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Miro is a highly conserved calcium-binding GTPase at the
regulatory nexus of mitochondrial transport and autophagy. Here
we present crystal structures comprising the tandem EF hand and
carboxy terminal GTPase (cGTPase) domains of Drosophila Miro.
The structures reveal two previously unidentified ‘hidden’ EF
hands, each paired with a canonical EF hand. Each EF hand pair
is bound to a helix that structurally mimics an EF hand ligand.
A key nucleotide-sensing element and a Pink1 phosphorylation
site both lie within an extensive EF hand–cGTPase interface.
Our results indicate structural mechanisms for calcium, nucleo-
tide and phosphorylation-dependent regulation of mitochondrial
function by Miro.
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INTRODUCTION
The outer mitochondrial membrane protein Miro (also called
RhoT) is a highly conserved calcium (Ca2þ )-binding GTPase that
is a key player in a diverse set of mitochondrial processes,
regulating mitochondrial shape, movement, organelle interactions
and degradation. Relatively little is known about the molecular
underpinnings of these processes and a structural understanding of
the relevant protein machinery is lacking. Miro is notable for its
domain architecture, as it is one of very few proteins to contain
both EF hand and GTPase domains. It consists of two GTPase
domains that flank a central, Ca2þ -binding region containing two

canonical EF hands [1] (cEF hands); a C-terminal transmembrane
domain anchors Miro in the outer mitochondrial membrane [2].

Miro is essential for the axonal transport of mitochondria, as it
attaches mitochondria to the microtubule-based motor protein
kinesin-1 through the cargo-adaptor protein Milton [3–5]. Its cEF
hands permit Miro to act as a Ca2þ -dependent switch for mito-
chondrial movement, allowing transport at low, basal cytosolic
Ca2þ concentrations but stopping mitochondria at higher levels
of Ca2þ [6–8]. The mechanism underlying this Ca2þ -dependent
regulation is unclear [7,8]. The GTPase domains of Miro influence
mitochondrial morphology [1,4], and both EF hand and
GTPase domains regulate endoplasmic reticulum—mitochondrial
connections [9,10]. Miro is also a common substrate of the
two Parkinson’s disease-related proteins Pink1 kinase and
Parkin E3 ubiquitin ligase in a signalling cascade that facilitates
mitochondrial degradation [11–13]. Phosphorylation of Miro by
Pink1 kinase and its subsequent Parkin-mediated degradation leads
to mitophagy of damaged mitochondria [12]. While it is clear
that Pink1 is a necessary component in this Miro–Pink1–Parkin
pathway, whether direct phosphorylation of Miro is required to
trigger Parkin-mediated degradation is contested [12,13]. Here, we
present the first crystal structures of Miro and offer insights into
the molecular mechanisms by which Miro might regulate such
a wide variety of mitochondrial functions.

RESULTS AND DISCUSSION
Overview of Miro structures
We determined the crystal structures of a Drosophila Miro (dMiro)
fragment containing the EF hands and C-terminal GTPase
(cGTPase) domain (Fig 1A; referred to as MiroS) in three states:
apo (apo-MiroS at 2.82 Å resolution), Ca2þ -bound (Ca-MiroS
at 2.80 Å) and magnesium (Mg2þ ) and MgGDP-bound (MgGDP-
MiroS at 3.00 Å). Supplementary Fig S1 online shows several
views of the three structures, defined here as ‘side’, ‘top’
and ‘bottom’ views. A ribbon diagram highlighting the Ca2þ and
nucleotide-binding sites is shown in the ‘side view’ in Fig 1B. The
structure consists of three distinct domains that form a compact
molecule B30� 40� 90 Å. The first two domains each contain
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paired EF hands and are related to each other by pseudo twofold
symmetry (Fig 2A), whereas the third domain is the cGTPase. Two
linker regions follow a circuitous path across the ‘bottom’ of the
molecule to join the three domains. Crystallographic data are
presented in supplementary Table S1 online.

Miro contains two EF hand pairs, such that each cEF hand is
paired with a non-canonical ‘hidden’ EF hand [14] (hEF hand) that
was not predicted by prior sequence analysis (Fig. 1; cEF1
and hEF1, cEF2 and hEF2). The hEF hands adopt a typical helix–
loop–helix EF hand motif and stabilize the adjacent cEF hands
through an antiparallel EF hand b-scaffold [15]. Each of the EF
hand pairs is followed by a helix that structurally mimics an EF
hand ligand, which we term the ‘ligand mimic’ [16] (LM) (Fig 1;
LM1 and LM2). Each of the two LM helices is followed by a linker
(Fig 1; Lnk1 and Lnk2) that enables a side-by-side orientation of
the two cEF hands, positioning the EF hand pairs in-line with the
cGTPase. The cGTPase exhibits a classic G-protein fold [17]
comprising a six-stranded b-sheet core flanked by a-helices. An
extensive interface between hEF2 and the cGTPase involves the
nucleotide-responsive Switch I element, which is positioned away
from the nucleotide-binding pocket in both the apo and MgGDP-
bound structures. Sequence conservation between yeast, fly and
human Miro suggests the linear arrangement of the two
pseudosymmetric EF hand pairs and the cGTPase domain is likely
to be a feature of all Miro proteins (supplementary Fig S1 online).

