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Abstract
Statistical image reconstruction algorithms in X-ray CT provide improved image quality for
reduced dose levels but require substantial computation time. Iterative algorithms that converge in
few iterations and that are amenable to massive parallelization are favorable in multiprocessor
implementations. The separable quadratic surrogate (SQS) algorithm is desirable as it is simple
and updates all voxels simultaneously. However, the standard SQS algorithm requires many
iterations to converge. This paper proposes an extension of the SQS algorithm that leads to
spatially non-uniform updates. The non-uniform (NU) SQS encourages larger step sizes for the
voxels that are expected to change more between the current and the final image, accelerating
convergence, while the derivation of NU-SQS guarantees monotonic descent. Ordered subsets
(OS) algorithms can also accelerate SQS, provided suitable “subset balance” conditions hold.
These conditions can fail in 3D helical cone-beam CT due to incomplete sampling outside the
axial region-of-interest (ROI). This paper proposes a modified OS algorithm that is more stable
outside the ROI in helical CT. We use CT scans to demonstrate that the proposed NU-OS-SQS
algorithm handles the helical geometry better than the conventional OS methods and “converges”
in less than half the time of ordinary OS-SQS.

Index Terms
Statistical image reconstruction; computed tomography; parallelizable iterative algorithms;
ordered subsets; separable quadratic surrogates

I. Introduction
Statistical image reconstruction methods can improve resolution and reduce noise and
artifacts by minimizing either penalized likelihood (PL) [1]–[3] or penalized weighted least-
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squares (PWLS) [4]–[6] cost functions that model the physics and statistics in X-ray CT.
The primary drawback of these methods is their computationally expensive iterative
algorithms. This paper describes new accelerated minimization algorithms for X-ray CT
statistical image reconstruction.

There are several iterative algorithms for X-ray CT. Coordinate descent (CD) algorithms [7]
(also known as Gauss Siedel algorithms [8, p. 507]) and block/group coordinate descent
(BCD/GCD) algorithms [9]–[11], update one or a group of voxels sequentially. These can
converge in few iterations but can require long computation time per iteration [6], [12].
Considering modern computing architectures, algorithms that update all voxels
simultaneously and that are amenable to parallelization are desirable, such as ordered
subsets based on separable quadratic surrogate (OS-SQS) [13]–[15] and preconditioned
conjugate gradient (PCG) algorithms [16]. However, those highly parallelizable algorithms
require more iterations than CD algorithms [6], [12], and thus it is desirable to reduce the
number of iterations needed to reach acceptable images. Splitting techniques [17] can
accelerate convergence [18], but require substantial extra memory.

In this paper, we propose an enhanced version of a highly parallelizable SQS algorithm that
accelerates convergence. SQS algorithms are optimization transfer methods that replace the
original cost function by a simple surrogate function [19], [20]. Here we construct surrogates
with spatially non-uniform curvatures that provide spatially non-uniform step sizes to
accelerate convergence.

Spatially non-homogeneous (NH) approach [7] accelerated the CD algorithm by more
frequently visiting the voxels that need updates. This approach is effective because the
differences between the initial and final images are non-uniform. Inspired by such ideas, we
propose a spatially non-uniform (NU) optimization transfer method that encourages larger
updates for voxels that are predicted to be farther from the optimal value, using De Pierro’s
idea in SQS [21]. We provide a theoretical justification for the acceleration of NU method
by analyzing the convergence rate of SQS algorithm (in Section II-D). The NH approach
also balanced homogeneous and non-homogeneous updates for fast overall convergence rate
[7]. Section III-C discusses similar considerations for the proposed NU approach.

Ordered subsets (OS), also known as incremental gradient methods [22], [23] or block
iterative methods [24], can accelerate gradient-based algorithms by grouping the projection
data into (ordered) subsets and updating the image using each subset. OS algorithms are
most effective when a properly scaled gradient of each subset data-fit term approximates the
gradient of the full data-fidelity term, and then it can accelerate convergence by a factor of
the number of subsets. However, standard OS algorithms usually approach a limit-cycle
where the sub-iterations loop around the optimal point. OS algorithms can be modified so
that they converge by introducing relaxation [25], reducing the number of subsets, or by
using incremental optimization transfer methods [26]. Unfortunately, such methods
converge slower than ordinary OS algorithms in early iterations. Therefore, we investigated
averaging the sub-iterations when the algorithm reaches a limit-cycle, which improves
image quality without slowing convergence. (There was a preliminary simulation study of
this idea in [27].)

In cone-beam CT, the user must define a region-of-interest (ROI) along the axial (z)
direction for image reconstruction (see Fig. 1). Model-based reconstruction methods for
cone-beam CT should estimate many voxels outside the ROI, because parts of each patient
usually lie outside the ROI yet contribute to some measurements. However, accurately
estimating non-ROI voxels is difficult since they are incompletely sampled, which is called
the “long-object problem” [28]. Reconstructing the non-ROI voxels adequately is important,
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as they may impact the estimates within the ROI. Unfortunately in OS algorithms, the
sampling of these extra slices leads to very imbalanced subsets particularly for large number
of subsets, which can destabilize OS algorithm outside the ROI. This paper proposes an
improved OS algorithm that is more stable for 3D helical CT by defining better scaling
factors for the subset-based gradient [29].

