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Abstract

Background—Comorbidity adjustment is an important component of health services research 

and clinical prognosis. When adjusting for comorbidities in statistical models, researchers can 

include comorbidities individually or through the use of summary measures such as the Charlson 

Comorbidity Index or Elixhauser score. We examined the conditions under which individual 

versus summary measures are most appropriate.

Methods—We provide an analytic proof of the utility of comorbidity summary measures when 

used in place of individual comorbidities. We compared the use of the Charlson and Elixhauser 

scores versus individual comorbidities in prognostic models using a SEER-Medicare data 

example. We examined the ability of summary comorbidity measures to adjust for confounding 

using simulations.

Results—We devised a mathematical proof that found that the comorbidity summary measures 

are appropriate prognostic or adjustment mechanisms in survival analyses. Once one knows the 

comorbidity score, no other information about the comorbidity variables used to create the score is 

generally needed. Our data example and simulations largely confirmed this finding.

Conclusions—Summary comorbidity measures, such as the Charlson Comorbidity Index and 

Elixhauser scores, are commonly used for clinical prognosis and comorbidity adjustment. We 

have provided a theoretical justification that validates the use of such scores under many 

conditions. Our simulations generally confirm the utility of the summary comorbidity measures as 

Corresponding author: Brian L. Egleston, Ph.D., Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Temple Health, 
333 Cottman Ave., Philadelphia, PA 19111, phone: 1-215-214-3917, fax: 1-215-728-2553.
Steven R. Austin, Student at Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, cell phone: 
1-267-614-9216
Yu-Ning Wong, M.D., Medical Oncology, Fox Chase Cancer Center, Temple Health, 333 Cottman Ave., Philadelphia, PA 19111, 
phone: 1-215-728-3889, fax: 1-215-728-3639
Robert G. Uzzo, M.D., Chairman, Department of Surgery, Fox Chase Cancer Center, Temple Health, 333 Cottman Avenue, 
Philadelphia, PA 19111, phone: 1-215-728-3096, fax: 1-215-214-1734
J. Robert Beck, M.D., Chief Academic Officer, Chief Medical Officer, Fox Chase Cancer Center, Temple Health, 333 Cottman Ave., 
Philadelphia, PA 19111, phone: 1-215-214-1490

The authors report that they have no conflicts of interest.

HHS Public Access
Author manuscript
Med Care. Author manuscript; available in PMC 2016 September 01.

Published in final edited form as:
Med Care. 2015 September ; 53(9): e65–e72. doi:10.1097/MLR.0b013e318297429c.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



substitutes for use of the individual comorbidity variables in health services research. One caveat 

is that a summary measure may only be as good as the variables used to create it.

Introduction

Baseline comorbidity adjustment is an important component of health services research and 

clinical prognosis. Researchers have widely used summary measures for comorbidity 

adjustment in outcome studies that use administrative health data.[1][2][3] When adjusting 

for comorbidities, researchers may consider comorbidities individually or through the use of 

summary measures such as the Charlson Comorbidity Index [4][5][6] or the Elixhauser 

comorbidity measures [7][8].

In statistical models, investigators might incorporate comorbidities, such as diabetes or heart 

disease, by including indicator covariates to denote whether the condition is present (the 

indicator equals 1 if the condition is present, 0 otherwise). In contrast, summary measures, 

such as the Charlson Comorbidity Index, attach weights to each condition, and then sum the 

weights of those conditions which are present in an individual.[4] The Charlson 

Comorbidity Index is based on a number of conditions that are each assigned an integer 

weight from one to six, with a weight of six representing the most severe morbidity. The 

summation of the weighted comorbidity scores results in a summary score.

In this paper, we use the Charlson Comorbidity Index as the main example of a comorbidity 

summary measure due to its widespread use. A Web of Science search finds that the original 

and derivative papers concerning the Charlson Comorbidity Index have been cited over 

8,800 times. While initially developed for use with medical records data, the Charlson 

Comorbidity Index has been adapted for use with health claims data.[5][6][9] The validity of 

the Charlson Comorbidity Index as well as its adaptations have been investigated in multiple 

studies.[10][11][12] The success of the index has prompted inquiry into further adaptations 

of the Charlson Comorbidity Index using questionnaire and physician claims based indices.

