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Abstract
A key challenge in the accurate reconstruction of cortical surfaces is the automated correction of
geometric and topological outliers in tissue boundaries. Conventionally these two types of errors
are handled separately. In this work, we propose a unified analysis framework for the joint
correction of geometric and topological outliers in cortical reconstruction. Using the Reeb graph
of intrinsically defined Laplace-Beltrami eigenfunctions, our method automatically locates
spurious branches, handles and holes on tissue boundaries and corrects them with image
information and geometric regularity derived from paired boundary evolutions. In our
experiments, we demonstrate on 200 MR images from two datasets that our method is much faster
and achieves better performance than FreeSurfer in population studies.

1 Introduction
Automated reconstruction of cortical models from MR images is fundamental for large scale
brain mapping. While many approaches were proposed [1–5], critical challenges remain in
improving the accuracy, robustness, and speed of reconstruction algorithms. In this paper,
we propose a unified analysis framework based on intrinsic Reeb graphs that jointly tackles
the correction of geometric and topological outliers in cortical reconstruction. We
demonstrate that our method can efficiently reconstruct accurate cortical surfaces and
achieve better performance in large scale population studies [6, 7].

Cortical reconstruction is a complicated system development problem that requires the
successful integration of various preprocessing steps including non-uniformity correction,
skull stripping, non-linear registration, the labeling of sub-cortical structures, and tissue
classification that classifies image intensities into white matter(WM), gray matter(GM) and
cerebrospinal fluid(CSF). At the core of this system, though, is the generation of smooth and
topologically correct mesh models of tissue boundaries. In previous works, smoothness is
typically achieved with the incorporation of a global regularization in surface evolution.
Topology correction, on the other hand, was handled separately with graph-based methods
[3,4] or spherical mapping [2]. Using Laplace-Beltrami (LB) eigenfunctions [8–10] and their
Reeb graphs, accurate surface reconstruction methods were proposed recently [10, 12], but
topological outliers were not considered. Based on the theory of Morse functions and Reeb
graphs, we propose in this work a unified analysis framework that corrects both geometric
and topological outliers in cortical reconstruction. Using the Reeb graph of LB
eigenfunctions, our method can localize geometric and topological outliers and make
decisions about correction strategies with information from tissue classification and
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geometric regularity. After the correction, accurate surface models are generated with
adaptive interpolation.

The rest of the paper is organized as follows. In section 2, we develop a novel approach for
the construction of Reeb graph of LB eigenfunctions on triangular meshes. The unified
approach for topology and geometry correction is developed in section 3. Experimental
results are presented in section 4, where we demonstrate that our method can achieve better
performance than FreeSurfer [2]. Finally conclusions are made in section 5.

2 Intrinsic Reeb Graph
For intrinsic shape analysis, the Reeb graphs of LB eigenfunctions have been successfully
applied for shape modeling and geometric outlier detection on genus-zero surfaces [12]. In
this section, we develop a novel and general method for Reeb graph construction on surfaces
of arbitrary topology. Instead of scanning through all level sets on surfaces [11], our method
is efficient and uses only level sets in the neighborhood of saddle points.

Let = ( , ) be a triangular mesh, where  and  are the set of vertices and triangles.
Given a function f:  → ℝ, the Reeb graph R(f) can be viewed as a graph of critical points
on meshes [11]. In this work, we choose the function f as the intrinsically defined
eigenfunctions of the Laplace-Beltrami operator on surfaces, which have the advantage of
being invariant to scale and pose variations. Let  = {c1, c2, · · ·, cN} be the set of critical
points of f sorted according to the critical values. For a vertex  ∈ , its one-ring
neighborhood is N( ). Let N−( ) = {  ∈ N( )|f( ) < f( )} and N+( ) = {  ∈ N( )|
f( ) > f( )} denote its lower and upper neighbors.