The paper is organized as follows. Section II reviews PL and PWLS problems for X-ray CT
image reconstruction. We review the optimization transfer methods including the SQS
algorithm and analyze its convergence rate. Section III presents the proposed spatially non-
uniform SQS algorithm (NU-SQS). Section IV reviews the standard OS algorithm and
refines it for 3D helical CT. Section V shows the experimental results on various data sets,
quantifying the convergence rate and reconstructed image quality. Finally, Section VI offers
conclusions. The results show that the NU approach more than doubles the convergence
rate, and the improved OS algorithm provides acceptable images in helical CT.

II. Statistical image reconstruction
A. Problem

We reconstruct a non-negative image  from noisy measured
transmission data Y ∈ IRNd by minimizing either penalized likelihood (PL) or penalized
weighted least-squares (PWLS) cost functions:

(1)

(2)

where x̂ is a minimizer of Ψ(x) subject to a non-negativity constraint. The function L(x) is a
negative log-likelihood term (data-fit term) and R(x) is a regularizer. The matrix A = {aij} is

a projection operator (aij ≥ 0 for all i, j) where , and C = {ckj} is a finite
differencing matrix considering 26 neighboring voxels in 3D image space.1 The function
ψk(t) is a (convex and typically non-quadratic) edge-preserving potential function. The
function hi(t) is selected based on the chosen statistics and physics:

• Penalized likelihood (PL) for pre-log data Yi with Poisson model [1]–[3] uses:

(3)

where bi is the blank scan factor and ri is the mean number of background events.
The function hi(·) is non-convex if ri ≠ 0, or convex otherwise. A shifted Poisson
model [30] that partially accounts for electronic recorded noise can be used instead.

• Penalized weighted least squares (PWLS) for post-log data yi = log (bi/(Yi − ri))
with Gaussian model [4]–[6] uses a convex quadratic function:

(4)

1Each row of C consists of a permutation of (1, −1, 0, …, 0) ∈ IRNp where the indices of the nonzero entries 1 and −1 corresponds to
adjacent voxel locations in 3D image space.
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where wi = (Yi − ri)2/Yi provides statistical weighting. We use the PWLS cost
function for our experiments in Section IV and V.

The proposed NU-SQS algorithm, based on optimization transfer methods (in Section II-B),
decreases the cost function Ψ(x) monotonically for either (3) or (4).

B. Optimization transfer method
When a cost function Ψ(x) is difficult to minimize, we replace Ψ(x) with a surrogate
function φ(n)(x) at the nth iteration for computational efficiency. This method is called
optimization transfer [19], [20], which is also known as a majorization principle [31], and a
comparison function [32]. There are many optimization transfer algorithms such as
expectation maximization (EM) algorithms [33], [34], separable surrogate algorithms based
on De Pierro’s lemma [35]–[37] and surrogate algorithms using Lipschitz constants [38],
[39].

The basic iteration of an optimization transfer method is

(5)

To monotonically decrease Ψ(x), we design surrogate functions φ(n)(x) that satisfy the
following majorization conditions:

(6)

Constructing surrogates with smaller curvatures while satisfying condition (6) is the key to
faster convergence in optimization transfer methods [11].

Optimization transfer has been used widely in tomography problems. De Pierro developed a
separable surrogate (SS) approach in emission tomography [35], [36]. Quadratic surrogate
(QS) functions have been derived for non-quadratic problems, enabling monotonic descent
[1]. SQS algorithms combine SS and QS [14], and are the focus of this paper. Partitioned
SQS methods for multi-core processors have been proposed for separating the image domain
by the number of processors and updating each of them separately while preserving the

monotonicity [40]. In addition, replacing  in (6) by an interval that is known to include
the minimizer x̂ can reduce the surrogate curvature [7], [41].

Building on this history of optimization transfer methods that seek simple surrogates with
small curvatures, we propose a spatially non-uniform SQS (NU-SQS) algorithm that
satisfies condition (6) and converges faster than the standard SQS. We review the derivation
of the SQS algorithm next.

C. Separable quadratic surrogate (SQS) algorithm
We first construct a quadratic surrogate at the nth iteration for the non-quadratic cost
function in (2):

2If , then .
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(7)

where  and  are quadratic surrogates for L(x) and R(x). Based on (2), the
quadratic surrogate for L(x) has the form:

(8)

where , and  is the curvature of  for some small

positive value η that ensures the curvature  positive [1]. In PWLS problem, hi (·) is

quadratic already, so . The quadratic surrogate  for R(x) is defined
similarly.

We choose curvatures  that satisfy the monotonicity conditions in (6). For PL, the
smallest curvatures:

(9)

where [t]+ = max{t, 0}, called “optimal curvatures,” lead to the fastest convergence rate but
require an extra back-projection each iteration for non-quadratic problems [1]. Alternatively,
we may use “maximum curvatures”:

(10)

that we can precompute before the first iteration [1].

Next, we generate a separable surrogate of the quadratic surrogate. For completeness, we
repeat De Pierro’s argument in [14]. We first rewrite forward projection [Ax]i as follows:

(11)

where a non-negative real number  is zero only if aij is zero for all i, j, and satisfies

 for all i. Using the convexity of  and the convexity inequality yields

(12)
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Thus we have the following separable quadratic surrogate  (with a diagonal Hessian)
for the data-fit term L(x):

(13)

(14)

The second derivative (curvature) of the surrogate  is

(15)

We can define a separable quadratic surrogate  for the regularizer similarly, and it
has the curvature:

(16)

where  have similar constraints as , ψ̈k(0) = maxt ψ̈k(t) for maximum curvature [14],
or ψ̈k(0) can be replaced by ψ̇k([Cx(n)]k)/[Cx(n)]k for Huber’s optimal curvature [32, Lemma
8.3, p.184].