[13][14][15]

While the Charlson Comorbidity Index is commonly used, competitor comorbidity measures 

have been developed. As an additional example, we also investigate properties of the more 

recently developed Elixhauser score.[8] Like the Charlson score, the Elixhauser score was 

derived using regression estimates.

Whether it is better to use the Charlson Comorbidity Index or the individual comorbidities 

separately in statistical models is an open question. For example, using ICD-10 data from a 

multinational group of patients, Sundararajan et al. investigated the use of seventeen 

comorbidities as individual variables to predict mortality.[16] The authors found that the 

individual comorbidities consistently had better prognostic ability than the Charlson 

summary score. Conversely, Lieffers et al. found that the addition of the Charlson 

comorbidities as individual binary variables generated a model that was no better than a 

comparison model created using the Charlson Comorbidity Index in a sample of patients 

with colorectal cancer.[1] Further, some investigators have advocated that researchers 

develop weights for comorbidity indices using their own data rather than published weights. 
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For example, Ghali et al. found that the prognostic ability of summary measures created 

using one’s own data was superior to that of measures derived using published algorithms in 

a sample of patients undergoing coronary artery bypass graft surgery.[17] Using data from 

patients receiving angiotensin-converting enzyme inhibitors or calcium channel blockers, 

Schneeweiss et al. similarly suggested that confounding can better be controlled by deriving 

study-specific weights.[18]

Hansen [19] provided general theoretical justification for prognostic scores (the Charlson 

Comorbidity Index is a prognostic score), by demonstrating that comorbidity summary 

measures can have properties similar to propensity scores [20][21] in removing confounding 

in observational studies. However, as with the propensity score, Hansen suggests that the 

summary measures, or prognostic scores as he terms them, be estimated using a researcher’s 

own data.[19] Further, Hansen suggests that prognostic scores be estimated only using data 

from the control group in a two arm study.[19]

Here, we examine analytic conditions under which summary measures are appropriate. 

Unlike others who examined which comorbidity scores are most useful in specific contexts 

[22], we focus on general approaches to comorbidity summary measure development. In 

particular, we present a mathematical proof that justifies the use of appropriately constructed 

summary measures in place of the individual components. Unlike Hansen [19], we consider 

comorbidity measures developed similarly to the Charlson Comorbidity Index. To 

investigate some finite sample (“real world”) characteristics of the Charlson Comorbidity 

Index and Elixhauser score, we used a data example and simulations.

Methods

We developed a mathematical proof that generally validates the use of summary measures. 

For ease of presentation, we assume baseline (i.e. pre-treatment) comorbidities.

Mathematical Justification

We provide a proof that a comorbidity summary score based on a hazard is heuristically a 

balancing score when used in survival analyses. That is, if one knows the hazard of death 

conditional on the comorbidity score, then knowledge of the covariates used to create the 

score does not provide additional information about the hazard. In an appendix, we provide 

a similar proof for comorbidity scores estimated by linear regressions when used in 

subsequent linear regressions.

The proof provides technical audiences with a rigorous justification for the use of 

comorbidity scores. We examine a hazard since the Charlson Comorbidity Index was 

estimated using summed hazard ratios from a Cox regression. Our proof is more directly 

applicable to measures like the Elixhauser score in which regression coefficients are 

summed. Let T represent the survival time, fT(t) its probability density function, and 

ST(t)=P(T>t). Let h(·) represents the hazard, while X is a vector of covariates, X={X1,

…,Xn}’. Also, x is a vector of the realized values, x={x1,…,xn}’.
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For ease of notation let b(X) represent a comorbidity score derived from a hazard rate; 

. To prove that survival time is independent of the covariates 

given the comorbidity score (i.e. the balancing property), it is necessary to show that:

Since b(X) is a function of X, it follows that h(t∣X,b(X)) = h(t∣X). Thus, for the proof it is 

sufficient to show that h(t∣X) = h(t∣b(X)). Now,

Hence, it is shown that:

This demonstrates the balancing property of measures derived analogously to the Charlson 

Comorbidity Index when used in survival analyses. Of note is that this proof assumes that 

we know the true comorbidity score, b(X). In practice, we only know an estimate of b(X) 

based on a model. While we often assume that the estimator of b(X) converges to the truth 

as the sample size grows (an asymptotic result), there may be some bias or efficiency effects 

of using the estimate in small samples. We explore this in the simulation section.

