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		  Recent advances in human genomics and biotechnologies have profound impacts on medical research and 
clinical practice. Individual genomic information, including DNA sequences and gene expression profiles, can 
be used for prediction, prevention, diagnosis, and treatment for many complex diseases. Personalized medi-
cine attempts to tailor medical care to individual patients by incorporating their genomic information. In a case 
of pancreatic cancer, the fourth leading cause of cancer death in the United States, alteration in many genes 
as well as molecular profiles in blood, pancreas tissue, and pancreas juice has recently been discovered to be 
closely associated with tumorigenesis or prognosis of the cancer. This review aims to summarize recent ad-
vances of important genes, proteins, and microRNAs that play a critical role in the pathogenesis of pancreatic 
cancer, and to provide implications for personalized medicine in pancreatic cancer.
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Background

The understanding of the genetic basis of disease has pro-
gressed tremendously in the last 150 years. The science of ge-
netics began in the 1860s when Gregor Mendel studied inher-
itance in pea plants (Pisum sativum) [1]. In the 1940s, Oswald 
Avery, Colin MacLeod, and Maclyn McCarty showed DNA was 
the genetic material [1–3] and later on, in 1953, James Watson 
and Francis Crick proposed the double-helix model for the 
structure of DNA [4]. By the 1970’s, specific genes for specific 
proteins had been recognized [5] and some genes had been 
synthesized in the laboratory [6,7]. There were other major ac-
complishments in the same time frame: DNA recombination, 
sequencing, and site-directed mutagenesis technologies were 
developed [8–13]; the first complete RNA genome of bacte-
riophage MS2 and the DNA genome of bacteriophage jX174 
were sequenced in 1972 and 1977, respectively [14,15]. The 
1980’s witnessed the development of polymerase chain re-
action (PCR) technology by Kary Mullis [16], and in 1995, the 
genome of Haemophilus influenzae was the first bacterial ge-
nome sequenced using the whole-genome shotgun sequenc-
ing technology [17]. The Human Genome Project (HGP) be-
gan in 1990 and was completed in 2003 by the International 
Human Genome Sequencing Consortium [18–20]. The refer-
ence genome produced by the HGP largely came from a sin-
gle anonymous male donor from Buffalo, New York [21]. After 
HGP, several important human genome-related projects have 
been carried out, including the International HapMap Project, 
which used DNA samples from 270 individuals [22–24], the 
1000 Genomes Project [25,26], the Cancer Genome Atlas, the 
Cancer Genome Anatomy Project, and the Cancer Genome 
Characterization Initiative (Figure 1). These human genome 
projects have enormous health applications in regards to the 
susceptibility, diagnosis, monitoring, prevention, and treatment 
of diseases. Genomics and genetics are playing an increasingly 
important role in the practice of medicine in the post-genom-
ic era as the studies show that genomic or genetic variability 
may affect health, disease, and responses to drugs and envi-
ronmental factors. An emerging practice of medicine, termed 
personalized medicine, uses an individual’s genomic or genetic 
profile to guide medical decisions. This review focuses mainly 
on recent discoveries of important genes, proteins, and microR-
NAs (miRNAs) that may play a critical role in the pathogenesis 
of pancreatic cancer, and in the development of new strate-
gies for the prevention and treatment of this deadly disease.

Personalized Medicine

As our understanding of the human genome increases, the 
Genomic and Personalized Medicine Act was proposed in 
2006 [27]. The President’s Council on Advisors on Science and 
Technology has defined Personalized Medicine, referring “to 