Combining the surrogates for the data-fit term and regularizer and minimizing it in (5) leads
to the following separable quadratic surrogate (SQS) method [14] that updates all voxels

simultaneously with a “denominator” :

(17)

where a clipping [·]+ enforces the non-negativity constraint. This SQS decreases the cost
function Ψ(x) monotonically, and it converges based on the proof in [20]. If Ψ(x) is convex,
a sequence {x(n)} converges to x(∞) that is a global minimizer x̂. Otherwise, {x(n)}
converges to a local minimizer x(∞) which may or may not be a global minimizer x̂
depending on the initial image x(0).

The implementation and convergence rate of SQS depend on the choice of . A general

form for  is
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(18)

where a non-negative real number  is zero only if aij is zero. Then (15) can be re-written
as

(19)

Summations involving the constraint aij ≠ 0 require knowledge of the projection geometry,
and thereby each summation can be viewed as a type of forward or back projection.

The standard choice [11], [14]:

(20)

leads to

(21)

and

(22)

This choice is simple to implement, since the (available) standard forward and back

projections can be used directly in (21). (Computing  in (22) is negligible compared
with (21).) The standard SQS generates a sequence {x(n)} in (17) by defining the
denominator as

(23)

However, we prefer choices for  (and ) that provide fast convergence. Therefore, we

first analyze the convergence rate of the SQS algorithm in terms of the choice of  in the

next section. Section III introduces acceleration by choosing better  (and ) than the
standard choice (20).
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D. Convergence rate of SQS algorithm
The convergence rate of the sequence {x(n)} generated by the SQS iteration (17) depends on

the denominator . This paper’s main goal is to choose  so that the
sequence {x(n)} converges faster.

The asymptotic convergence rate of a sequence {x(n)} that converges to x(∞) is measured by
the root-convergence factor defined as R1{x(n)} ≜ lim supn→∞ ||x(n) − x(∞)||1/n in [31, p.
288]. The root-convergence factor at x(∞) for SQS algorithm is given as R1 {x(n)}= ρ(I −
[D(∞)]−1H(∞)) in [31, Linear Convergence Theorem, p. 301] and [42, Theorem 1], where
the spectral radius ρ(·) of a square matrix is its largest absolute eigenvalue and H(∞) ≜
∇2Ψ(x(∞)), assuming that D(n) converges to D(∞). For faster convergence, we want
R1{x(n)} and ρ(·) to be smaller. We can reduce the root-convergence factor based on2 [42,
Lemma 1], by using a smaller denominator D(n) subject to the majorization conditions in (6)
and (13).

However, the asymptotic convergence rate does not help us design D(n) in the early
iterations, so we consider another factor that relates to the convergence rate of SQS:

Lemma 1—For a fixed denominator D (using the maximum curvature (10)), a sequence
{x(n)} generated by an SQS algorithm (17) satisfies

(24)

for any n ≥ 0, if Ψ (x) is convex. Lemma 1 is a simple generalization of Theorem 3.1 in [39],
which was shown for a surrogate with a scaled identity Hessian (using Lipschitz constant).
The inequality (24) shows that minimizing ||x(0)−x(∞)||D with respect to D will reduce the
upper bound of Ψ(x(n))−Ψ(x(∞)), and thus accelerate convergence. (Since the upper bound is
not tight, there should be a room for further acceleration by choosing better D, but we leave
it as future work.)

We want to adaptively design D(n) to accelerate convergence at the nth iteration. We can
easily extend Lemma 1 to Corollary 1 by treating the current estimate x(n) as an initial image
for the next SQS iteration:

Corollary 1—A sequence {x(n)} generated by an SQS algorithm (17) satisfies

(25)

for any n ≥ 0, if Ψ(x) is convex. The inequality (25) motivates us to use  when

selecting  (and ) to accelerate convergence at nth iteration. We discuss this further in
Section III-A. We fix D(n) after the nfix number of iterations to ensure convergence of SQS
iteration (17), based on [20]. In this case, D(n) must be generated by the maximum curvature
(10) to guarantee the majorization condition (6) for subsequent iterations.

From (17) and (19), the step size  of the SQS iteration (17) has this relationship:
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(26)

where smaller  (and relatively larger ) values lead to larger steps. Therefore, we

should encourage  to be small ( to be relatively large) to accelerate the SQS

algorithm. However, we cannot reduce  simultaneously for all voxels, due to the
majorization conditions in (6) and (13). Lemma 1 (and Corollary 1) suggest intuitively that

we should try to encourage larger steps  (smaller ) for the voxels that are far from
the optimum to accelerate convergence.

III. Spatially non-uniform separable quadratic surrogate (NU-SQS)
We design surrogates that satisfy condition (6) and provide faster convergence based on
Section II-D. We introduce the “update-needed factors” and propose a spatially non-uniform
SQS (NU-SQS) algorithm.

A. Update-needed factors

Based on Corollary 1, knowing  would be helpful for accelerating convergence

at the nth iteration, but  is unavailable in practice. NH-CD algorithm [7] used the
difference between the current and previous iteration instead:

(27)

which we call the “update-needed factors” (originally named a voxel selection criterion
(VSC) in [7]). Including the small positive values {δ(n)} ensures all voxels to have at least a

small amount of attention for updates. This  accelerated the NH-CD algorithm by

visiting voxels with large  more frequently.