Data example

For the data example, we used Surveillance Epidemiology and End Results (SEER) data that 

had been linked to Medicare claims data.[23] The SEER database is maintained by the 

National Cancer Institute and currently has data on demographic and tumor characteristics 

about incident cancer cases in approximately 25% of the United States. SEER data can be 

linked to Medicare claims to find additional information on treatment and comorbidities. 

Medicare covers almost all individuals over 65 years old in the SEER database. Fee-for-

service claims from Medicare Part A and Part B provide a record of treatments obtained 

before and after cancer diagnosis.

We included cases over 66 years old diagnosed from 1995-2007 with surgically-treated 

early stage (localized) kidney cancer in the SEER-Medicare data. We restricted the sample 

to those over 66 years old so that individuals would have at least one year pre-diagnosis 

Medicare claims data. We chose a group with localized kidney cancer as such tumors are 
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often slow growing, and many patients are likely to die from their comorbidities rather than 

the cancer itself.[24]

We coded the Charlson Comorbidity Index using an algorithm for claims data [23]. We used 

a similar algorithm to identify Elixhauser measures [25]. Since everyone in the sample had a 

kidney cancer diagnosis, cancer diagnosis was not used to calculate the scores. Also, the 

Elixhauser program does not calculate the cardiac arrhythmia indicator due to Dr. 

Elixhauser’s “concerns about reliability.”[25] To be considered a comorbidity and not a 

“rule-out” diagnosis, two Medicare claims at least 30 days apart had to be found in the one 

year period prior to kidney cancer diagnosis.

For comparison purposes, we examined the discriminative ability of using the Charlson and 

Elixhauser scores and the respective individual comorbidities in Cox proportional hazards 

regressions. In all models we included the following baseline characteristics: age at 

diagnosis, year of diagnosis, diameter of the tumor, sex, race/ethnicity (five categories: 

Hispanic or non-Hispanic black, white, Asian, other), and marital status (married/not 

married). We used Harrell’s concordance index (C-index) to compare the two methods of 

incorporating comorbidities.[26] We examine the concordance statistic as it is often of 

interest to health service researchers. A C-index of 0.5 indicates that a model is not useful in 

predicting who will have longer survival among pairs of individuals, while a value of 1.0 

indicates that the model has perfect discriminatory power.

Simulations

In the SEER-Medicare example, we examine prognostic characteristics in a surgically 

treated sample. We use simulated data to more generally explore the degree to which 

Charlson-type summary measures can adjust for confounding when assessing treatment 

effects. Here, we assume that comorbidities are related both to treatment assignment and to 

the outcome.

We generated simulated data under the following algorithm using the rexp(), and rbinom() 

random number generators in the R programming language.[27] We performed simulations 

twice, assuming sample sizes of 250 or 2,500. We used 2,000 simulation iterations using the 

following algorithm.

Step 1 Variable Generation

Generate four comorbidity variables as bernoulli with conditional 

probabilities P(X1=1) = 0.23, P(X2=1 ∣ X1)= expit (-1.2+1.0*X1), P(X3=1 ∣ 

X1, X2)= expit (-1.9+1.1*X1+1.4*X2), P(X4=1 ∣ X1, X2, X3) = expit (-1.6+.

4*X1+1.0*X2+.5*X3), where expit(q) = eq/(1+eq).

The first probability of 23% corresponds to the proportion of diabetes without complications 

in the dataset. The other coefficients were derived from logistic regressions using SEER-

Medicare data (X1=diabetes, X2=congestive heart failure, X3=chronic renal failure, 

X4=cerebrovascular disease). A constant was added to the intercepts from the regressions to 

reduce sparse data in simulations (i.e. iterations when certain comorbidities were not 

expressed and hence models would not converge).
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Sensitivity analysis 1: We also examined simulations in which we multiplied the slopes by 

1.5.