the tailoring of medical treatment to the individual character-
istics of each patient. It does not literally mean the creation of 
drugs or medical devices that are unique to a patient, but rath-
er the ability to classify individuals into subpopulations that 
differ in their susceptibility to a particular disease or their re-
sponse to a specific treatment. Preventive or therapeutic inter-
ventions can then be concentrated on those who will benefit, 
sparing expense and side effects for those who will not”. [28]. 
Typically, a personalized medicine program (PMP) takes place 
in multidisciplinary clinics where physicians and scientists tailor 
medical decisions to the individual patient based on the molec-
ular analysis of patient samples. A PMP should establish clini-
cal and bioinformatics databases, and bio-banks for samples, 
such as blood and tissues. A PMP can also provide significant 
research opportunities for translating genetic information into 
clinical practice [29,30] (Figure 2). For example, the U.S. Food 
and Drug Administration (FDA) has approved more than 50 tar-
geted therapies, including antibody and small-molecule drugs, 
vaccines, and gene therapies, which can be used for the treat-
ment of specific subsets of cancer types based on the gene ex-
pression profile of the cancer [31]. FDA has also approved more 
than 100 drugs with pharmacogenomic information in their la-
bels, such as specific warnings or actions on dosing and adverse 
effects based on the patient’s genetic or molecular information 
[32]. Genetic information can also be used to decide whether 
to perform prophylactic surgeries to prevent certain cancers in 
high risk populations. For example, prophylactic mastectomy 
has been performed in women who have a family history of 
breast cancer or/and carry BRCA1 or BRCA2 mutations, there-
fore reducing the incidence of breast cancer [33]. Personalized 
medicine can be applied to patients with pancreatic cancer [34].

In 2013, pancreatic cancer is the 10th most commonly diag-
nosed cancer and the fourth leading cause of cancer death in 
the United States [35]; estimates indicate that about 45,220 
new cases will be diagnosed and that 38,460 people will die 
from pancreatic cancer [36,37]. The incidence of pancreatic 
cancer has been slowly rising over the past 10 years. The one- 
and five-year survival rates for pancreatic cancer are 27% and 
6%, respectively, which are the lowest survival rate of all the 
major cancers [34–36]. The majority of the patients are diag-
nosed with pancreatic cancer at the late stage, and are not 
eligible for surgical resection [37,38]. Recent advances in hu-
man genomics or genetics provide new opportunities to un-
derstand the impact of genetic and molecular alterations on 
pancreatic cancer [39–42] as well as provide implications for 
personalized medicine in this deadly cancer.

Oncogenes in Pancreatic Cancer

Pancreatic cancer is a disease with a wide range of genet-
ic alterations, including germ line and somatic mutations. 
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For example, a recent whole exome sequencing analysis of 
99 pancreatic cancer specimens found 2,016 non-silent mu-
tations and 1,628 copy-number variations [43]. Sixteen sig-
nificantly mutated genes were discovered, including KRAS, 
TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A, SF3B1, EPC1, 
ARID2, ATM, ZIM2, MAP2K4, NALCN, SLC16A4, and MAGEA6 
[43]. Interestingly, this study indicates that somatic aberrations 
of axon guidance genes may play a critical role in pancreatic 
carcinogenesis [43]. The most impressive change of an onco-
gene in pancreatic cancer cells is the mutation of KRAS, which 
is present in over 90% of pancreatic cancers and in 20% to 
30% of all human malignancies [44]. KRAS is closely associat-
ed with a series of important cellular functions including cell 
survival, cell differentiation, and cell proliferation. KRAS is mu-
tated and activated most often on codon 12 and sometimes 
on codons 61 and 13 [44]. Mutated KRAS has the ability of in-
ducing a ductal precancerous lesion with strong proliferative 

capacity [39] and the mutation frequently happens in pancre-
atic duct multifocal hyperplastic foci, a kind of precancerous 
lesion [45]. An important function of mutated KRAS is to acti-
vate several related pathways. The PI3K-AKT pathway, which 
plays a role in cell survival and cell proliferation, is the best 
example among these pathways. Genetic mutations could also 
happen in these pathways. It has been reported that there are 
four missense mutations in nine exons of PIK3CA in 36 speci-
mens of intraductal papillary mucinous neoplasm or carcinoma 
[46]. Upregulation of AKT has been observed in approximately 
10% of pancreatic carcinomas, thus suggesting that such up-
regulation may contribute to the malignant phenotype [47]. 
Furthermore, the activation of AKT in pancreatic cancer is medi-
ated by HER-2/neu over-expression [48] and it has been found 
that BRAF is mutated in 33% of KRAS-wild-type carcinomas 
[49]. KRAS activates MEK and ERK1/2, which play important 
roles in angiogenesis, cell proliferation, cell apoptosis, cancer 