B. Design

For SQS, we propose to choose  to be larger if the jth voxel is predicted to need more
updates based on the “update-needed factors” (27) after the nth iteration. We select

(28)

which is proportional to  and satisfies the condition for . This choice leads to the
following NU-based denominator:

(29)

which leads to spatially non-uniform updates .

If it happened that
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(30)

where B is a constant, then the NU denominator  would minimize the upper bound of
Ψ(x(n+1)) − Ψ(x(∞)) in Corollary 1:

Lemma 2—The proposed choice  in (29) minimizes the following weighted sum of
the denominators

(31)

over all possible choices of the  in (19).

Proof: In Appendix A.

The proposed  in (29) reduces to the standard choice  in (21) when  is

uniform. Similar to the standard choice , the proposed choice  can be

implemented easily using standard forward and back projection. However, since 

depends on iteration (n), additional projections required for  at every iteration would
increase computation. We discuss ways to reduce this burden in Section III-F.

Similar to the data-fit term, we derive the denominator of NU-SQS for the regularizer term
to be:

(32)

from the choice  and the maximum curvature method in [14]. Alternatively,
we may use Huber’s optimal curvature [32, Lemma 8.3, p.184] replacing ψ̈k(0) in (32) by
ψ̇k([Cx(n)]k)/[Cx(n)]k. The computation of (32) is much less than that of the data-fit term.

Defining the denominator in the SQS iteration (17) as

(33)

leads to the accelerated NU-SQS iteration, while the algorithm monotonically decreases
Ψ(x) and is provably convergent [20]. We can further accelerate NU-SQS by ordered subsets
(OS) methods [13], [14], while losing the guarantee of monotonicity. This algorithm, called
ordered subsets algorithms based on a spatially non-uniform SQS (NU-OS-SQS), is
explained in Section IV.
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C. Dynamic range adjustment (DRA) of  In reality, (30) will not hold, so (27) will be
suboptimal. We could try to improve (27) by finding a function f(n)(·): [δ(n), ∞) → [ε, 1]
based on the following

(34)

where ε is a small positive value. Then we could use  as (better) update-needed
factors. However, solving (34) is intractable, so we searched empirically for good candidates
for a function f(n)(·).

Intuitively, if the dynamic range of the update-needed factors  in (27) is too wide, then

there will be too much focus on the voxels with relatively large , slowing the overall

convergence rate. On the other hand, a narrow dynamic range of  will provide no speed-
up, since the algorithm will distribute its efforts uniformly. Therefore, adjusting the dynamic
range of the update-needed factors is important to achieve fast convergence. This intuition
corresponds to how the NH-CD approach balanced between homogeneous update orders and
non-homogeneous update orders [7].

To adjust the dynamic range and distribution of , we first construct their empirical
cumulative density function:

(35)

to somewhat normalize their distribution, where IB = 1 if B is true or 0 otherwise. Then we

map the values of  by a non-decreasing function g(·): [0, 1] → [ε, 1] as follows

(36)

which controls the dynamic range and distribution of , and we enforce positivity in

g(·) to ensure that the new adjusted parameter  is positive if aij is positive. (We

set δ(n) in (27) to zero here, since a positive parameter ε ensures the positivity of  if aij is

positive.) The transformation (36) from  to  is called dynamic range adjustment

(DRA), and two examples of such  are presented in Fig. 2. Then we use  instead of

 in (28).

Here, we focus on the following function for adjusting the dynamic range and distribution:

(37)
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where t is a non-negative real number that controls the distribution of  and ε is a small

positive value that controls the maximum dynamic range of . The function reduces to the
ordinary SQS choice in (20) when t = 0. The choice of g(·), particularly the parameters t and
ε here, may influence the convergence rate of NU-SQS for different data sets, but we show
that certain values for t and ε consistently provide fast convergence for various data sets.

D. Related work
In addition to the standard choice (20), the choice

(38)

with a small non-negative δ, has been used in emission tomography problems [35], [36] and

in transmission tomography problems [11], [37]. This choice is proportional to , and

thereby provides a relationship . This classical choice (38) can be also viewed as
another NU-SQS algorithm based on “intensity”. However, intensity is not a good predictor
of which voxels need more update, so (38) does not provide fast convergence based on the
analysis in Section II-D.

E. Initialization of 

Unfortunately,  in (27) is available only for n ≥ 1, i.e., after updating all voxels once. To

define the initial update factors , we apply edge and intensity detectors to an initial
filtered back-projection (FBP) image. This is reasonable since the initial FBP image is a
good low-frequency estimate, so the difference between initial and final image will usually
be larger near edges. We investigated one particular linear combination of edge and intensity
information from an initial image. We used the 2D Sobel operator to approximate the
gradient of the image within each transaxial plane. Then we normalized both the
approximated gradient and the intensity of the initial image, and computed a linear

combination of two arrays with a ratio 2: 1 for the initial update-needed factor , followed
by DRA method. We have tried other linear combinations with different ratios, but the ratio
2 : 1 provided the fastest convergence rate in our experiments.

F. Implementation

The dependence of  on iteration (n) increases computation, but we found two practical

ways to reduce the burden. First, we found that it suffices to update  (and ) every
nloop > 1 iterations instead of every iteration. This is reasonable since the update-needed
factors usually change slowly with iteration. In this case, we must generate a surrogate with
the maximum curvature (10) to guarantee the majorization condition (6) for all iterations.
Second, we compute the NU-based denominator (29) simultaneously with the data-fit
gradient in (17). In 3D CT, we use forward and back-projectors that compute elements of the
system matrix A on the fly, and those elements are used for the gradient ∇L(x) in (17). For
efficiency, we reuse those computed elements of A for the NU-based denominator (29). We
implemented this using modified separable footprint projector subroutines [43] that take two
inputs and project (or back-project) both. This approach required only 25% more
computation time than a single forward projection rather than doubling the time (see Table
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I). Combining this approach with nloop = 3 yields a NU-SQS algorithm that required only
13% more computation time per iteration than standard SQS, but converges faster.

