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Understanding how neurons encode information in sequences of action potentials is of fundamental importance to neuroscience. The
cerebellum is widely recognized for its involvement in the coordination of movements, which requires muscle activation patterns to be
controlled with millisecond precision. Understanding how cerebellar neurons accomplish such high temporal precision is critical to
understanding cerebellar function. Inhibitory Purkinje cells, the only output neurons of the cerebellar cortex, and their postsynaptic
target neurons in the cerebellar nuclei, fire action potentials at high, sustained frequencies, suggesting spike rate modulation as a possible
code. Yet, millisecond precise spatiotemporal spike activity patterns in Purkinje cells and inferior olivary neurons have also been
observed. These results and ongoing studies suggest that the neuronal code used by cerebellar neurons may span a wide time scale from
millisecond precision to slow rate modulations, likely depending on the behavioral context.

Introduction
The cerebellum has long been regarded as a purely sensorimotor-
related structure, crucial for the precise temporal coordination of
body, limb, and eye movements and the learning and fine-tuning
of motor skills. Electrophysiological investigations of the cerebel-
lar cortical principal neurons, the Purkinje cells, and their post-
synaptic targets, the neurons in the cerebellar nuclei (CN) and
vestibular nuclei, revealed strong representations of a wide vari-
ety of sensory and motor events (Ito, 1984; Strata, 1989) in the
presence of high sustained spike rates (Thach, 1972).

Extracellular single-unit recordings, particularly those con-
ducted in awake and behaving nonhuman primates, have estab-
lished that Purkinje cell simple spike rates represent a variety of
variables related to the control of eye, head, and limb movements.
Encoded variables include the direction of limb movements (e.g.,
Harvey et al., 1977; Thach, 1978; Fortier et al., 1989; Smith et al.,
1993) and limb movement velocity or speed (Coltz et al., 1999;
Roitman et al., 2005). Studies of arm movement dynamics pro-
vided evidence that Purkinje cell simple spike activity represents
both forward prediction and feedback error-related signals, con-
sistent with an involvement of the cerebellum in the prediction of
expected sensorimotor states and the detection and correction of
motor errors (Pasalar et al., 2006; for a recent review, see Ebner et

al., 2011; Popa et al., 2012, 2013). Another large body of literature
from primate experiments describes the role of the cerebellum in
controlling voluntary eye movements and the coordination of
compensatory eye and head movements (Robinson and Fuchs,
2001; Voogd and Barmack, 2006; Voogd et al., 2012). Relevant
to the integration of converging Purkinje cell inputs in CN
neurons, Thier et al. (2000) reported an example of popula-
tion coding in the cerebellum, showing that the duration of
saccades is represented well in the simple spike activity of
populations of Purkinje cells, but less so in individual cells.

When it became known that Purkinje cells inhibited CN neu-
rons (Ito et al., 1964), a plausible hypothesis was that increased
activity in cerebellar cortical Purkinje cells would decrease cere-
bellar output by inhibiting the excitatory CN neurons. That no-
tion was tested in a challenging in vivo experiment conducted by
McDevitt et al. (1987). Their experiment involved simultaneous
recordings from Purkinje cells and their presumed postsynaptic
target neurons in the CN and revealed that Purkinje cell and CN
spike rate fluctuations were rather similar and did not show con-
sistent reciprocal changes expected from the converging Purkinje
to CN neuron inhibition. These findings suggested that other inputs
to the CN neurons in addition to Purkinje cells are involved in the
control of cerebellar output. It had been known that mossy fibers
produced collateral projections to the CN (Ito, 1984), but the per-
centage of fibers sending collaterals was unknown. Shinoda et al.
(1992) traced 40 individual mossy fiber axons from the pontine nu-
clei to the cerebellum and showed that approximately half produced
collateral branches terminating in the dentate nucleus. Thus, �50%
of mossy fibers provide excitatory inputs to CN neurons via collat-
erals, competing with the inhibitory inputs from Purkinje cells,
which were in turn activated indirectly (via parallel fibers) by the
same mossy fibers (Fig. 1). At the same time, mossy fiber activity is
relayed via parallel fibers to inhibitory interneurons in the cerebellar
cortex, which inhibit Purkinje cells (Dizon and Khodakhah, 2011).
This feedforward inhibition likely also contributes to the comodula-
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tion of Purkinje cell–CN activity. Another
important variable in cerebellar corticonu-
clear interaction is the possible coordination
of spike activity within a population of Pur-
kinje cells converging on the same CN neu-
ron. In vitro and modeling studies have
shown that inhibitory inputs synchronized
across a population of Purkinje cells can ac-
tually increase firing rates in CN neurons
(Gauck and Jaeger, 2000; Person and Ra-
man, 2012). A special relationship exists be-
tween the cerebellum and the inferior olive,
with each Purkinje cell receiving a powerful
excitatory climbing fiber input from a single
inferior olive neuron, whereas the same
climbing fiber often provides a collateral to
the CN neuron that receives input from the
corresponding Purkinje cell (Palay and
Chan-Palay, 1974; De Zeeuw et al., 2011). In
turn, inhibitory neurons in the CN send
projections to the inferior olive (De Zeeuw
et al., 1988). The olivocerebellar projections
are organized in zones, and evidence sug-
gests that neuronal coding varies between
zones (Oscarsson, 1979; Apps and Garwicz,
2000; Zhou et al., 2013). Scattered evidence
from electrophysiological experiments of
isolated parts of the cerebellum suggests a
functional relevance of zebrin II parasagittal
zones in terms of behavior-related Purkinje
cell simple spike activity and of complex
spike synchrony (Sugihara et al., 2007; Bos-
man et al., 2010; Ebner et al., 2012; Graham
and Wylie, 2012), but a systematic evalua-
tion of the complete cerebellum remains to
be shown (Zhou et al., 2013).