Figure 1. �Major milestones of genetic and 
genomic research. Over past 150 
years, discoveries of genetic and 
genomic research as well as the 
development of new technologies 
have enormous impacts on the 
understanding of the health and 
disease of human being. The genome 
era began in 1995 with the publication 
of the genome of the bacterium 
Haemophilus influenza [17] and ended 
in 2001 when human genome was 
sequenced [18–20]. One of major 
goals of genomic research in the post-
genomic era is to further understand 
the functional relationship between 
genomics and human disease, 
translating genomic information into 
clinical care tailored to the individual 
patient, termed personalized medicine.
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cell migration, and cell cycle regulation [50]. When glypican-1 
(GPC1) is present in KRAS mutated mouse models, it can en-
hance tumor invasion, growth, and angiogenesis of pancreatic 
cancer, suggesting that GPC-1 is a novel therapeutic target [51].

The Notch pathway, which involved in cell proliferation, cell 
differentiation and cell apoptosis, plays an important role in 
pancreatic cancer [52]. It participates in pancreatic tumorigen-
esis expanding a subpopulation of undifferentiated pancreat-
ic precursor cells through a TGF-a-mediated mechanism [53]. 
Inhibition of Notch pathway by g-secretase inhibitor has been 
explored as a new therapeutic strategy for pancreatic cancer 
[54]. The Hedgehog pathway also plays a role in the metasta-
sis of pancreatic cancer, and Hedgehog signaling inhibitors can 
reduce metastasis [55]. The STAT3 transcription factor seems 
to be involved in cell self-renewal, cell survival, metastasis, and 
cell apoptosis. STAT3 activation is often present in several pre-
cancerous lesions [56]. Silencing the STAT3 gene can induce 
down-regulation of VEGF and MMP-2, suggesting a key role 
for STAT3 in angiogenesis of pancreatic cancer [57]. STAT3 in-
hibitors have potential for the treatment of pancreatic cancer.

Tumor Suppressor Genes in Pancreatic Cancer

Tumor-suppressor genes regulate the cell cycle or cell apop-
tosis protecting cells from tumorigenesis. Gene p53 controls 
transcription of p21, a cyclin-dependent kinase inhibitor, me-
diating G1 block [58–60]; Gene p53 also has a close relation-
ship with G2/M block [61–63] and can upregulate PUMA (p53 
upregulated modulator of apoptosis), which binds to Bcl-2, in-
ducing programmed cell death [64]. Seventy-five percent of all 
pancreatic cancers carry p53 mutations [65], making this gene 
one of the most mutated tumor suppressor genes in pancreatic 
cancer. In addition, expression of DPC4 (Deleted in Pancreatic 
Cancer, locus 4) has been correlated with distant spread me-
tastasis of pancreatic cancer [66,67]. It has been reported that 
loss of DPC4 expression was closely related to a lower patient 
survival rate [68]. Mutation of LKB1 (liver kinase B1) gene can 
cause Peutz-Jeghers syndrome, an autosomal dominant disor-
der involved in pancreatic cancer. LKB1 participates in cell po-
larity regulation and in cellular responses to external stresses 
[69,70]. By mutation and deletion, INK4a (p16), a cyclin-de-
pendent kinase inhibitor, is down-regulated in almost 95% of 
pancreatic cancers cases. Mutation of INK4a gene has been 
linked to a rare syndrome called familial atypical mole-malig-
nant melanoma, whose most significant feature is being asso-
ciated with high incidence of pancreatic cancer [71,72]. Another 
study detected homozygous deletions of the MKK4 (mitogen-
activated protein kinase kinase 4) gene in about 2% of pan-
creatic cancer cases [73]. MKK4 is believed to participate in a 
signaling pathway of a tumor suppressing function as a down-
stream molecule of DPC4, p16, p53, and BRCA2 genes [73].