Step 2 Generate a random treatment indicator, Z, as bernoulli (Z=1 if in treatment 

arm, 0 if in control arm) under two assumptions:

Coefficient Set A: Weaker association of comorbidities with treatment 

assignment:

Coefficient Set B: Stronger association of comorbidities with treatment 

assignment:

Step 3 Generate a survival time, T, in months as exponential with a density of 

f(t∣X,Z)= λ(X,Z) exp(-λ(X,Z)t). We will examine our models with parameters:

(Equation 1)

Setting all slopes equal to 2 (i.e. hazard ratio=exp(2)=7.4) ensured that both the 

comorbidities and treatment had a strong relationship with survival time.

Sensitivity analysis 2: We also repeated the analyses in which we dropped variables X3 and 

X4 from the models in steps 2 and 3. We kept all other parameters the same.

Step 4 Generate a censoring time, C, as exponential with λ = 0.03. Let Y= min(T, C) 

be the observed time to censoring or death and let D =1 if T≤C, 0 otherwise. 

This created between 15% and 30% censored observations depending on the 

parameter assumptions above.

We estimated comorbidity indices in the simulations using Cox proportional hazards models 

as was done for the initial Charlson Comorbidity Index. To align our simulations directly 

with our proof, we estimate comorbidity scores by summing regression coefficients as was 

done for the Elixhauser score. We examined five simulated ways of using comorbidities for 

prognostic and comorbidity adjustment purposes in models that included the treatment 

indicator Z:

Method 1 The four simulated comorbidities entered as four untransformed covariates.

Method 2 A comorbidity score in which the coefficient weights were estimated from 

a single dataset and then the weights were applied in 250 randomly drawn 

experiments. This simulates the development of the Charlson score in 

which the Charlson weights were published using a single dataset, and then 

other researchers applied the weights in their own research. In this 

situation, data from individuals in both the control and treatment groups 

were used for estimation.
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Method 3 A comorbidity score estimated analogously to the preceding simulation 

(Method 2) but only using data from the control group (Z=0). This applies 

the suggestion of Hansen [19] that the comorbidity score only be estimated 

in the control group.

Method 4 A comorbidity score in which the coefficient weights were estimated with 

each iteration such that the same data was used to estimate the coefficient 

weights and estimate the adjusted treatment effect model. Data from 

individuals in both the control and treatment groups were used for 

estimation. This approach is more similar to the propensity score approach 

in which a model is estimated by each researcher, and researchers do not 

generally use propensity score weights previously published in the 

literature.

Method 5 A comorbidity score estimated analogously to the preceding simulation 

(Method 4) but only using data from the control group (Z=0). This again 

takes the preceding approach but only estimates comorbidity scores using 

the control group as advocated by Hansen [19].

Results

SEER-Medicare Example

Our sample included 12,099 individuals diagnosed with localized kidney cancer (stages T1 

or T2, node negative, and metastatic negative) diagnosed between 1995 and 2007 who had 

undergone surgical treatment for their cancer. Demographic and comorbidity information is 

listed in Table 1. The 15 specific non-cancer Charlson comorbidities are listed in the bottom 

of Table 1.

In Table 2, we present the concordance statistics from five Cox proportional hazards 

regressions: 1) a model with no comorbidities, 2) a model with the 15 relevant Charlson 

comorbidities included as individual indicator variables, 3) a model with the Charlson 

Comorbidity Index as derived for health claims data[5][6][15], 4) a model with the 27 

relevant Elixhauser comorbidities entered as indicator variables[7], and 5) a model using an 

Elixhauser summary measure[8].

The C-statistics in Table 2 were almost identical for the two models in which the Charlson 

score was entered as a summary measure and the Charlson comorbidities were entered 

individually. The Elixhauser comorbidity indicators entered individually had slightly better 

discriminative ability, and the Elixhauser score performed slightly worse. These results 

indicate that the widely used Charlson score performs approximately as well as the 

individual variables in predicting who will survive longer among pairs of individuals.