EF hand pair with ligand mimic domains
The LM helices, buried at the base of the four helices forming each
EF hand pair, are a striking feature of the Miro structure, structurally
reminiscent of several well-known EF hand proteins bound to their
ligands, such as the Troponin C/Troponin I [18] and myosin

essential light chain–heavy chain [19] complexes (supplementary
Fig S2 online). Based on these comparisons, we refer to each Miro
EF hand pair with LM helix arrangement as an ELM domain (Fig 1;
ELM1 and ELM2). A handful of proteins contain ELM domains
similar to Miro (supplementary Fig S2 online).

Miro’s two tandem ELM domains have similar folds, with 14
identical or similar residues at identical positions on the surface
formed by the first (aA) and last (aD) helix of each EF hand pair
(Fig 2A). The two ELM domains themselves do not form an
extensive interface, but both LM helices bury over 1,000 Å2 of
surface area within their respective EF hand pairs, and the linkers
that follow them contribute several key polar contacts to the
interface. The long linkers permit an B1801 rotation of ELM2 with
respect to ELM1, such that the C-termini of the LM helices point
directly at one another and the two highly similar aA/aD surfaces
are on opposite faces of Miro (Figs 1B and 2A).
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Fig 1 | Domain architecture and structure of Miro. (A) Bar diagram of
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Although the two ELM domains appear to be structurally similar,
they have markedly different hydrophobic cores. The core of ELM1
core encloses an B442 Å3 cavity occupied in all of our structures
by an unidentified ligand (UNL). In contrast, the ELM2 core is
tightly packed and includes three conserved tryptophan residues in
very close proximity (Fig 2B; supplementary Fig S3 online).

We observe Ca2þ or Mg2þ binding only to one EF hand site in
the structures described here: cEF2 of ELM2. However, both cEF
hand loops show a classic EF hand loop architecture and harbour
the conserved glutamate residue previously shown to be critical
for Ca2þ -binding at cEF1 (E234) and cEF2 (E354) [7,20] (Fig 3;
supplementary Fig S4 online). The acidic residues of cEF2 co-
ordinate Ca2þ in a classic pentagonal, bipyramidal fashion [15],
and Mg2þ -binding to cEF2 is readily accommodated by an
octahedral coordination, as seen in other EF hands [21] (Fig 3).
Unexpectedly, the overall fold of Miro is nearly identical in apo-
MiroS, Ca-MiroS and MgGDP-MiroS (rmsdo0.7 Å over 404 Ca
positions). The lack of Ca2þ or Mg2þ binding at cEF1 might be
explained by the presence of the UNL at the core of ELM1. The
aB1 helix is displaced relative to aB2 to accommodate the UNL,
resulting in a 1.0 Å shift of E234 relative to E354 (supplementary
Fig S5 online). In contrast to the cEF hands, the two hEF hand
loops are likely incapable of Ca2þ binding, as they lack the
typical EF hand loop structure and the negatively charged residues
that typically coordinate Ca2þ (Fig 3).

EF hand/cGTPase interface
The MiroS structures presented here are, to our knowledge,
the first reported structures showing a direct EF hand–GTPase
interaction. The interface is amphiphilic, with a total buried
surface area of B1,500 Å2 comprising three regions (Fig 4A, insets
1–3). In the first region, the hEF2 loop forms contacts with residues
in and around Switch I of the cGTPase, including the Switch I
threonine T481. The second region involves interdigitating
hydrophobic residues in aD2 and the cGTPase b-sheet. The third
region comprises an extensive network of polar contacts that
includes residues from linkers Lnk1 and Lnk2 and features a salt
bridge between highly conserved residues R444 and D521.