CNVs and SNPs in Pancreatic Cancer

Besides gene mutations, copy-number variations (CNVs) are 
often seen in cancer cells. In a study of familial pancreatic 
cancer (FPC), there were 93 non-redundant CNVs in 50 cas-
es, including 53 losses and 40 gains. FPC-specific CNVs clus-
tered at 88 RefSeq genes’ coding regions [74]. A single-nucle-
otide polymorphism (SNP) is a single nucleotide difference in 
the genome that can occur in coding and non-coding regions. 
SNPs can affect humans in regard to their responses to dis-
ease, drugs, and vaccines. For example, SNPs rs505922 and 
rs9543325 are associated with higher risk of pancreatic can-
cer, and SNPs rs9350 and rs148242 are associated with lower 
overall survival of both stage 1 and stage II pancreatic cancer 
[75]. An average of 63 genetic alterations has been shown in 
each of 24 pancreatic cancer cases studied; most of the genet-
ic changes are point mutations and only some of these gene 
mutations may produce physiological changes [76].

Molecular Targets in Pancreatic Cancer

As mentioned above, the KRAS mutation is present in more 
than 90% of pancreatic cancers. The role of KRAS in pancre-
atic cancer has been further supported by the development of 
mouse models carrying the KrasG12D mutation, with or with-
out inactivation of tumor suppressor gene p53 [39,40,77,78]. 
These mouse models have been well characterized and indi-
cate that KrasG12D activates Hedgehog-mediated signaling 
and inflammatory pathways, and that it is essential for tu-
mor maintenance [78]. Reolysin, an oncolytic virus, replicates 
in the cells that have an activated KRAS. Reolysin replicates in 
and eventually kills KRAS-activated tumour cells. Thus, it has 
shown a therapeutic potential for many solid cancers includ-
ing pancreatic cancer with KRAS mutation [79].

There are several new drugs being investigated for their 
possible role inhibiting cancer signaling pathways, includ-
ing VEGFR and PDGFR inhibitors (sorafenib and sunitinib), 
MEK1/2 inhibitor (AS703026), and c-Met and VEGFR-2 inhibi-
tor (foretinib). In the PI3k pathway, mTOR is one of the key ki-
nases. Everolimus, an mTOR inhibitor, was reported to inhibit 
tumor growth in mouse models [80]. The g-secretase inhibitor 
MRK003 has shown a tumor inhibitory effect, and the combi-
nation of MRK003 with gemcitabine has been reported to pro-
long survival of mice with pancreatic cancer [81]. A blocker of 
the aberrant Hedgehog signaling pathway, called IPI-269609, 
has been shown to inhibit systemic metastases of pancreatic 
cancer through a possible mechanism of targeting subsets of 
cancer stem cells in the animal model [82].

Mutations of BRCA2, FANCC, and FANCG genes in pancre-
atic cancer have been reported to cause hypersensitivity to 
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interstrand cross-linkers such as mitomycin C (MMC), cispl-
atin, chlorambucil, and melphalan [83]. Gene therapy using 
Rexin-G, a nonreplicative pathology-targeted retroviral vec-
tor bearing a cytocidal cyclin G1 construct, was tested in a 
clinical trial (phase I/II) in a gemcitabine-resistant pancreat-
ic cancer and showed to be well-tolerated and to have an ex-
cellent safety [84].