To construct the Reeb graph, we scan through all critical points sequentially. If ci is a
minimum, we add a new, but incomplete, edge to R(f) and set ci as the start node. If ci is a
saddle point, we define the isovalue of branches entering and leaving this point so the
critical points do not interfere with each other:

(1)

For each component in N+(ci), we trace a level contour P = (p1, p2, · · ·, pN) at the value

 and add all intersecting points in P to the mesh  by adding edges and splitting
existing triangles in . A new, but incomplete, edge in the Reeb graph is created with ci as
the start node. For all vertices in P, we label them as the starting vertices of this new edge.
For each component in N−(ci), we trace a level contour at the value  on the mesh .
Similarly, we augment the mesh with this set of new vertices and grow backward till we
reach the starting vertices of an incomplete edge, which completes an edge in Reeb graph
with ci as the end node. If ci is a maximum, we grow backward with it as the end node to
complete an edge.

As an example, we show in Fig. 1 the construction of the Reeb graph on a double torus. In
Fig. 1(a), we can see one level contour crosses the lower neighborhood, and two level
contours cross the upper neighborhood of the saddle point. The edges of the Reeb graph are
shown in Fig. 1(b), where the graph structure is evident from the neighboring relation of the
edges and we can see the loops in the graph captures the topology of the surface as
suggested in Morse theory.
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3 Unified Geometry and Topology Correction
For the analysis of a 3D MR image, we denote the lattice of voxels as A = {(i, j, k) ∈ ℤ3|0 ≤
i < I − 1, 0 ≤ j < J − 1, 0 ≤ k < K − 1} and the 3D image as a function A → ℝ. Following the
preprocessing steps in [12], we can define an evolution speed F on the lattice A based on
tissue classification of MR images, and use the fast evolution algorithm in [10, 13] to find
the boundary between two tissue types. Let Ao and Ab denote the object and background
region, respectively, and their boundary be represented as a triangular mesh  = { , },
where  and  are the set of vertices and triangles. For each face  ∈ , we denote it as the
intersection of two boundary voxels: the interior voxel xo( ) ∈ Ao and the exterior voxel
xb( ) ∈ Ab.

3.1 Paired Boundary Estimate
For topological analysis, we compute a pair of boundary estimates with the evolution speed
F. The first boundary satisfies the genus-zero condition and is denoted as  = ( , ). The
second boundary can have arbitrary topology and is denoted as  = ( , ), which is
obtained by turning off the topology-preserving condition in the evolution algorithm. Let f
be the first non-constant LB eigenfunction on , and R(f) = (C, E) the Reeb graph of f on

 that we build with the algorithm in section 2. Here C denotes the set of critical points,
and E the set of edges. Each edge is represented as , where
SCi, ECi ∈ C are the start and end node, EVi ⊂  is the set of vertices belonging to this edge
in R(f),  and  are the level contours on the boundary of the edge. Using intrinsic
Reeb analysis, we can locate outliers and correct them by modifying the evolution speed F
to generate an accurate boundary estimation.

3.2 Geometric Outlier Correction
The degree of a node in the Reeb graph is the number of edges that it is either the start or the
end node. A node is called a leaf node if its degree is one, and an internal node if its degree
is greater than one. The edge connected to a leaf node is called a leaf edge. We detect
geometric outliers from the set of leaf edges in the Reeb graph. Let Ei be a leaf edge, 
and  denote the level contours at the start and end node that are used to generate the
edge. Let  (EVi) be the set of triangles connected to the vertices in EVi, we consider this
leaf edge as an outlier if it satisfies two conditions: (1) ; (2)

, where the parameters α and β are
thresholds selected to identify sharp and small outliers. To further localize geometric
outliers, we project the mesh onto a subset of four LB eigenfunctions and calculate the area
distortion of triangles to measure geometric regularity [10]. For each triangle in , its area

distortion ratio is defined as , where  is the

corresponding triangle of  on the projected mesh . For an outlier leaf edge, we define

the set of outlier triangles as , where γ is a
threshold for geometric regularity.