Simulations

In Table 3, we present the results of our simulations. The first model in each group becomes 

the gold standard. The true treatment effect is 2.0 (see Equation 1). When the sample size is 

relatively large (n=2,500), we obtain the approximate treatment effect regardless of our 

assumptions. However, when the sample size is relatively small (n=250), we find that there 
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is some bias in point estimates when using comorbidity scores, particularly when the 

comorbidities were strongly associated with treatment (Tables 3a/3b, coefficient set B, 

n=250, methods 2-5). The small sample size bias was larger when the comorbidities were 

more associated with each other (Table 3b compared to Table 3a, n=250). However, there 

was also some slight upward bias (i.e. the estimated coefficient was too large) when entering 

the comorbidities into the model as four separate indicator (yes/no) variables (Tables 3a/3b, 

method 1 when sample size=250).

Using data only from the control group seemed to increase the small sample size bias 

(Tables 3a/3b, methods 3 and 5 compared with methods 2 and 4). Also, using one’s own 

sample to estimate comorbidity score coefficients did not substantially affect the bias in the 

small sample setting (Tables 3a/3b, methods 4 and 5 compared with methods 2 and 3, 

n=250). In fact, using one’s own data and estimating comorbidity score coefficients only in 

the control group was substantially worse when the sample size was small and the 

comorbidities were highly associated with treatment assignment (Table 3b, n=250, 

coefficient set B, method 5).

When using two comorbidities rather than four in all steps above (Tables 3c and 3d), the 

bias in the small sample size setting (n=250) was reduced.

In all cases, the concordance statistics were unaffected by the simulation design within 

coefficient sets. However, the concordance statistics were reduced when the association of 

comorbidities with treatment was strengthened (coefficient set B).

Discussion

Our findings suggest why comorbidity summary measures have been so useful in health 

services research.

Foremost, our mathematical proof confirms the utility of comorbidity scores such as the 

Charlson Comorbidity Index or Elixhauser score. From a theoretical perspective, once a 

researcher or physician knows a patient’s comorbidity score, there may be no utility in 

knowing other information about the variables used to create the comorbidity score. Of note 

is that the proof assumes that we know the true comorbidity score. In practice, we only have 

an estimate of the truth which could result in some small sample bias as our simulations 

demonstrate.

One caveat is that the utility of a comorbidity score is only as good as the variables that are 

used to create it. Other variables not used to create the comorbidity score might have a better 

prognostic ability than the summary score. Such variables include specific diseases, as well 

as more detailed information about disease severity for the comorbidities that are used to 

create the index. For example, the Charlson Comorbidity Index does not necessarily account 

for the effects of fine gradations of comorbidity severity that might be reflected in 

continuous variables. It is possible that continuous measures of diseases might outperform 

the Charlson score, which is based on binary (yes/no) measures.
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In some respects, comorbidity summary measures are similar to propensity scores.[20][21] 

Unlike propensity scores, comorbidity summary measures are derived from models of the 

survival outcome, rather than treatment. Further, in our mathematical proof, we only proved 

the general prognostic ability of comorbidity scores. Hansen wrote more generally about 

how comorbidity scores can be used appropriately to adjust for potential confounding in 

observational studies.[19] Another difference between the Charlson Comorbidity Index and 

propensity scores is that individuals generally estimate propensity scores using their own 

data, while the Charlson Comorbidity Index was first estimated in 1987. The coefficients 

from the first estimation of the Charlson Comorbidity Index were used in independent 

investigators’ subsequent work. While the Charlson score sums exponentiated coefficients 

(i.e. hazard ratios), this is a minor difference from methods that sum untransformed 

coefficients due to the limited numeric range of the Charlson weights.

Despite the fact that the Charlson Comorbidity Index was estimated some time ago, our data 

example using more modern SEER-Medicare data demonstrates that it can still be a robust 

summary measure for its component variables. Our Cox regression that used the Charlson 

Comorbidity Index had almost the same discriminative ability as a model that used the 

individual comorbidities as predictors. One caveat is that we only included those with 

localized kidney cancer, which is generally not very aggressive. The findings might differ 

when examining other types of cancer.

The Elixhauser score was not quite as good as using the individual Elixhauser predictors or 

the Charlson score. While the individual Elixhauser comorbidities used in a regression gave 

slightly better results overall, there are more Elixhauser comorbidities than Charlson 

comorbidities. It is possible that a comorbidity measure that uses more information may 

have better discriminative ability than one that uses less information. However, it is also 

possible that a comorbidity measure with more variables can lose more information than one 

with a smaller number of variables in finite sample sizes, as demonstrated by our 

simulations.