This symposium review highlights es-
sential aspects of current approaches to
the question of neuronal coding in the
cerebellum, pursued in the laboratoriess
of the individual contributors.

Synchrony of Purkinje cells can elicit
time-locked spiking in the
cerebellar nuclei
Of critical importance to understanding
information processing in the cerebellum
is solving the transfer function between
Purkinje cells and their target neurons in
the cerebellar nuclei. Because Purkinje
cells are tonically active and inhibitory
onto CN neurons (Ito and Yoshida, 1966; Ito et al., 1970) and
because CN neurons are themselves autonomous pacemakers
(Thach, 1968; Raman et al., 2000), it is often assumed that cere-
bellar nuclear neurons simply invert signals from Purkinje cells.
Data collected in both behaving monkeys and decerebrate cats
have been equivocal in supporting these assumptions, however.
For example, a majority of both Purkinje cells and CN neurons
increase their firing rates during stepping and cue-initiated
movements (Thach, 1970a, b; Armstrong and Edgley, 1984a, b).
Furthermore, putatively connected pairs of Purkinje and nuclear
neurons recorded simultaneously do not show clear reciprocal
relationships in activity levels (McDevitt et al., 1987).

These findings suggested an incomplete understanding of cor-
ticonuclear integration that prompted a recent reexamination of
a set of basic properties of the corticonuclear circuit, including
unitary Purkinje-to-nuclear synaptic strength and kinetics; in-
trinsic nuclear firing rates; and Purkinje-to-nuclear convergence
ratios (Hoebeek et al., 2010; Person and Raman, 2012; Witter et
al., 2013). Unitary synaptic strength was strong, averaging 9 nS,
suggesting a powerful inhibitory connection between Purkinje
and CN cells. Further, at near physiological temperatures, the
kinetics of these inhibitory synaptic currents were remarkably
fast, with decay time constants averaging 2.5 ms. Together, these
synaptic properties indicate a powerful but brief influence of Pur-