Computing  and the corresponding NU-based denominator requires one iteration each. In

the proposed algorithm, we computed  during one iteration, and then computed the NU-
based denominator (29) during the next iteration combined with the gradient computation

∇L(x). Then we used the denominator for nloop iterations and then compute  again to
loop the process (see outline in Appendix B).

IV. Improved ordered subsets (OS) algorithm for helical CT
Ordered subsets (OS) methods can accelerate algorithms by a factor of the number of
subsets in early iterations, by using a subset of the measured data for each subset update.
However, in practice, OS methods break the monotonicity of SQS and NU-SQS, and
typically approach a limit-cycle looping around the optimum. This section describes a
simple idea that reduces this problem, only slightly affecting the convergence rate unlike
previous convergent OS algorithms. In helical CT geometries, we observed that
conventional OS algorithms for PL and PWLS problem are unstable for large subset
numbers as they did not consider their non-uniform sampling. Thus, we describe an
improved OS algorithm that is more stable for helical CT.

A. Ordinary OS algorithm
An OS algorithm (with M subsets) for accelerating the SQS or NU-SQS updates (17) has the

following mth sub-iteration within the nth iteration using the denominator3  in (33):

(39)

where  scales the gradient of a subset data-fit term Lm(x) = Σi∈Sm hi([Ax]i), and Sm
consists of projection views in mth subset for m = 0, 1, ···, M − 1. We count one iteration
when all M subsets are used once, since the projection A used for computing data-fit
gradients is the dominant operation in SQS iteration.

If we use many subsets to attempt a big acceleration in OS algorithm, some issues arise. The
increased computation for the gradient of regularizer in (39) can become a bottleneck (this
has been relieved in [44]). Also having less measured data in each subset will likely break
the subset balance condition

(40)

The update in (39) would accelerate the SQS algorithm by exactly M if the scaling factor

 satisfied the condition:

3We consider the maximum curvature (10) here for computational efficiency in OS methods.
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(41)

It would be impractical to compute this factor exactly, so the conventional OS approach is to
simply use the constant γ = M. This “approximation” often works well in the early iterations
when the subsets are suitably balanced, and for small number of subsets. But in general, the

errors caused by the differences between  and a constant scaling factor γ cause two
problems in OS methods. First, the choice γ = M causes instability in OS methods in a
helical CT that has limited projection views outside ROI, leading to very imbalanced
subsets. Therefore, we propose an alternative choice γj that better stabilizes OS for helical
CT in Section IV-B. Second, even with γ replaced by γj, OS methods approach a limit-cycle
that loops around the optimal point within sub-iterations [25]. Section IV-C considers a
simple averaging idea that reduces this problem.

B. Proposed OS algorithm in helical CT
The constant scaling factor γ = M used in the ordinary regularized OS algorithm is
reasonable when all the voxels are sampled uniformly by the projection views in all the
subsets. But in geometries like helical CT, the voxels are non-uniformly sampled. In
particular, voxels outside the ROI are sampled by fewer projection views than voxels within
the ROI (see Fig. 1). So some subsets make no contribution to such voxels, i.e., very
imbalanced subsets. We propose to use a voxel-based scaling factor γj that considers the
non-uniform sampling, rather than a constant factor γ.

After investigating several candidates, we focused on the following scaling factor:

(42)

where IB = 1 if B is true or 0 otherwise. As expected, γj < M for voxels outside the ROI and
γj = M for voxels within the ROI. The scaling factor (42) has small compute overhead as it
can be computed simultaneously with the precomputation of the initial data-fit denominator
(29) by rewriting it as

(43)

We store (42) as a short integer for each voxel outside the ROI only, so it does not require
very much memory.

We evaluated the OS algorithm with the proposed scaling factors (42) using the GE
performance phantom. Fig. 3 shows that the OS algorithm using the proposed scaling factors
(42) leads to more stable reconstruction than the ordinary OS approach which diverges
outside the ROI. The instability seen with the ordinary OS approach may also degrade image
quality within the ROI as seen by the noise standard deviations in Fig. 3. The results in Fig.
4 further show that the ordinary OS algorithm exhibits more variations within the ROI due
to the instability outside ROI, whereas the proposed OS algorithm is robust.
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C. OS algorithm with averaging
Although the new scaling factors (42) stabilize OS in helical CT and reduce artifacts, the
final noise level is still worse than a convergent algorithm (see Fig. 3 and 4) because any OS
method with constant scaling factors will not converge [45]. This section discusses one
practical method that can reduce noise without affecting the convergence rate. This approach
helps the OS algorithm come closer to the converged image, reducing the undesirable noise
in images reconstructed using OS algorithms with large M.