Our simulations suggest that the performance of comorbidity scores estimated using 

coefficients from an independent dataset may be adequately comparable to using 

coefficients from one’s own data. This is again consistent with our SEER-Medicare analyses 

in which using the Charlson Comorbidity Index derived in 1987 had almost identical 

discriminative ability in a Cox regression as using the indicator variables. Contrary to the 

recommendation of Hansen [19], our simulations did not find that estimating comorbidity 

scores in control groups only, rather than using data from both arms, results in scores that 

are substantially better at reducing bias. We also found that comorbidity scores appropriately 

controlled for confounding with larger sample sizes regardless of the method used. The 

ability of comorbidity scores to adjust for confounding in larger sample sizes even when the 

score is estimated in a control group (methods 3 and 5 in Table 3) provides some 

reassurance about the use of the Charlson Comorbidity Index. For example, the Charlson 

score effectively acts as a comorbidity score estimated in an out-of-sample control group for 

investigators who use it.
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There are limitations to the use of comorbidity scores published in the literature. If an 

investigator’s patient sample is very different from the sample used to construct the 

comorbidity summary measure, then the summary measure might perform less well than 

using the individual comorbidities as prognostic variables or confounding adjustment 

variables. An ad hoc approach to investigate whether a researcher’s sample is too different 

from the population used to create a published comorbidity score would be to estimate the 

comorbidity score coefficients in the researcher’s own sample and then examine whether the 

coefficients approximately match those published. In the case of the Charlson score [4], this 

can be done by using a Cox regression to reestimate the comorbidity weights. If the findings 

suggest sufficient similarity in comorbidity weights, then using the Charlson score might 

make the results more generalizable.

Another limitation is that comorbidity summary measures might not effectively control for 

comorbidity confounding in observational treatment effectiveness studies if patients’ 

probabilities of being treated (i.e. the propensity score) are too close to zero or one (related 

simulation findings not shown). In practical terms, this means that the Charlson or 

Elixhauser scores might not be useful if there are certain people included in a sample with 

characteristics that would make them ineligible to be assigned to one arm of a study. This is 

again consistent with Hansen’s findings.[19]

Overall, summary comorbidity measures can be useful statistics for condensing comorbidity 

information into easy to use metrics. Rather than trying to interpret the significance of 

multiple individual comorbidities, a summary measure can give clinicians and researchers a 

single number that captures the information. Our work suggests that once a comorbidity 

score is known, knowing details on the individual comorbidities used to create the index 

may give little additional information about a patient’s prognosis. This may be one reason 

why summary measures such as the Charlson Comorbidity Index have been so useful over 

the decades.

Acknowledgments

This work was supported by the National Institutes of Health, National Cancer Institute, grants P30CA006927 and 
R03CA152388. We thank Dr. Samuel Litwin for his comments.

Appendix

Mathematical Justification for Linear Regression

Let Y represent the continuous outcome, and E[Y] be its expected (mean) value. Let X be a 

vector of covariates, X={X1,…,Xn}’. Also, x is a vector of the realized values, x={x1,

…,xn}’. For example, if there were two comorbidities of interest, such as diabetes or 

congestive heart failure (CHF), we might set X1=1 if diabetes is present, 0 otherwise, and 

X2=1 if CHF is present, 0 otherwise. A typical multiple linear regression would set the 

conditional expectation to: E[Y∣X]=β0 + β1X1 + β2X2. In such a case, the outcome of interest, 

Y, might be blood pressure at a given time.
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The comorbidity score is E[Y∣X], the linear regression of the outcome on the comorbidities. 

For ease of notation, define b(X) = E[Y∣X]. To prove that the outcome is independent of the 

covariates given the comorbidity score (i.e. heuristically a balancing property of a 

comorbidity score), it is necessary to show that: E[Y∣X,b(X)]= E[Y∣b(X)].

Now, since b(X) is a function of X, it follows that E[Y∣X,b(X)]= E[Y∣ X]. The proof follows.

Hence, it is shown that:

This demonstrates that a comorbidity score derived from a multiple linear regression when 

used in a subsequent multiple linear regression is similar to a balancing score such as the 

propensity score[20][21].
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Table 1

Characteristics of SEER-Medicare sample (mean or %, SD=standard deviation). The proportions of 

individuals with Charlson comorbidities differ from those with similar Elixhauser comorbidities due to 

differences in claims-based codes used to identify comorbidities.