Both nucleotide binding and Pink1 phosphorylation could
potentially modulate the ELM2/cGTPase interface of Miro. The
Switch I threonine typically serves a g-phosphate-sensing role
in GTPases [17]. Although dMiro T481 is not conserved, any
g-phosphate-sensing mechanism enabling the Miro Switch I loop
to access the nucleotide-binding pocket on MgGTP-binding
would alter the first region of the ELM2/cGTPase interface
(Fig 4). A Pink1 phosphorylation site lies at the heart of the
network of polar contacts in the third region of the ELM2/cGTPase
interface, in one of the three residues in Lnk1 (S323/S324/T325)
[12]. Of these residues, S324 is most conserved and forms a
hydrogen bond with R444 in Lnk2, coupling it to the cGTPase via
the R444/D521 salt bridge (Fig 4A, inset 3). Phosphorylation of
S324 would likely disrupt this network of interactions. Pink1
phosphorylation has been shown to trigger Parkin-dependent
degradation of Miro [12]. A recent report [22] has identified
several Parkin ubiquitination sites in human Miro, four of which
map onto our structure on the same face as the S324 Pink1 site
(Fig 5). Together, these findings might have mechanistic implications
for Pink1-mediated recruitment of Parkin to the mitochondrial
surface, a key step in the mitochondrial quality control pathway [23].

cGTPase structure is Ras-like
The Miro cGTPase is most structurally similar to the Ras
homologue Rheb [24] (supplementary Fig S6 online). Both the
N-terminal GTPase domain of Miro (nGTPase) and the cGTPase
were originally classified as atypical Rho GTPases [1], as
they depart from the Rho-conserved DxxG Switch II motif [17].
The structure of the MgGDP–MiroS complex shows that the
atypical cGTPase Switch II motif 503DIDV506 is intimately
involved in MgGDP binding. Comparison of the apo and
MgGDP-bound cGTPase structures reveals a concerted rearrange-
ment of residues in and around the Switch II and P loop motifs
(Fig 4B). Upon MgGDP binding, Switch II undergoes a remarkable
register shift that locks it into a b-strand conformation, extending
the cGTPase b-sheet. Aspartate D505 rotates B7 Å (Fig 4B, arrow)
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to form an unusual, direct interaction with Mg2þ , accommodated
by shifts in R507 and Y537.

Solution studies of Miro
We evaluated the structure of Miro in solution using small-angle
x-ray scattering (SAXS) and size-exclusion chromatography in-line
with multiangle light scattering (SEC-MALS). Radii of gyration (Rg)
and ab initio molecular envelope reconstructions from SAXS
experiments indicate that the overall structural shape of MiroS
bound to Ca2þ in solution corroborates the crystallographic
data. The MiroS Rg remains similar under apo or Mg2þ conditions
(Supplementary Figs S7,S8 online; Supplementary Table S2
online). The increased maximum diameter (Dmax) and Rg
of MiroS-apo might indicate that Miro is less stably folded without
Ca2þ , like several other EF hand proteins [14,21]. Notably, gross
conformational rearrangements of MiroS into another stable form
and/or oligomerization did not occur in the ion and nucleotide
conditions tested. SEC-MALS shows that MiroS, and a longer Miro
construct containing the nGTPase domain (aa 1-617, referred to as
MiroL), are both monomers in solution regardless of Ca2þ

concentration (supplementary Fig S9 online), consistent with the
SAXS data for MiroS. Additionally, the respective elution profiles

for both MiroS and MiroL±Ca2þ are superimposable, suggesting
that the presence of the nGTPase does not greatly alter the
behaviour of Miro in this assay. Taking these data together, neither
MiroS nor MiroL appear to undergo a dramatic conformational
rearrangement in response to Ca2þ .

CONCLUSIONS
One of the clearest functions of Miro is the arrest of kinesin-1- and
dynein-dependent mitochondrial movement in response to
elevated Ca2þ , a function that requires Ca2þ binding to the EF
hands [8]. How do Miro’s ELM domains enable Ca2þ -induced
mitochondrial arrest? Although our structures illuminate Miro’s
curious EF hand domain arrangement, the underlying mechanism
is not yet readily apparent. Miro’s EF hand region is reminiscent of
the Ca2þ -myristoyl switch protein recoverin [25]. However, the
Ca2þ -induced structural changes that occur in recoverin [26], and
in more conventional EF hand proteins [15], are in contrast with
the minimal structural changes observed in our crystal and
solution structures of Miro. Conformational changes in Miro
might require the presence of an additional macromolecular
binding partner, as seen in some other EF hand proteins [15]. Miro
interacts with kinesin-1 [6–8], mitofusin [27], Milton [28–30], and
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the Switch II loop in a b-strand conformation and extending Gb3. V506 rotates away from the nucleotide-binding pocket, and both R507 and Y537

become solvent exposed. cGTPase, C-terminal GTPase; Sw I/II, Switch I/II; P loop, phosphate-binding loop.