Proteomics of Pancreatic Cancer Tissues

The study of proteomics of pancreatic cancer tissues is cur-
rently a very active field of research. There is tremendous in-
terest in the differential protein expression profiles in differ-
ent organs and body fluids affected by pancreatic cancer in 
order to search for biomarkers that could be used for early di-
agnosis, to determine responsiveness to treatment, and to un-
derstand the molecular mechanisms of tumor biology. These 
studies have been done using diverse techniques and the re-
sults have revealed a list of proteomic changes associated 
with pancreatic cancer.

For example, the 2-DE (two-dimensional gel electrophoresis) 
and MALDI-TOF-MS (matrix-assisted laser desorption/ioniza-
tion time-of-flight mass spectrometry) analyses of 12 cases 
of pancreatic cancer showed 111 changes in protein expres-
sion levels. Seventy proteins were up-regulated and 41 were 
down-regulated when compared with their corresponding nor-
mal tissues. The overexpression of two of these proteins, fas-
cin and cathepsin, was confirmed in cancer tissues using im-
munohistochemistry [85]. A separate study identified 30 novel 
potential biomarkers differentially expressed in pancreatic can-
cer tissues and one of the potential biomarkers, TBX4 (T-Box 
4), was correlated with cancer differentiation [86]. Other mol-
ecules were also upregulated: glycolytic proteins (a-enolase, 
GAPDH, and triosephosphate isomerase) and transgelin were 
highly expressed in pancreatic cancer tissues [87]; anterior gra-
dient homolog 2, syncollin, olfactomedin-4, polymeric immu-
noglobulin receptor, and collagen alpha-1(VI) chain proteins 
were upregulated in pancreatic cancer [88]. Many studies have 
demonstrated that the S100 protein family is up-regulated in 
human pancreatic cancer tissue [89]; S100A11 expression is 
three times higher in pancreatic cancer tissues than in nor-
mal pancreatic tissues; and S100A4, S100A6, and S100A10 
showed a similar change [90–93]. Some of these differential-
ly expressed proteins, such as biglycan, PEDF (pigment epi-
thelium-derived factor), TSP2 (thrombospondin-2), and TGF-b 
(transforming growth factor b), have the potential of becom-
ing diagnostic markers [94]. More proteins, including annex-
in A4, cyclophilin A, cathepsin D, galectin-1, 14-3-3zeta, a-
enolase, peroxiredoxin I, TM2, and S100A8, are also potential 
markers for early diagnosis [95]. Other proteins, such as GRP-
78 (glucose-regulated protein 78), MIF (macrophage migration 

inhibitory factor), and annexin A5, seem to be promising tar-
gets for pancreatic cancer therapy [96]. Gelsolin is closely as-
sociated with lymph node metastasis [97], and radixin, moesin 
and c14orf166 could be considered as metastasis-associated 
protein markers for pancreatic cancer [98]. Overexpression of 
NEDD9, FOXC1, ECH1, OLFM4, and STML2 is associated with 
poor prognosis [99–101] and the expression of Nm23/NDPK-A 
[102], RKIP [103], CX3CL1/CX3CR1 [104], Ack1 tyrosine kinase 
[105], HMGA1, HMGA2 [106], and FOXM1 [107] has the same 
clinical significance.