Figure 1. Scheme indicating how activity of Purkinje cells in the cerebellar cortex may influence activity in the cerebellar nuclei.
A, The cerebellar cortex receives main excitatory inputs (black) from the inferior olive (IO) and pontine regions (PR) and provides via
the Purkinje cell axons an inhibitory feedback (red) to the CN. Whereas the external IO and PR signals, which enter the cerebellum
via the climbing fibers (cf) and the mossy fiber (mf)–parallel fiber (pf) pathway, are all excitatory, the local transmissions by the
axons of the molecular layer interneurons (yellow) and recurrent collaterals (prc) of the Purkinje cells (red) are all inhibitory. mfc,
Mossy fiber collaterals; cfc, climbing fiber collaterals. The local Golgi cell inhibition of granule cells (GC) is not depicted in this
drawing. B, Molecular layer interneurons, that is, basket cells (BC) and stellate cells (SC), are coupled by gap junctions (yellow),
whereas Purkinje cells (PC) can influence one another via recurrent collaterals. C, Firing rate gain in the CN after excitation (I) by the
mossy fiber collaterals from the PR may be regulated by synchronous, high-frequency oscillations in the inhibitory activities of the
Purkinje cells. The PC spike-time dispersion (�) is inversely related to the synchrony of this network oscillation. D, The CN firing rate
versus mfc input current (I) plots are shown for different values of the PC jitter. As the jitter is decreased from 5 to 1 ms (from bottom
to top), the gain of the CN responses to the excitatory mfc inputs is dramatically increased. This interaction between mfc inputs and
PC synchrony might be one of the potential mechanisms by which high-frequency oscillations in the cerebellar cortex exert their
effects (modified from De Zeeuw et al., 2008).
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kinje cells onto the CN. Intrinsic firing rates measured in on-cell
recordings were significantly higher in older animals, averaging
90 Hz compared with �20 Hz measured in younger animals
more typically recorded in vitro. Finally, combining anatomical
and physiological measurements, the convergence ratio of Pur-
kinje to nuclear neurons was estimated to be on the order of 50
(Person and Raman, 2012).

These basic parameters of the corticonuclear circuit were then
used in a dynamic clamp system to explore corticonuclear inte-
gration, mimicking in vivo-like Purkinje inputs to the CN. One
key finding from these experiments was that nuclear neurons are
exquisitely sensitive to synchronous inhibitory input: Nuclear
neurons fired faster and with time-locked spikes in the face of
synchronous Purkinje input, even when the fraction of synchro-
nous inputs was as low as 5% of the convergent population (Per-
son and Raman, 2012).

These data shed light on the potential function of synchro-
nous Purkinje cell simple spike activity that has been observed in
vivo by numerous groups (Bell and Grimm, 1969; Bell and Kawa-
saki, 1972; MacKay and Murphy, 1976; Ebner and Bloedel, 1981;
De Zeeuw et al., 1997; Shin and De, 2006; Heck et al., 2007; de
Solages et al., 2008; Bosman et al., 2010; Wise et al., 2010). If
synchronously active Purkinje cells converged onto a common
target cell, it would be predicted that the postsynaptic neurons
would fire both faster and with time-locked spikes (Fig. 1)
(Gauck and Jaeger, 2000; De Zeeuw et al., 2008; Person and Ra-
man, 2012). Indeed, artificially imposing synchrony onto a
population of Purkinje cells with electrical stimulation in vivo
elicited phase-locked spiking in nuclear neurons. In support
of this idea, nuclear spiking shows phase locking to local field
potentials and cortical oscillations during movement (Hold-
efer et al., 2000; Courtemanche et al., 2002; Courtemanche
and Lamarre, 2005), illustrating precise spike timing in a non-
manipulated environment.

Linear information processing by the cerebellar cortex
A remarkable feature of movement is the precision with which it
is accomplished given the relative imprecision of the neuronal
elements that encode it. Curiously, despite its prominent role in
motor coordination, the considerable computation that is per-
formed by the cerebellar circuitry introduces little noise in motor
performance. An elegant demonstration of this astonishing fea-
ture of the cerebellar circuitry was provided by a careful study of
smooth eye pursuit by Medina and Lisberger (2007). During
smooth eye pursuit, the average firing rate of individual Purkinje
cells can be described by weighted linear combination of three
movement-related parameters: eye velocity, acceleration, and
position (Shidara et al., 1993). An analysis of the correlation be-
tween variation in the instantaneous firing rate of individual Pur-
kinje cells with the precision of smooth eye pursuit from trial to
trial revealed that, during each individual trial, a large fraction of
the variation in the eye movement, as pursuit is initiated, could be
accounted for by the variation in the common cerebellar input
signals (Medina and Lisberger, 2007). This is astonishing given
the fact that Purkinje cells are not particularly precise in encoding
the strength of their excitatory synaptic inputs (Walter and
Khodakhah, 2009), begging the question of how the noise inher-
ent in the activity of individual Purkinje cells is minimized to
improve their overall signal-to-noise ratio. An answer to this
question might be provided by the organization of the cerebellar
circuitry: tens of Purkinje cells converge onto neurons within the
cerebellar nuclei (Person and Raman, 2012) (in the case of
smooth eye pursuit, mainly onto the vestibular nuclei). As pos-