Structure of Miro EF hands and C-terminal GTPase

J.L. Klosowiak et al scientificreport

971&2013 EUROPEAN MOLECULAR BIOLOGY ORGANIZATION EMBO reports VOL 14 | NO 11 | 2013



Pink1 [11–13], all of which dimerize. The pseudosymmetric ELM
domains might facilitate associations between the Miro monomer
and dimeric binding partners. An appealing hypothesis is that
Ca2þ -binding primes Miro for interactions, permitting kinesin-1,
for example, to bind Miro by displacing its LM helices, not unlike
how rhodopsin kinase binds to recoverin by displacing its
myristoylated N-terminal ‘LM’ helix [31] (supplementary Fig S2
online). Thus, the compact, linear MiroS conformation we have
captured here likely reflects one key state of Miro, modulated by
Ca2þ , nucleotide and phosphorylation-dependent regulation in
the context of mitochondrial function in the cell.

METHODS
Crystallography. The dMiro1–617-6xHis isoform D (MiroL) was
purified as described previously [12]. dMiro201–617-6xHis isoform
D (MiroS) was expressed in Escherichia coli and purified by
nickel-affinity and cation-exchange chromatography at 4 1C.
Crystals were grown using the sitting-drop vapour diffusion
method at 21 1C. Optimized conditions included 25 mM HEPES,
0.5 M NaCl, 0.5 mM TCEP, 1.5–1.9 M LiSO4, 0.1–0.2 M Bis-Tris at
pH 7.4–8.0, 5 mM EGTA and 4.5–10.8 mg/ml protein. Ca-MiroS
and MgGDP-MiroS crystals were subject to CaCl2 and
MgCl2þGDP soaks for B72 h, respectively, before flash
freezing directly in mother liquor (see supplementary Methods
online). Diffraction data were measured at LS-CAT, Sector 21 of
the Advanced Photon Source (APS) in the Argonne National
Laboratory with an x-ray wavelength of 0.97872 Å. Data from two
isomorphous selenomethionine (SeMet)-labelled crystals were

merged, and phasing by single wavelength anomalous dispersion
was carried out using Phenix. An initial model obtained using
Phenix AutoBuild comprised 375 of an expected 417 residues and
revealed the overall domain structure. After initial refinement, the
selenomethionine structure was used as a search model
in Phaser to obtain by molecular replacement the apo-MiroS,
Ca-MiroS, and MgGDP-MiroS structures described here.
SAXS. Solution SAXS experiments were performed at BioCAT,
beamline 18-ID-B at Sector 18 of the APS in the Argonne National
Laboratory. MiroS solutions at 1.0 mg/ml in SAXS buffer (25 mM
HEPES at pH 7.4,300 mM NaCl, 0.5 mM TCEP) supplemented
with either EGTA, MgCl2, CaCl2, GDP and/or GTP were loaded
into a capillary as a total of 20 exposures were measured
(see supplementary Methods online). Buffer solutions matched to
each Miro sample were measured in the same capillary before
each experimental run. Images from buffer and sample sets were
radially binned to obtain I versus q curves. Curves from each set
were averaged and the resulting buffer curve was subtracted from
the sample curve. The Rg was determined by Guinier analysis.
Where possible, the particle distribution function P(r) was
determined using the programme GNOM to confirm the Rg and
to determine Dmax. Scattering data of apo-MiroS and MiroS in the
presence of Mg2þ but not Ca2þ or nucleotide showed evidence of
some unfolded and/or aggregated protein in the high and low Q
range of the scattering curves. While these data were of sufficient
quality to obtain Rg or Dmax, they were not used for SAXS
reconstructions. Dummy atom modelling for SAXS reconstructions
was done with the programme DAMMIF. Twofold, fivefold and
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10-fold dilution of samples did not significantly change the Rg,
Dmax or DAMMIF reconstructions of SAXS data. Comparisons of
the SAXS reconstructions to the MiroS crystal structures were
made with DAMAVER, SUPCOMB and CRYSOL.
SEC-MALS. Solution SEC-MALS experiments were conducted
using Agilent Technologies 1200 LC HPLS system equipped with
a Wyatt Dawn HeleosII 18-angle MALS light scattering detector. A
total of 200 ml of MiroS or MiroL was injected onto a Superdex 200
column with a flow rate of 0.5 ml/min in SEC-MALS buffer (25 mM
HEPES at pH 7.4, 300 mM NaCl, 0.5 mM TCEP, 0.5 mM EGTA,
1 mM MgCl2, 20 mM GTP). The same was repeated for the
Ca2þ -containing samples using SEC-MALS bufferþ 3 mM CaCl2.
A void volume of 7.8 mL was determined using blue dextran.
Reagents, constructs, references and details of protein expression,
purification, crystallography, SAXS and SEC-MALS are described
in the supplementary Methods online.
Accession codes. Atomic coordinates and structure factors for
apo-MiroS, Ca-MiroS and MgGDP-MiroS have been deposited
in the Protein Data Bank under accession codes 4c0j, 4c0k and
4c0l, respectively.

Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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