Plasma or Serum Biomarkers for Pancreatic 
Cancer

Currently, the serum carbohydrate antigen 19-9 (CA19-9) is a 
clinical biomarker for pancreatic cancer; however it has mod-
est sensitivity and specificity for early detection [108]. There 
are many other promising biomarkers under investigation. For 
example, fibrinogen gamma has been identified as a poten-
tial tumor marker for pancreatic cancer especially at the hy-
percoagulable state [109]. It has been reported that the se-
rum levels of sialylated plasma protease C1 inhibitor and the 
N83 glycosylation of 1-antitrypsin are increased in patients 
with pancreatic cancer [110], suggesting that they might also 
be used as disease biomarkers. The plasma levels of apolipo-
protein A1, transthyretin, apolipoprotein E, gelsolin, lumican, 
and tissue inhibitor of metalloproteinase 1 have a close cor-
relation with pancreatic cancer, but not with chronic pancre-
atitis or biliary duct obstruction [111,112]. The serum levels 
of several proteins, including heat shock protein 27 (HSP27), 
HSP70, PGK1, HMGB1, and DJ-1 are associated with pancre-
atic cancer with high sensitivity and specificity [113–117]. By 
using MALDI-TOF MS-based serum peptidome profiling anal-
ysis, serum platelet factor 4 was found to serve as a valuable 
biomarker for pancreatic cancer with 86% sensitivity and 98% 
specificity [118]. The decrease of serum CXCL7 (CXC chemokine 
ligand 7) levels has been consistently associated with stage I 
and II pancreatic cancer [119]. According to 2-DE analyses and 
mass spectroscopic identification, five proteins were success-
fully associated with pancreatic carcinoma: cyclin I, Rab GDP 
dissociation inhibitor beta (GDI2), a1 antitrypsin precursor, 
haptoglobin precursor, and serotransferrin precursor [120]. An 
increase in serum phosphoprotein ERK1/2 levels was observed 
in 82% of patients with pancreatic cancer [121]. Using DIGE 
(difference gel electrophoresis) and LC-MS/MS (liquid chro-
matography-tandem mass spectrometry) analyses to study 
plasma samples of 10 patients with pancreatic cancer before 
and after surgical resection, 16 plasma proteins were found 
to correlate with tumor burdens (complement component 3, 
a-1-B glycoprotein, vitamin D binding protein, apolipoprotein 
A IV, complement component C4A, hemopexin, B-2 microglob-
ulin, amyloid, P component, a-2 macroglobulin, complement 
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factor H and pigment epithelial-differentiating factor) [122]. 
Interestingly, many metabolic enzymes from pancreatic cancer 
cells induced the production of specific autoantibodies in pa-
tients with pancreatic cancer, raising the possibility that they 
could be used in immunotherapy [123].

Proteins in Pancreatic Juice

Analyzing the protein profile of pancreatic juice is a valuable ap-
proach to diagnose pancreatic cancer. A study of using isotope-
code affinity tag (ICAT) technology and MS/MS analysis showed a 
substantial change in the concentration of 30 (24 overexpressed 
and 6 underexpressed) out of 105 proteins identified in the pan-
creatic juice obtained from pancreatic cancer patients compared 
with controls; and the differential overexpression of IGFBP2 (in-
sulin-like growth factor binding protein-2) was further validat-
ed by Western blot analysis [124]. Another study showed that 
there are 14 proteins up-regulated, including MMP-9, DJ-1 and 
A1BG, and 10 proteins down-regulated in cancerous pancreatic 
juice [125]. Other studies showed increased levels of REG1a (re-
generating islet derived protein 1 alpha) [126] and PAP-2 (pan-
creatitis-associated protein-2) [127], and decreased levels of 
lithostathine Ia [128] in the pancreatic juice of pancreatic can-
cer patients. Furthermore, protein analysis of the fluid from cys-
tic pancreatic lesions revealed a concentration of carcinoembry-
onic antigen (CEA) that was higher than the CEA concentration 
in control samples [129]. Finally, the combination of RCAS1 (re-
ceptor-binding cancer-associated surface antigen) and CEA mea-
surements and cytology in pancreatic juice could be another ef-
fective method for detecting pancreatic cancer [130].