tulated by Eccles (1973), by reducing the magnitude of the un-
correlated noise in the activity of individual Purkinje cells
(Walter and Khodakhah, 2009), this convergence might provide
the substrate for a simple averaging mechanism to improve the
signal-to-noise ratio of the common information encoded by a
population of Purkinje cells. Nuclei neurons can accomplish this
by either averaging the rate code of Purkinje cells that converge
on them (Walter and Khodakhah, 2009) or, in principle, by ex-
tracting the timing of correlated activity in the same population
of Purkinje cells (Person and Raman, 2012). Although plausible,
it has not yet been established that cerebellar nuclei neurons do
indeed improve the signal-to-noise ratio of the information en-
coded by individual Purkinje cells. To directly demonstrate an
increase in the signal-to-noise ratio of the information encoded
by nuclei neurons compared with that of Purkinje cells, the vari-
ation in the activity of each neuron type can be examined when
the same command input is repeatedly applied to a population of
Purkinje cells. One approach is to use optogenetics to repeatedly
drive the activity of Purkinje cells with sinusoidal inputs to mimic
what is seen during vestibulo-ocular reflex or a smooth eye pur-
suit task. Variation in the instantaneous firing rate of Purkinje
cells monitored in vivo can then be compared with that in the
cerebellar nuclei in response to the same sinusoidal command
inputs. Under these conditions, it is found that the firing rate of
cerebellar nuclei is modulated primarily reciprocal to that seen in
the Purkinje cells (K.K., unpublished observations; for nonsi-
nusoidal inputs, see also Witter et al., 2013). Moreover, in sup-
port of the notion that nuclear neurons average Purkinje cell
inputs, preliminary data suggest that, from trial to trial, cerebellar
nuclei manifest smaller variations in their firing rate compared
with Purkinje cells. These studies have the potential to quantita-
tively assess the extent to which the cerebellar circuitry improves
the signal-to-noise ratio of the information encoded by individ-
ual Purkinje cells by extracting the common information in a
population of Purkinje cells. It is important to note, however,
that, in addition to receiving convergent information from Pur-
kinje cells, cerebellar nuclei also receive direct collateral inputs
from mossy and climbing fibers. It remains to be established
whether the cerebellum implements a mechanism to minimize
the noise associated with these inputs.

Purkinje cells and their target neurons operate at different
coding schemes depending on the olivocerebellar module
involved
The output of the cerebellar cortex is provided by a layer of Pur-
kinje cells that deliver inhibitory projections onto cells in the
cerebellar nuclei, which in turn represent the final output of the
cerebellum (Fig. 1) (De Zeeuw et al., 2011). The overall physio-
logical characteristics of Purkinje cells have traditionally been
considered to be homogeneous (Ito, 1984; but see Wadiche and
Jahr, 2005; Graham and Wylie, 2012). Recently, systematic ubiq-
uitous recordings in the cerebellum of awake mice have indicated
that spiking activity of Purkinje cells, the sole output cells of the
cerebellar cortex, differs between olivocerebellar modules when
animals are at rest (Zhou et al., 2013). At rest, simple spike and
complex spike frequencies covary concomitantly in that complex
spike firing frequency is usually high when the simple spike firing
frequency is high and vice versa (for reciprocity during modula-
tion, see also Badura et al., 2013). Indeed, the simple spike fre-
quency at rest appears to be predominantly determined by the
intrinsic activity of Purkinje cells, which might correlate with the
differential expression and distribution of relevant conductances
and proteins involved in spike generation, energy consumption,
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and glutamate clearance (Kim et al., 2012). The level of complex
spike activity follows that of the simple spikes due to the Purkinje
cell projections to the GABAergic cells in the cerebellar nuclei
that inhibit the olivary neurons establishing the baseline climbing
fiber activity (Chen et al., 2010; Witter et al., 2013). Thus, our
preliminary results indicate that different olivocerebellar mod-
ules operate at different frequencies, which depend on the intrin-
sic constitution of Purkinje cells, and that this property is relevant
for all cerebellar functions (Zhou et al., 2013).