N 12,099

Age (SD) 74.4 (5.7)

Year Diagnosed (SD) 2002 (3.4)

Largest tumor dimension in mm (SD) 45.8 (26.2)

Female 43%

Married 62%

Race \ Ethnicity

Asian 2%

Black (non-Hispanic) 8%

White (non-Hispanic) 86%

Hispanic 2%

Other 2%

Charlson Score (SD) 0.81 (1.19)

 Charlson score = 0 55%

 Charlson score = 1 25%

 Charlson score = 2 11%

 Charlson score = 3 5%

 Charlson score = 4+ 4%

Elixhauser Score (SD) 1.86 (4.16)

 Elixhauser score= -1 to -9 10%

 Elixhauser score= 0 57%

 Elixhauser score= 1 to 5 18%

 Elixhauser score= 6 to 10 10%

 Elixhauser score= 11 to 40 5%

Charlson Comorbidities

Myocardial infarction 3.5%

Congestive heart failure 8.3%

Peripheral vascular disease 5.1%

Cerebrovascular disease 5.6%

Chronic obstructive pulmonary disease 12.9%

Dementia 0.5%

Paralysis 0.5%

Diabetes 23.0%

Diabetes with sequelae 4.8%

Chronic renal failure 5.4%

Cirrhodites 0.4%

Moderate-severe liver disease 0.1%

Ulcers 1.6%
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Rheumatoid arthritis 2.5%

AIDS ≤0.1%

Elixhauser Comorbidities

Congestive heart failure 8.7%

Valvular disease 6.4%

Pulmonary circulation disease 1.1%

Peripheral vascular disease 8.4%

Paralysis 0.9%

Other neurological disorders 3.3%

Chronic pulmonary disease 12.9%

Diabetes w/o chronic complications 17.8%

Diabetes w/ chronic complications 5.6%

Hypertension uncomplicated 58.8%

 •Hypertension complicated 9.4%

Hypothyroidism 9.5%

Renal failure 3.6%

Liver disease 0.8%

Peptic ulcer disease excluding bleeding ≤0.1%

AIDS ≤0.1%

Lymphoma 1.2%

Rheumatoid arthritis/collagen vascular diseases 2.9%

Coagulopathy 2.5%

Obesity 2.2%

Weight loss 1.6%

Fluid and electrolyte disorders 8.1%

Chronic blood loss anemia 1.4%

Deficiency anemias 14.3%

Alcohol abuse 0.4%

Drug abuse ≤0.1%

Psychoses 1.9%

Depression 2.7%
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Table 2

Performance of summary measures versus indicator variables using SEER-Medicare data. The base model 

included age at diagnosis, year of diagnosis, diameter of the tumor, sex, race/ethnicity (five categories: 

Hispanic or non-Hispanic black, white, Asian, other), and marital status (married/not married).

Model C-Statistic

Base Model Only 0.615

Base Model + Individual Charlson Indicator Variables 0.667

Base Model + Charlson Score 0.664

Base Model + Individual Elixhauser Indicator Variables 0.672

Base Model + Elixhauser Score 0.652
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Table 3

Empirical results from simulations. The true point estimate is 2.0.

a. All 4 covariates used, comorbidity slopes derived using estimates from data example. The true treatment effect coefficients equal 2.

Coefficient Set A

Weak relationship of comorbidities with treatment

Sample size=250

Method Treatment Effect C-Statistic

1 2.05 0.83

2 1.96 0.83

3 1.94 0.83

4 1.96 0.83

5 1.93 0.83

Coefficient Set B

Strong relationship of comorbidities with treatment

Sample size=250

Method Treatment Effect C-Statistic

1 2.05 0.78

2 1.86 0.77

3 1.83 0.77

4 1.88 0.77

5 1.84 0.77

Coefficient Set A

Weak relationship of comorbidities with treatment

Sample size=2500.

