtained using GeneSnap
software (SynGene USA). Peaks were quantified relative to the
total signal from each lane.

Immunoprecipitations and pulldowns and peptide binding.
Immunoprecipitation was carried out with M2 agarose beads
(Sigma) or GFP-Trap (Chromotek) according to the manufacturer’s
instructions. Bacterially expressed His-SENP7 fragments (WT and
SIM6þ 7 m) were immobilized on PVDF, stained with Ponceau S
and incubated with polySUMO2 (0–2 mg/ml) in PBS for 2 h at
251C. Membranes were washed 5� with PBST and immuno-
blotted against SUMO2/3. For CHD3, peptide pulldowns (peptide
sequences in supplementary Information online), biotinylated
CHD3 peptides (GenScript USA) were immobilized on streptavidin
Dynabeads (Invitrogen). Peptide-conjugated beads were incubated
with polySUMO2 (ENZO) for 2 h at 25 1C followed by three
washes (10 mM Tris pH 7.5, 150 mM NaCl and 0.5 mM EDTA) and
separated by SDS–PAGE on 4–20% gradient gel (NOVEX Invitro-
gen). Captured polySUMO2 were detected by immunoblot against
SUMO2/3. For CHD3-KAP1 pulldowns 0.5 mg of lysates was
incubated with 30ml of peptide-conjugated streptavidin beads
overnight at 4 1C, washed and blotted as for SUMO2/3.
Specific cut-site chromatin accessibility (EpiQ). HeLa–IPpoI
cells [28] were transfected with siRNA 48 h before 16 h 4-OHT
treatment to induce DSB in the DAB1 gene. EpiQ assay
was performed per manufacturer’s instructions and digested
DNA was PCR amplified with primers adjacent to the DAB1
DSB locus. Graph shows change in accessibility on 4-OHT
treatment: Qc (amplification efficiency) of (digested/undigested)
for vehicle/4-OHT treatment. Additional experimental details
(primer sequences, antibodies and in vitro SUMOylation assay)
can be found in supplemental data online.

Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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