To further test the coding schemes of the different olivocer-
ebellar modules functioning at different firing frequencies at rest,
we studied the modules controlling adaptation of the vestibulo-
ocular reflex and eyeblink conditioning (Van Der Giessen et al.,
2008; Gao et al., 2012). Our studies on the flocculus of the ves-
tibulocerebellum indicated that its Purkinje cells fire indeed pre-
dominantly at low firing frequency at rest, that they are more
prone and sensitive for potentiation than depression during
visuo-vestibular training (Schonewille et al., 2010, 2011), and
that their capacity for motor learning depends on the modulation
amplitude of Purkinje cell’s simple spike activity relative to the
baseline firing frequency at rest (Galliano et al., 2013). Moreover,
comparison of the timing of Purkinje cell’s simple spike activity
with that of neurons in the vestibular nuclei that do and do not
receive input from these Purkinje cells indicates that Purkinje
cells of the vestibulocerebellum are well designed to manipulate
the timing of floccular target cells through rate coding (De Zeeuw
et al., 1995). In addition, the regularity of simple spike firing may
contribute to the consolidation of visuo-vestibular learning
(Wulff et al., 2009; Galliano et al., 2013). In contrast, our prelim-
inary studies on Purkinje cells in lobulus simplex of the neocer-
ebellum indicate that its Purkinje cells fire at higher firing
frequency at rest (Van Der Giessen et al., 2008) and that they are
more prone and sensitive for suppression than potentiation dur-
ing eyeblink conditioning (Ten Brinke et al., 2013). Moreover,
the target neurons of Purkinje cells in the anterior interposed
cerebellar nucleus, which includes the eyeblink region, show
prominent rebound activity after optogenetic stimulation of the
Purkinje cells in a dosage-dependent fashion and this rebound
occurs at the proper moment so as to enhance the conditioned
response (Witter et al., 2013). Thus, Purkinje cells of different
olivocerebellar modules appear to engage different encoding
strategies dedicated for the type of behavior they control, and
these strategies probably reflect the temporal dynamics of the
behavior involved.

Coding of rhythmic movements through common
rate modulation
Animals perform a number of rhythmic movements, such as
breathing, licking, whisking, chewing, etc., which are vital for
survival and are likely to involve the cerebellum. There is an
obvious need for a precisely timed coordination between some of
these rhythmic behaviors. For example, to prevent fluids from
entering the airways and lungs, fluid licking, breathing, and swal-
lowing rhythms have to be well coordinated (Welzl and Bures,
1977; Weijnen et al., 1984). Such stereotypic, rhythmic move-
ments are generally driven by separate brainstem central pattern
generator circuits, some of which have more or less well-known
locations in the brainstem (Travers et al., 1997; Feldman et al.,
2003; Cramer et al., 2007). A recent anatomical study suggested
that neurons in the medial cerebellar nuclei project directly to
brainstem sites thought to contain those central pattern genera-
tor circuits (Lu et al., 2013). In vivo studies in rodents have shown
that licking, breathing, and whisking are widely represented in

Purkinje cell and CN spiking activity (Welsh et al., 1995; Hayar et
al., 2006; Bosman et al., 2010; Bryant et al., 2010; Cao et al., 2012b;
Lu et al., 2013). A role of the cerebellum in controlling or coor-
dinating such rhythmic movements is further supported by stud-
ies in genetic mouse models of brain disorders involving
cerebellar neuropathology, such as autism spectrum disorders.
Mouse models of Angelman, fragile X, and Potocki-Lupski syn-
drome show deficits in fluid licking behavior (Heck et al., 2008;
Roy et al., 2011; Heck et al., 2012). Furthermore, rhythmic mod-
ulation of spike activity phase-locked to respiratory behavior is
present in mossy fiber activity (D.H.H., unpublished data). Given
the general cerebellar involvement in motor coordination, a nat-
ural role for the cerebellum in these behaviors would be the co-
ordination between the motor rhythms.