Method Treatment Effect C-Statistic

1 2.00 0.83

2 2.00 0.83

3 1.99 0.83

4 2.00 0.83

5 1.99 0.83

Coefficient Set B

Strong relationship of comorbidities with treatment

Sample size=2500

Method Treatment Effect C-Statistic

1 2.01 0.77

2 1.99 0.77

3 1.99 0.77

4 1.99 0.77

5 1.99 0.77

b. All 4 covariates used, slopes used to create the comorbidities multiplied by 1.5, creating stronger association of comorbidities with each other 
(Sensitivity Analysis 1).
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a. All 4 covariates used, comorbidity slopes derived using estimates from data example. The true treatment effect coefficients equal 2.

Coefficient Set A

Weak relationship of comorbidities with treatment

Sample size=250

Method Treatment Effect C-Statistic

1 2.04 0.85

2 1.96 0.85

3 1.93 0.85

4 1.96 0.85

5 1.94 0.85

Coefficient Set B

Strong relationship of comorbidities with treatment

Sample size=250

Method Treatment Effect C-Statistic

1 2.04 0.80

2 1.86 0.79

3 1.78 0.79

4 1.89 0.80

5 1.80 0.79

Coefficient Set A

Weak relationship of comorbidities with treatment

Sample size=2500.

Method Treatment Effect C-Statistic

1 2.00 0.85

2 2.00 0.85

3 1.99 0.85

4 1.99 0.85

5 1.99 0.85

Coefficient Set B

Strong relationship of comorbidities with treatment

Sample size=2500

Method Treatment Effect C-Statistic

1 2.01 0.79

2 1.99 0.79

3 1.98 0.79

4 1.98 0.79

5 1.99 0.79

c. Same as results in table 3a above, but only X1 and X2 included in simulations. Comorbidities X3 and X4 not included in any Methods. 
(Sensitivity Analysis 2)

Coefficient Set A

Weak relationship of comorbidities with treatment
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a. All 4 covariates used, comorbidity slopes derived using estimates from data example. The true treatment effect coefficients equal 2.

Sample size=250

Method Treatment Effect C-Statistic

1 2.03 0.70

2 2.00 0.77

3 2.00 0.77

4 2.00 0.77

5 2.00 0.77

Coefficient Set B

Strong relationship of comorbidities with treatment

Sample size=250

Method Treatment Effect C-Statistic

1 2.03 0.70

2 1.96 0.69

3 1.98 0.69

4 1.96 0.70

5 2.00 0.69

Coefficient Set A

Weak relationship of comorbidities with treatment

Sample size=2500.

Method Treatment Effect C-Statistic

1 2.00 0.77

2 2.00 0.77

3 2.00 0.77

4 2.00 0.77

5 2.00 0.77

Coefficient Set B

Strong relationship of comorbidities with treatment

Sample size=2500

Method Treatment Effect C-Statistic

1 2.00 0.69

2 2.00 0.69

3 2.00 0.69

4 1.99 0.69

5 2.00 0.69

d. Same as results in table 3b above, but only X1 and X2 included in simulations. Comorbidities X3 and X4 not included in any Methods. The 
slopes used to create X1 and X2 are multiplied by 1.5. (This combines Sensitivity Analyses 1 and 2).

Coefficient Set A

Weak relationship of comorbidities with treatment

Sample size=250

Method Treatment Effect C-Statistic
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a. All 4 covariates used, comorbidity slopes derived using estimates from data example. The true treatment effect coefficients equal 2.

1 2.02 0.78

2 2.00 0.78

3 1.99 0.78

4 1.99 0.78

5 2.00 0.78

Coefficient Set B

Strong relationship of comorbidities with treatment

Sample size=250

Method Treatment Effect C-Statistic

1 2.03 0.70

2 1.96 0.70

3 1.98 0.70

4 1.97 0.70

5 1.98 0.70

Coefficient Set A

Weak relationship of comorbidities with treatment

Sample size=2500.

Method Treatment Effect C-Statistic

1 2.00 0.78

2 2.00 0.78

3 2.00 0.78

4 2.00 0.78

5 2.00 0.78

Coefficient Set B

Strong relationship of comorbidities with treatment

Sample size=2500

Method Treatment Effect C-Statistic

1 2.01 0.70

2 2.00 0.70

3 2.00 0.70

4 2.00 0.70

5 2.00 0.70
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