To ensure convergence, the incremental optimization transfer method [26] was proposed,
which involves a form of averaging, but the greatly increased memory space required has
prevented its application in 3D X-ray CT. As a practical alternative, we investigated an
approach where the final image is formed by averaging all of the sub-iterations at the final
iteration nend of the OS algorithm (after it approaches its limit cycle). A memory-efficient
implementation of this approach uses a recursive in-place calculation:

(44)

where x¯(0) is an initial zero image, and x¯(1) is the final averaged image. There was a
preliminary simulation investigation of averaging the final iteration in [27], and we applied
the averaging technique to CT scans here. In Table II, we investigated this averaging method
using a scan of the GEPP phantom and quantified the noise and resolution properties (as
described in Fig. 3), and evaluated root mean square difference (RMSD4) between current
and converged image within ROI. Table II shows that the averaging technique successfully
reduces the noise and RMSD.

Overall, we have enhanced the standard OS-SQS algorithm into the NU-OS-SQS method for
3D helical CT. First, we accelerated the standard OS-SQS algorithm by non-uniform (NU)
approach, encouraging larger step sizes for the voxels that need more updates. We modified
the algorithm to handle the helical CT geometry by introducing the scaling factor γj. We also
averaged all sub-iterations at the final iteration to reduce noise. The outline of the proposed
algorithm is presented in Appendix B. We investigate the performance of the NU-OS-SQS
algorithm for various CT scans in the next section.

V. Experimental results
We investigated the proposed NU-OS-SQS algorithm for PWLS image reconstruction with a
non-negativity constraint. The PWLS cost function is strictly convex and has a unique
global minimizer [46]. We implemented the NU-OS-SQS algorithm in C and executed it on
a Mac with two 2.26GHz quad-core Intel Xeon processors and a 16GB RAM. We used 16
threads, and projection views were grouped and assigned to each thread.

Three 3D helical CT data sets are used in this section to compare the proposed NU-OS-SQS
algorithm to the ordinary OS-SQS algorithm, and we used the GE performance phantom
(GEPP) to measure the resolution. We used two other clinical data sets to investigate the
performance of NU approach. We investigated tuning the DRA function g(·) in (37) to
provide fast convergence rate for various data sets. We also provide results from a
simulation data set in a supplementary material for reproducibility.5

4 , where Np,ROI is the number of voxels in the ROI.
5The supplementary material is available at http://ieeexplore.ieee.org.
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We chose the parameters of the cost function Ψ(x) in (2) to provide a good image. We
defined an edge-preserving potential function as ψk([Cx]k) ≜ ω¯kψ([Cx]k), where the
function:6

(45)

is a generalized version of a Fair potential function in [47], and the spatial weighting ω¯k [48]
provides resolution properties that emulate the GE product “Veo”. We used M = 82 subsets
for the OS algorithms, assigning 12 out of 984 projection views per rotation to each subset.
We used the maximum curvature (10) for generating the denominator of surrogate function
of the cost function Ψ(x), and focused on nloop = 3 which balances the convergence rate and
run time, based on Table I.

In Section II-D, we recommended fixing the denominator  (generated by the maximum
curvature (10)) after nfix iterations in NU-SQS algorithm to guarantee convergence. This
condition is less important theoretically when we accelerate the NU-SQS algorithm with OS

methods that break the convergence property. However, we still recommend fixing  after
nfix iterations (before approaching the limit-cycle) in the NU-OS-SQS algorithm, because

we observed some instability from updating  (and ) every nloop iterations near the
limit-cycle in our experiments. We selected nfix = 7 for GEPP, but we did not use nfix for
other two cases because the algorithm did not reach a limit-cycle within nend = 20 iterations,
and we leave optimizing nfix as a future work.

In Section IV-B, we stabilized the OS-SQS algorithm outside ROI in helical geometry by
using the factor γj in (42). However, we experienced some instability outside ROI in NU-

OS-SQS methods even with (42), because a small NU denominator  outside ROI is more
likely to lead to instability than for voxels within the ROI due to the incomplete sampling

outside ROI. Therefore, we prevent the denominator  outside ROI from being very small.
We empirically modified the DRA function in Section III-C, and used it for our
experiments, improving stability outside ROI. We first modified the function (35) as
follows:

(46)

since the value of  in (27) outside ROI was found to be relatively large due to the

incomplete sampling. We further modified (36) and (37) to prevent  from becoming very
small outside ROI as follows with g(v; α) ≜ max {αvt, ε}:

(47)

6The gradient  avoids expensive power operations, saving computation for OS-type methods. The function reduces
to a Fair potential function in [47] when a = 0 and b = 1. We used a = 0.0558, b = 1.6395, and δ = 10 in our experiments.
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A. GE performance phantom (GEPP)
We reconstructed 512 × 512 × 47 images of the GEPP from a 888 × 64 × 3071 sinogram
(the number of detector columns × detector rows × projection views) with pitch 0.5. We
evaluated the full width at half maximum (FWHM) of a tungsten wire (see Fig. 3). Fig. 5(a)
shows the resolution versus run time and confirms that non-uniform (NU) approach
accelerates the SQS algorithm. This dramatic speed-up in FWHM is promising since SQS-
type algorithms are known to have slow convergence rate of high frequency components [6].
We also evaluated the convergence rate by computing RMSD between current and
converged7 image versus run time, within ROI.

Fig. 5(a) and 5(b) illustrate that increasing t in g(·) in (37) accelerates the convergence of
“update-needed” region, particularly the wire and edges in GEPP. However, highly focusing
the updates on few voxels will not help speed up the overall convergence for all objects.
Therefore, we further investigate the choice of g(·) using various patient CT scans.

The RMSD plots8 of NU-OS-SQS in Fig. 5(b) reached a limit-cycle after 1500 sec that did
not approach zero. Averaging the sub-iterations at the final iteration improved the final
image with small computation cost, yielding the drop in RMSD at the last 20th iteration in
Fig. 5(b). The reduced noise was measurable in the reconstructed image as seen in Table II.

