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Understanding the neural correlates of behavior in the mammalian cortex requires measurements of activity in awake, behaving animals.
Rodents have emerged as a powerful model for dissecting the cortical circuits underlying behavior attributable to the convergence of
several methods. Genetically encoded calcium indicators combined with viral-mediated or transgenic tools enable chronic monitoring
of calcium signals in neuronal populations and subcellular structures of identified cell types. Stable one- and two-photon imaging of
neuronal activity in awake, behaving animals is now possible using new behavioral paradigms in head-fixed animals, or using novel
miniature head-mounted microscopes in freely moving animals. This mini-symposium will highlight recent applications of these meth-
ods for studying sensorimotor integration, decision making, learning, and memory in cortical and subcortical brain areas. We will outline
future prospects and challenges for identifying the neural underpinnings of task-dependent behavior using cellular imaging in rodents.

Introduction
A fundamental goal of modern neuroscience is to understand the
basic computations performed by the mammalian cortex and
how these computations are modified by behavioral context.
Whereas the study of the cortex dates back to the time of Aristotle
and Galen, it is apt and humbling that in the year 2009, a Howard
Hughes Medical Institute conference was organized to debate the
basic question, “What does the cortex do?”

Specifically, in what ways and by which neural mechanisms
does the cortex contribute to the vast repertoire of mammalian
behaviors and cognitive processes? Although we know that dif-
ferent cortical areas are specialized for different sensory, motor,
and cognitive functions, there is a growing consensus that the
basic structural organization of cortical circuits and the funda-
mental computations performed by these circuits are essentially

conserved across mammals. The anatomy of cortical circuits sug-
gests that they are built to process information in a highly flexible
manner. A given cortical circuit receives a wide variety of inputs
carrying information regarding the current context of the exter-
nal world, the needs and goals of the body, and the insights of
prior experiences for achieving specific goals in different con-
texts. The determination of which sources of input will guide a
given cortical computation, and where the cortical circuit will
relay its output, is guided by a highly diverse variety of types of
local inhibitory interneurons and of neuromodulatory and feed-
back signals.

Until this point in time, a large portion of research on cortical
function during behavior has been conducted using well estab-
lished technologies such as single-cell electrophysiological re-
cordings. These experiments take a reductionist approach, by
interrogating one circuit element at a time under a limited num-
ber of controlled task conditions. Despite a considerable amount
of progress, the trial-to-trial variability often observed during
recordings, potentially reflecting learning, internal motivation,
or external task structure, presents challenges for understanding
how such processes are manifested in the cortex. Given this issue,
interest has grown in performing large-scale measurements of
population activity to provide the sampling size to overcome
such hurdles (Kandel et al., 2013). Whereas large electrode arrays
to simultaneously record large populations of neurons represent
a step in this direction (Buzsáki, 2004), what is further needed to
understand the role of each element within the circuit is the abil-
ity to repeatedly sample these neurons along a variety of behav-
ioral conditions with a resolution down to individual synapses
and to assess their genetic and anatomical identity.
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Recently, parallel developments in
one- and two-photon imaging technol-
ogy, sensors of neuronal activity, genetic
tools, and behavioral methods have con-
verged to provide the opportunity for per-
forming such experiments in the rodent
system. Although these methods have
been reviewed individually elsewhere,
here we specifically focus on how they can
be integrated in the application of one-
and two-photon calcium imaging to the
study of cortical microcircuits across
behavioral contexts. Cellular imaging in
rodents can provide a platform for high-
throughput, high-yield, genetically acces-
sible experiments that offer a valuable
complementary approach to electrophys-
iological methods for detangling the local
microcircuits underlying cortical compu-
tations. Rodent cortex is smooth and thin
and contains an elaborate network of rel-
atively compact cortical areas. As such,
complete local sampling of the same vol-
ume of cells, and/or of multiple cortical
layers and brain areas, can be achieved
across days and weeks in the same experi-
ment. This has seen extraordinary prog-
ress in the last 3 years, and we hope that by
outlining the applications, advantages,
and outstanding challenges of this ap-
proach, we will provide a succinct entry
point for researchers interested in begin-
ning to use imaging to break new ground
in understanding the cortical microcir-
cuits underlying flexible, context-depen-
dent neural computation.

Tools for functionally dissecting
neuronal circuits in rodents
Two-photon fluorescence microscopy is
the most widely used tool for optically
measuring neuronal activity deep in the
brain with cellular and subcellular resolu-
tion (Helmchen and Denk, 2005; Kerr
and Denk, 2008). Two-photon calcium
(Ca 2�) imaging using Ca 2�-sensitive fluorescent indicators
measures changes in intracellular Ca 2� concentration as a read-
out for suprathreshold and subthreshold neuronal activity. Stan-
dard two-photon microscopes use mirror-based scanning to
monitor calcium signals in full-frame two-dimensional fields of
views at rates up to �40 Hz, whereas the recent use of random
access point scanning through acousto-optic deflectors can sam-
ple populations of �100 neurons at rates of up to �500 Hz in two
and three dimensions (Grewe et al., 2010; Katona et al., 2012)
(Fig. 1a). Calcium signals measured simultaneously across
hundreds of neurons in vivo have been used to probe the dy-
namics and functional organization of neuronal circuits, and
powerful computational tools have been developed to analyze
calcium imaging data to infer spiking activity from calcium
transients (Yaksi and Friedrich, 2006; Greenberg et al., 2008;
Mukamel et al., 2009; Vogelstein et al., 2009,2010; Grewe et al.,
2010; Cheng et al., 2011), to correlate activity to stimulus or be-
havior parameters (Seelig et al., 2010; Miri et al., 2011; Huber et al.,