To remove the outlier, we modify the evolution speed F as follows. For each outlier edge Ei,
we use the level contour  and  to compute:

(2)

where n is the outward normal on the surface ,  and  are the mean coordinates of

points on  and . If H(Ei) > 0, Ei is an outward leaf, we set  for all
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. If H(Ei) < 0, Ei is an inward leaf and we set  for all

.

3.3 Topological Outlier Correction
For topological analysis, we first remove duplicated edges in R(f). For any two edges with
the same start and end node, we remove the one with smaller size from R(f) and add it to the
set of topological outlier which we denote as TO. After that, we represent the Reeb graph
R(f) as a matrix W. For any edge , we set W(i1, i2) = #(EVi),
which is the number of vertices on this edge.

For a node Ci in the directed graph W, we use breadth-first-search (BFS) to test if a handle
or hole exists. Let j1, · · ·, jK denote the set of neighboring nodes of Ci in R(f). For each
outgoing edge, we set W(i, jk) = 0 and perform BFS with Ci as the starting node. This
generates a spanning tree PARk of nodes reachable from Ci after the removal of the edge
from Ci to Cjk. By repeating this process for all outgoing edges at Ci, we generate a set of
BFS trees PAR1, …, PARK. The intersection node CJmin of these trees is defined as the node
with the smallest index j but in all spanning trees. Starting from CJmin, we trace backward to
the current node Ci on each tree PARk and pick the one with the smallest size as a
topological outlier and add all edges on this path to TO.

For an edge Ei ∈ TO, we compute the feature H(Ei) using (2). The edge Ei is classified as a
handle if H(Ei) > 0 and a hole otherwise. For each handle or hole, we find a cutting path
with minimal length. If Ei is a handle, we uniformly sample a set of level contours of the
eigenfunction f between the start contour  and end contour  of Ei, and pick the one
with the least length as the cutting path. For a hole, we combine two geodesic paths to form
a cutting path. The first geodesic goes from the start to the end node inside the edge Ei. The
second geodesic goes from the start to the end node without passing the edge.

To make cut or fill decisions about topological outliers, we find paired patches on  that
jointly fill a hole or handle in . For all faces on  with their interior voxels in the
background region of , we perform a connected component labeling and denote the set of

patches as . Triangles in different patches are paired if they share a
common interior voxel. These triangle pairs are then grouped into paired components

 according to their paired patch labels in CCG. For each paired

patches, its interior voxels are  and they are filled inside  to satisfy the genus-
zero constraint. A cut decision should be made if either conditions is met:

• Number of voxels  classified as CSF is greater than THDCSF.

• Number of triangles  with ADF( ) > γ is greater than THDGEO.

The first condition checks if filling a handle/hole needs voxels classified as CSF. The second
condition measures the geometric regularity of the filling patches. To cut open a paired
component in , we search for a handle or hole with the shortest cutting path that is
connected to this paired component. Let CPi denote the cutting path of this hole or handle
and the set of triangles it passes on  as (CPi). To cut open this component, we modify
the evolution speed as follows: F(p) = − 1 for p ∈ xo( (CPi)).

As an illustration, we plotted the detected outliers on a WM boundary with Reeb analysis in
Fig. 2. By iteratively applying the steps in section 3.1, 3.2, 3.3, we can remove both
geometric and topological outliers in a unified framework.
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3.4 Sub-voxel Accuracy
Let MG represent the genus-zero, triangular mesh representation of the boundary between
high intensity tissue TMh and low intensity tissue TMl after the removal of outliers. The pair
(TMh, TMl) could be (WM, GM) or (GM, CSF). To achieve sub-voxel accuracy, we
estimate locally the isosurface location between the two tissue types at each vertex of .
Let  denote the shift of all vertices to their locally estimated iso-surface location, we
compute the final vertex coordinates by minimizing the energy

(3)

where x is the vector of coordinates of all vertices, Δ is the discrete Laplacian matrix of the
mesh, and η is a regularization parameter. The solution of this quadratic problem gives the
coordinates of vertices on the final cortical surface:

(4)

4 Experimental Results
In this section, we demonstrate our method and compare with FreeSurfer [2], which is
widely used in brain imaging research, on two large datasets. The first dataset includes
skull-stripped MR images of 50 normal controls(NC) and 50 Alzheimer’s disease (AD)
patients from ADNI [6]. The second dataset includes 100 skull-stripped MR images from
ICBM [7] and it has a wide age range from 19 to 80. For all images, the same set of
parameters are used in our method: α = 100mm, β = 5, γ = 100, THDCSF = 5, THDGEO = 5,
η = 10.

In the first experiment, we present detailed comparisons using one MR scan of an AD
patient in ADNI. We applied our method and FreeSurfer to reconstruct the WM and GM
surfaces on both hemispheres. Computationally our method took around 3 hours and is
much more efficient than FreeSurfer, which took more than 10 hours. In Fig. 3, the left
hemispherical WM surfaces reconstructed by both methods are plotted. In regions
highlighted by the dashed curves, we can see that our method produces more complete
reconstruction of the boundary, which is better illustrated with the intersections of surfaces
and two axial slices shown in Fig. 3(c). The left hemispherical GM surfaces reconstructed
with our method and FreeSurfer are plotted in Fig. 4(a). The intersections of the surfaces
with two sagittal slices shown in Fig. 4(b) illustrate that our surface can better capture deep
sulcal regions.

In the second experiment, we applied both our method and FreeSurfer to the MR images of
50 NC and 50 AD from ADNI. Using a general surface mapping algorithm [14], we
projected the gyral labels of the LPBA40 atlas [15] to all left hemispherical surfaces. For
each gyrus, we computed the average gray matter thickness and tested group differences
between NC and AD using two tailed t-tests. The p-values from our method and FreeSurfer
are plotted in Fig. 5. Our method can achieve more significant p-values on 18 of the 24 gyral
regions.

In the third experiment, we applied our method and FreeSurfer to the 100 MR images from
the ICBM database and used the results to model the decrease of gray matter thickness in
normal aging. The reconstructed surfaces were first automatically labeled into gyral regions
with the same approach in the second experiment. Regression analysis was then applied to
the mean thickness of each gyrus against subject age. The results are shown in Fig. 6, where
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the rates of decrease are plotted in Fig. 6(a) and (b), and the p-values of the regression
analysis are plotted in Fig. 6(c) and (d). We can see that our method can achieve statistically
much more significant results on all gyral regions.

5 Conclusions
In this paper we developed a novel approach for the unified correction of geometric and
topological outliers in cortical surface reconstruction. Comparisons with a state-of-the-art
tool showed that our method is computationally more efficient and can achieve better
performance in population studies. The Reeb analysis framework developed here is general
and can be valuable for general surface reconstruction and analysis problems.
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Fig. 1.
Reeb graph of a LB eigenfunction on a double torus. (a) Level contours in the neighborhood
of a saddle point. (b) Edges of the Reeb graph plotted in different colors.

Shi et al. Page 7

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2013 November 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Yellow: geometric outliers; Red: Topological outliers.
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Fig. 3.
A comparison of WM surfaces. (a) Our result. (b) FreeSurfer result. (c) Intersection of
image slices with highlighted regions on surfaces. Red: our method. Blue: FreeSurer.
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Fig. 4.
A comparison of GM surfaces. (a) Left: Our result. Right: FreeSurfer result. (b) Intersection
of sagittal slices with surfaces. Red: our method. Blue: FreeSurfer.
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Fig. 5.
P-value maps of gyrus-based thickness differences between NC and AD. (a) Our results. (b)
FreeSurfer results.
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Fig. 6.
Regression analysis of gray matter thickness and normal aging. (a) Rate of decrease from
our results. (b) Rate of decrease from FreeSurfer results. (c) P-value maps of our results. (d)
P-value maps of FreeSurfer results.
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