B. A shoulder region scan
In this experiment, we reconstructed a 512 × 512 × 109 image from a shoulder region scan
888 × 32 × 7146 sinogram with pitch 0.5. Fig. 6(a) and 6(b) show that the non-uniform
approach accelerates convergence, depending on the choice of parameters in g(·). We
investigated the relationship between the convergence rate and the DRA function g(·) by
tuning both the parameters t and ε in (37). Fig. 6(a) shows that increasing t to 10 accelerated
convergence, but larger t values did not help as the choice of t = 40 was slower than t = 10.
In Fig. 6(b), decreasing ε to 0.01 accelerated the algorithm in this shoulder region scan, but
not for the data set in Section V-C, so ε = 0.05 appears to be a reasonable choice overall.

We averaged the sub-iterations at the last iteration, but Fig. 6(a) and 6(b) did not show a
drop at the final iteration (which appeared in Fig. 5(b)), because the algorithm had not yet
reached a limit-cycle. Even though averaging did not noticeably decrease the RMSD, the
reconstructed image had measurable noise reduction in regions that already reached a limit-
cycle like uniform regions. (Results not shown.)

In Fig. 7(a), we illustrate that statistical image reconstruction can reduce noise and preserve
image features compared to analytical FBP reconstruction. The reconstructed images of
(NU-)OS-SQS show that NU approach helps OS-SQS to approach the converged image
faster than the ordinary method. After the same computation (95 min.), the reconstructed
image of OS-SQS still contains streaks from the initial FBP image, while NU-OS-SQS has
reduced the streaks. This is apparent in the difference images between the reconstructed and
converged images in Fig. 7(b).

By analyzing NU-OS-SQS in two CT scans, we observed that the parameters t = 10 and ε =
0.05 consistently accelerated the algorithm by about a factor of more than two.9 (The choice

7We ran 100 iterations of OS-SQS algorithm with 41 subsets, followed by each 100 iterations of OS-SQS algorithm with 4 subsets,
and 2000 iterations of (convergent) SQS. We subsequently performed 100 iterations of (convergent) NH-ABCD-SQS [21] to generate
(almost) converged images x(∞).
8We also provide the plots of the cost function for GEPP and shoulder region scan in the supplementary material.
9We used the run time and RMSD of standard OS-SQS after 20 iterations (without averaging) as a reference to compare with the NU-
OS-SQS for each data set. Then we compared the run time of NU-OS-SQS that is required for achieving the reference RMSD with the
reference run time, and confirmed that NU provided more than two-fold accelerations in two CT scans.
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ε = 0.01 was too aggressive in our other experiments.) We also have observed more than
two-fold accelerations in other experiments. (Results not shown.) Fig. 6(b) shows the RMSD

plot using the (practically unavailable) oracle update-needed factor 

instead of our heuristic choice . This result suggests that additional optimization of the

DRA method and initialization of  could further speed up the NU algorithm in future
work.

C. A truncated abdomen scan
We also reconstructed a 390 × 390 × 239 image from a 888 × 64 × 3516 sinogram with pitch
1.0. This scan contains transaxial truncation and the initial FBP image has truncation

artifacts [49] that can be reduced by iterative reconstruction. The choice of  described in
Section III-E did not consider truncation effects, and we found that NU-OS-SQS did not
reduce such artifacts faster than standard OS-SQS. (The large patient size may also have
reduced the possible speed-up by the NU method, compared to the previous two scans.)
Therefore, we investigated an alternative NU method that can reduce truncation artifacts
faster than standard algorithm.

We designed a modified NU method using a few (msub) sub-iterations of standard OS-SQS

to generate the initial update-needed factor , which may also be a reasonable approach

for other scans. We perform initial sub-iterations  in (39) efficiently using two-input

projectors (in Section III-F) and replacing the all-view denominator  in (29) by a
standard subset-based denominator [25]:

(48)

where Sm consists of projection views in mth subset. The scaling factor γj in (42) is
unavailable at this point, so we use γ = M instead. After msub sub-iterations, we compute the
following initial update-needed factors:

(49)

where  is a DRA function in (36), and we use these to compute the NU

denominators  and  that we use for first nloop outer iterations.

Fig. 8(a) shows that statistical image reconstruction provides better image quality than FBP
reconstruction. Fig. 8(b) illustrates that this NUsub-OS-SQS approach reduces the truncation
artifacts faster than the standard OS-SQS and NU-OS-SQS. Although standard OS-SQS
reduces noise faster than other two algorithms in Fig. 8(b), both NU-OS-SQS and NUsub-
OS-SQS show better convergence near the spine, the boundary of patient, and other internal
structures than OS-SQS at the same computation time (90 min.).

VI. Conclusion
This paper has presented a spatially non-uniform SQS algorithm that can efficiently
minimize both PL and PWLS problems monotonically. The experimental results show that
the proposed NU-SQS approach converged more than twice as fast as SQS. The OS
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algorithm, further applied to SQS method for acceleration, was enhanced to handle non-
uniformly sampled geometries such as helical CT. The improvements showed promising
results on large 3D helical CT data sets.