MiRNAs in Pancreatic Cancer

miRNA is a class of non-coding single-stranded, 18 to 24 nu-
cleotides long RNA molecules that is present in eukaryotic cells 
and can regulate their target genes at mRNA levels [131–135]. 
In 1993, Rosalind Lee, Rhonda Feinbaum, and Victor Ambros 
discovered the first miRNA while studying the role of gene lin-
14 in C. elegans development [136]. It is estimated that the hu-
man genome has over 1000 miRNAs [137], which may target 
about 60% of protein genes (Figure 3) [138,139]. Many stud-
ies have shown that miRNAs play important roles in pancreas 
tumorigenesis [139,140]; some miRNAs have been reported to 
have oncogenic functions, while others have tumor suppres-
sor functions. We tested 10 pancreatic cancer cell lines and 17 
pairs of pancreatic cancer and normal tissues and found that 
8 miRNAs were significantly up-regulated (miR-196a, miR-190, 
miR-186, miR-221, miR-222, miR-200b, miR-15b, and miR-95) 
[141]. Another study showed that miR-21, miR-155, miR-210, 
miR-221, and miR-222 were upregulated in ductal pancreatic 
adenocarcinoma tissues, while miR-31, miR-122, miR-145, and 

miR-146a were downregulated [142]. In a separate study, 11 
miRNAs were strongly up-regulated (hsa-miR-31, -143, -145, 
-146a, -150, -155, -196a, -196b, -210, -222, and -223), while 
11 miRNAs were strongly down-regulated (hsa-miR-29c, -30a-
3p, -96, -130b, -141,-148a, -148b, -216, -217, -375, and -494) 
in pancreatic cancer samples [143]. More studies confirmed 
differential expression of miRNAs in human pancreatic can-
cer samples [144,145]. For example, miR-205 was up-regulat-
ed more than 600-fold in human pancreatic cancer cell lines, 
and high levels could also be detected in five out of eight pan-
creatic cancer tissues [143]. The analysis of pancreatic cancer 
biopsies revealed that 10 miRNAs were up-regulated (miR-
486-5p, miR-451, miR-92a, miR-423-5p, miR-124, miR-3687, 
miR-1246, miR-1275, miR-17, and miR-320), while 10 miRNAs 
were down-regulated (miR-4286, let-7f, miR-720, let-7d, miR-
1280, miR-200c, miR-26a, let-7c, miR-146a, and let-7b) [146].

It has been reported that several specific upregulated or down-
regulated miRNAs in pancreatic cancer contribute to tumor cell 
growth by targeting to their specific target molecules. For ex-
ample, oncogenic miR-10a and miR-301a can specifically target 
HOXA1 and Bim mRNA, respectively [147,148]; while tumor sup-
pressor miR-126, miR-150, miR-34, and miR-148b can specifically 
target ADAM9, MUC4, Bcl-2/Notch1/2, and AMPKa1, respectively 
[117,149-151]. A mouse model study showed that Let-7b and miR-
495 are required to establish and maintain pancreatic acinar cell 
differentiation and prevent metaplasia of these cells by repress-
ing HNF6 (hepatocyte nuclear factor-6) gene expression [152].

Increase of circulating miRNAs, including miR-21, miR-25, miR-
103, miR-151, miR-210, miR-155 and miR-196, had a close 
correlation with chemo resistance in patients with pancreatic 
cancer [153,154]. Furthermore, a specific profile of miRNAs in 
pleural fluid may be associated with liver metastasis of pan-
creatic cancer [153].

Understanding the differential expression and functional roles 
of miRNAs in pancreatic cancer has great potential clinical 

Figure 3. �Central dogma of molecular biology. Specific genetic 
information in DNA (gene) is transcribed into a specific 
messenger RNA (mRNA), which is translated into 
a specific protein. miRNA is added into the central 
dogma to expand the regulation of mRNA translation.

DNA mRNA

miRNA
(�rst in 1993)

(>1000)

(60% of all proteins)

Protein Function
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applications. A new panel of 19 miRNAs was used to distin-
guish pancreatic cancer from normal tissues with 98% sensi-
tivity [144]. Combining the results of circulating miR-16 and 
miR-196a with CA19-9 was an effective strategy for the diag-
nosis of pancreatic cancer [155].