Electrophysiological recordings from awake behaving mice
revealed some aspects of how rhythmic behaviors are encoded in
spike trains of cerebellar neurons and how the modulation of the
cerebellar nuclear spike activity could be controlled by mossy
fiber and Purkinje cell inputs. Previous evidence suggested that
pauses in Purkinje cell activity could constitute a special mecha-
nism of cerebellar corticonuclear transfer (Albus, 1971; Gauck
and Jaeger, 2000; De Schutter and Steuber, 2009; Witter et al.,
2013). Analysis of the relation between pauses in Purkinje cell
spiking and rhythmic behaviors showed, however, that a model
of stochastic spike interval distributions reproducing behavior-
related rate fluctuations could fully explain the relation between
pauses and behavior, showing that, at least with respect to rhyth-
mic orofacial movements, pauses are not independently gener-
ated elements of Purkinje cell neuronal coding (Cao et al.,
2012b). The same study did not reveal any millisecond precision
in the simple spike activity between single-unit Purkinje cells
recorded along the sagittal or transverse axis of the cerebellar
vermis. Instead, a rate-based analysis of simple spike activity pro-
vided evidence for an optimal representation of rhythmic behav-
iors in the rate fluctuations of mossy fiber, Purkinje cell, and CN
spike trains, rather than the exact times of spike firing (Cao et al.,
2012a). Convolving spike times with increasingly wider Gaussian
kernels (i.e., larger � values) to produce instantaneous firing rate
functions with various widths of the Gauss kernels revealed that
the strongest correlation between rhythmic behavior and simple
spike rate modulation was seen when Gauss kernels with � values
between �10 and 125 ms were used. Importantly, when such
smoothed rate functions were compared across pairs of simulta-
neously recorded Purkinje cells, strong rate change correlations
were seen across cells for slow rate fluctuations (� � 250 ms)
(D.H.H., unpublished data). This suggests that joint rate change
functions across populations of Purkinje cells could be a signifi-
cant driver of rate changes in the deep nuclei. A biophysically
detailed model of a cerebellar nucleus neuron (Steuber et al.,
2011) was used to determine how CN neuron spiking would be
affected by population Purkinje cell input with different degrees
of rate correlation. Indeed, rate correlations between Purkinje
cells turned out to be a strong determinant of CN spike modula-
tion, and the level of rate comodulation seen between Purkinje
cells could account for the depth of rate modulation observed
in CN recordings (D.J. unpublished data). Interestingly, si-
multaneous recordings of Purkinje cells and CN neurons
showed time-varying positive and negative rate correlations
(D.H.H., unpublished data), suggesting that at different times
either mossy fiber or Purkinje cell rate modulation might domi-
nate CN rate changes. Overall, the current evidence points to-
ward a rate code for the representation of rhythmic behaviors in
the cerebellum, which can be effectively transmitted between
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Purkinje cells and CN neurons, but also between mossy fibers and
CN neurons. Hence, synaptic plasticity rules that favor strength-
ening synapses of populations of rate correlated inputs at partic-
ular behavioral events would be a key factor in cerebellar coding.
Interestingly, plasticity rules at the level of the CN are indeed
strongly dependent on temporal patterns of hyperpolarization
and depolarization (Pugh and Raman, 2009; Person and Raman,
2010), which would be expected with rate-correlated inputs.

Summary
In conclusion, recent years have seen renewed interest in the
function of the cerebellum, and much progress has been made
toward understanding the neuronal coding of sensory and motor
events in Purkinje cells and cerebellar nuclear and vestibular neu-
rons. Among the important new insights are findings of zonal
specificity of Purkinje cell and CN neuronal firing, the relevance
of population dynamics, including precise spike synchrony and
correlated slow rate fluctuations. However, many questions re-
main to be answered, in particular with respect to the relative
contributions of Purkinje and mossy fiber inputs to CN spike
firing. Neurogenetic tools, which allow cell type-specific manip-
ulations of neuronal activity and synaptic transmission, may now
provide the opportunity to address these questions experimen-
tally with unprecedented precision. This symposium review fo-
cused implicitly on the sensorimotor aspects of cerebellar coding,
but there is increasing evidence for a role of the cerebellum in
cognition and emotion (Schmahmann and Caplan, 2006; Koziol
et al., 2011; Stoodley, 2011; Fatemi et al., 2012; Heck and Howell,
2013). A comprehensive understanding of the cerebellar neuro-
nal code will ultimately have to include such nonmotor aspects as
well. We have just begun to scratch the surface of cerebellar,
neuronal encoding mechanisms (Mittleman et al., 2008; Rogers
et al., 2011, 2013); hopefully, with the advent of new technologies,
the upcoming decades will allow us to unravel them at both sen-
sorimotor levels and beyond.
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