The key of the NU-SQS approach is designing “update-needed” factors  in (27) that
encourage larger step sizes for voxels that are predicted to need larger changes to reach the

final image. Further optimization of these factors, e.g., by improving the initialization of 
and the DRA function in (36), should lead to further acceleration and stability of the
proposed NU-SQS and NU-OS-SQS methods.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Proof of Lemma 2

The proposed choice  in (28) and its corresponding  in (29) are a choice

that minimizes  among all possible  in (19), i.e.,

subject to the positivity constraint on  if aij ≠ 0.

Proof
By the Schwarz inequality 〈s, t〉2 ≤ ||s||2||t||2, we have
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where  and . Then,

Appendix B. Outline of the proposed NU-OS-SQS algorithm]

Set M, nend, nloop and initialize x by an FBP image.

Generate uj from an FBP image by edge and intensity detectors.

Compute the maximum curvature či = max {ḧi(0), η}.

, γj = 0, xj,ref = xj, and the final image x¯;j = 0.

d
∼

j
R

=
1
uj

∑
k=1

Nr
ψ̈k(0) ∣ ckj ∣ ( ∑

l=1

Np
∣ ckl ∣ ul) (50)

n = 0

for m = 0, 1, …, M − 1

d j,sub
L =

1
uj

∑
i∈Sm

c
⌣

iaij ( ∑
l=1

Np
ailul)

dj
L + = d j,sub

L and γj + = I
{d j,sub

L >0}

(51)

Kim et al. Page 22

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



end

for n = 1, 2, …, nend − 1

 if n mod nloop = 1 and n ≤ nfix

d
∼

j
L

= dj
L , and compute d

∼
j
R

by (50)

 elseif n mod nloop = nloop − 1 and n ≤ nfix − 2

x j,ref = xj

 elseif n mod nloop = 0 and n ≤ nfix − 1

dj
L = 0, and uj = g(Fcdf(xj - x j,ref))

 end

 for m = 0, 1, …, M − 1

x j,prev = xj

  if n mod nloop ≠ 0 or n ≥ nfix

g j,sub
L =

∂
∂ xj

L m(xprev) (52)

  else

    compute both  by (51) and  by (52)

  simultaneously using two-input projection function, and

dj
L + = d j,sub

L

  end

xj = x j,prev -

γjg j,sub
L +

∂
∂ xj

R(xprev)

d
∼

j
L

+ d
∼

j
R

+

(53)

  if n = nend − 1

x̄ j =
m

m + 1
x̄ j +

1
m + 1

xj

  end

 end

end
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Fig. 1.
Diagram of helical CT geometry. A (red) dashed region indicates the detector rows that
measure data with contributions from voxels both within and outside the ROI.
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Fig. 2.

A shoulder region scan:  and  after dynamic range adjustment (DRA) for NU-OS-
SQS(82 subsets), with the choice g(v) = {max v10, 0.05}. NU-OS-SQS updates the voxels

with large  more, whereas ordinary OS-SQS updates all voxels equivalently.
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Fig. 3.
Effect of gradient scaling in regularized OS-SQS algorithm with GE performance phantom
(GEPP) in helical CT: Each image is reconstructed after running 20 iterations of OS
algorithm with 328 subsets, using ordinary and proposed scaling approaches. Standard
deviation σ of a uniform region (in white box) is computed for comparison. We compute
full-width half maximum (FWHM) of a tungsten wire (red arrow) to measure the resolution.
(The result of a convergent algorithm is shown for reference. Images are cropped for better
visualization.)
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Fig. 4.
GE performance phantom: mean and standard deviation within a uniform region in the first
slice of the ROI (see Fig. 3) vs. iteration, showing the instability of ordinary OS approach
with 328 subsets, compared with the proposed OS approach. Also shown is the result from a
converged image x(∞) generated from several iterations of a convergent algorithm.
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Fig. 5.
GE performance phantom: plots of (a) FWHM and (b) RMSD as a function of run time for
different choice of DRA parameters t for ε = 0.05. The plot markers show each iteration.
There are no changes during first iterations, since we consider precomputing the
denominator using one forward and back projections as one iteration.
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Fig. 6.
A shoulder region scan: plot of RMSD versus run time for different choice of parameters (a)
t and (b) ε in g(v) = max {vt, ε}.
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Fig. 7.
A shoulder region scan: (a) A center slice of initial FBP, converged image and reconstructed
image by OS-SQS(82) and NU-OS-SQS(82)-g(v) = max {v10, 0.05} after about 95 min. (b)
Difference between the reconstructed and converged images are additionally shown to
illustrate the acceleration of NU approach. (Images are cropped for better visualization.)
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Fig. 8.
A truncated abdomen scan: (a) A center slice of FBP, converged image, and reconstructed

image by NUsub-OS-SQS(82 g(v) = {max v10, 0.05} using  in (49) generated from sub-
iterations. (b) Difference between the reconstructed and converged images, where images
are reconstructed by OS-SQS(82) after 5400sec (20iter.), NU-OS-SQS(82) after 5230sec

(18iter.) using  extracted from FBP based on Section III-E, and NUsub-OS-SQS(82)

after 5220sec (17iter.) using  in (49). The (black) arrows indicate truncation artifacts.
Images are cropped for better visualization.
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TABLE II

GE performance phantom: Noise, resolution and RMSD behavior of OS-SQS(328 subsets) after 20 iterations
followed by averaging.

Smoothed FBP OS-SQS(328) Conv.

w/o averaging w/ averaging

Mean [HU] 1127.7 1123.3 1123.8 1123.7

Std. Dev. [HU] 2.3 8.0 7.2 6.6

FWHM [mm] 1.4 0.7 0.7 0.7

RMSD [HU] 9.4 3.4 0.8 ·
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