Evaluating the down-regulation of miR-217 and the up-regu-
lation of miR-196a could help distinguish between pancreatic 
cancer and normal pancreas or other chronic diseases of pan-
creas [141,143]. Another miRNA molecule, miR-211, was identi-
fied as a prognostic factor of pancreatic cancer [156] and miR-
10b was recognized as a novel diagnostic marker [157]. A new 
synthetic compound called CDF was reported to inhibit pancre-
atic cancer cell growth in mouse models through downregula-
tion of miR-21 and upregulation of miR-200 [158]. Antisense 
oligonucleotides against miR-21 and miR-221 sensitized pancre-
atic cancer cell lines in vitro to the effect of gemcitabine [159].

Other Important Molecules

Epidermal growth factor receptor (EGFR) is a critical molecule 
for tumorigenesis in many organs. Several EGFR inhibitors, in-
cluding gefitinib, erlotinib and cetuximab, have been developed 
for the treatment of different types of cancers. KRAS-induced 
pancreatic cancer formation requires activation of EGFR [160]. 
Erlotinib effectively inhibits the proliferation of pancreatic can-
cer cell lines in vitro [161] and in a clinical trial. Erlotinib treat-
ment improved the overall survival of patients with KRAS wild 
type pancreatic cancer [162]. Increased serum levels of retinol 
binding protein, NGAL (neutrophil gelatinase-associated lipo-
calin) and IGF-I together with decreased level of IGFBP-3 are as-
sociated with pancreatic cancer patients with type 2 diabetes 
[163]. Accordingly, IGF-I receptor inhibitor LY294002 suppressed 
the proliferation of several pancreatic cancer cell lines [164].

Some biomolecules have been studied for their potential use 
in pancreatic cancer immunotherapy. Interestingly, human pan-
creatic cancer cells engineered to express animal a-Gal epi-
topes (Gala1-3Galb1-4GlcNAc-R) can induce strong comple-
ment-mediated lysis and antibody-dependent cell-mediated 
toxicity toward these cells because humans have large quanti-
ties of the natural anti-a-Gal antibodies. This strategy can po-
tentially be useful in cancer immunotherapy [165]. For example, 
Algenpantucel-L vaccine consists of stably transduced human 
pancreatic cancer cell lines (HAPa-1 and HAPa-2) expressing 

the murine a(1,3)galactosyltransferase (aGT) gene. In a clini-
cal trial, Algenpantucel-L vaccine improved the survival expec-
tations of patients with pancreatic cancer [166]. Immunizing 
with cytotoxic T-lymphocyte antigen-4 (CTLA-4) is another 
novel immunotherapeutic strategy. Ipilimumab, an antibody 
against CTLA-4, caused tumor regression and improved the 
clinical manifestations of patients with pancreatic cancer [167].

Conclusions

As our understanding of the human genome increases, spe-
cific genetic or genomic information, including DNA sequenc-
es and gene expression profiles of mRNA, protein and miRNA 
molecules, has been used to predict risks and to make treat-
ment decisions for many complex diseases, such as cancer. 
Variations observed in these sequences and expression pro-
files in association with disease might help explain why many 
regulatory and organ systems malfunction, and has prompted 
the development of new strategies to improve prevention, di-
agnosis, and treatments. Thus, a new healthcare model, termed 
personalized medicine, is proposed to tailor medical manage-
ment and patient care to individual patients by considering 
their individualized genomic information.

In the case of pancreatic cancer, the fourth leading cause of 
cancer death in the United States, several alterations of spe-
cific oncogenes and tumor suppressor genes as well as of spe-
cific miRNAs have been associated with the disease. Specific 
gene profiles in blood, pancreas tissue, and pancreas juice can 
potentially be used as new biomarkers for diagnosis, progno-
sis, and to assess the response to treatment. Many gene al-
terations that directly contribute to pancreas tumorigenesis 
have been identified or are under active investigation; there-
fore it might be possible to develop novel therapies for pan-
creatic cancer patients targeting specific genes. Accordingly, 
this type of personalized medicine can be applied to the pa-
tient with pancreatic cancer, delivering the right treatment to 
the right patient, using the right dose at the right time, and 
when fully implemented it will significantly improve patient 
management and treatment outcomes.
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