2012), and to correct for brain motion artifacts induced by move-
ment (Thévenazet al., 1998; Dombeck et al., 2007; Greenberg and
Kerr, 2009; Bonin et al., 2011). The subcellular resolution of two-
photon microscopy has been used to map the synaptic inputs and
outputs of single neurons in vivo (Jia et al., 2010; Chen et al., 2011;
Petreanu et al., 2012; Xu et al., 2012; Glickfeld et al., 2013).

Calcium imaging has predominantly been performed using
synthetic calcium indicators, but recent improvements in genet-
ically encoded calcium indicators (GECIs) are now beginning to
rival their synthetic counterparts in dynamic range and sensitiv-
ity to single action potentials (Horikawa et al., 2010; T. W. Chen
et al., 2013). These improved GECIs consist of a calmodulin com-
plex (which undergoes a conformational-state transition during
Ca 2� binding) fused with a conformation-sensitive fluorescent
protein reporter: either Förster resonance energy transfer (FRET)
protein pairs for Yellow Cameleon-class indicators or circularly
permuted fluorescent proteins (cpFPs) for GCaMP class indica-
tors (Fig. 1b,c) (Knöpfel, 2012). The benefits of GECIs compared

Figure 1. In vivo two-photon calcium imaging of neuronal activity. a, Schematic of a conventional, mirror-based scanning
two-photon microscope for in vivo imaging. b, Schematic of GECIs wherein calcium binding produces a conformation change in the
calcium-binding complex (CaM-M13). For FRET-based GECIs, the fusion of a FRET pair (CFP/YFP) allows the conformational change
to be measured as an increase in FRET efficiency during two-photon excitation. For cpFP-based GECIs, the fusion of a cpFP allows
the conformational change to be detected as an increase in quantum yield of cpFP fluorescence [adapted from Knöpfel (2012) with
permission]. c, Examples of new variants of FRET-based GECIs (YC-Nano140) and cpFP-based GECIs (GCamp6m) with in vivo images
(left) and calcium traces of indicated cells (right). For FRET-based GECIs, calcium signals are measured as the relative change in the
YFP/CFP ratio (�R/R). For cpFP GECIs, calcium signals are measured as the relative change in fluorescence intensity (�F/F).
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with synthetic indicators are numerous. Researchers are no
longer restricted by the narrow window of synthetic indicator
expression to conduct acute imaging experiments where ani-
mals are expected to behave immediately after surgical proce-
dures (Dombeck et al., 2009; Andermann et al., 2010;
Komiyama et al., 2010; Hira et al., 2013). The limited recovery
time in acute experiments presents potential confounds be-
cause of tissue inflammation, immune response, and residual
anesthesia. Data collection can be maximized in valuable ani-
mals where time and effort have been invested in behavioral
training by sampling different populations across multiple im-
aging sessions. Individual neurons can be followed chronically
during learning and plasticity (Mank et al., 2008; Andermann
et al., 2010; Huber et al., 2012; Margolis et al., 2012) with the
implantation of a cranial window (Holtmaat et al., 2009) in
animals where stable GECI expression across thousands of
neurons is achieved through viral delivery or transgenic lines
(Chen et al., 2012; Zariwala et al., 2012). The transmission and
integration of calcium signals along subcellular compartments
can also be measured through expression of cytosolic GECIs
(Petreanu et al., 2012; Xu et al., 2012; T. W. Chen et al., 2013;
Glickfeld et al., 2013; Kaifosh et al., 2013) and GECIs modified
with localization tags (Nagai et al., 2002; Mao et al., 2008).

Studies relating population activity to neuronal cell types or
anatomic connectivity have been achieved by combining calcium

imaging with retrospective methods such as immunohistochem-
istry (Kerlin et al., 2010; O’Connor et al., 2010b; Langer and
Helmchen, 2012), electron microscopy (Bock et al., 2011), or
slice electrophysiology (Hofer et al., 2011; Ko et al., 2011, 2013).
The large palette of genetic tools available in the rodent provides
unique opportunities to functionally dissect defined circuit com-
ponents in the mammalian cortex online. Broadly, a strategy can
be used in which complementary fluorescent proteins are ex-
pressed in specific cell types that can be simultaneously resolved
during two-photon calcium imaging (Fig. 2). Molecularly de-
fined neuronal cell types (e.g., inhibitory interneurons) can be
identified in transgenic lines in which cell-type-specific promot-
ers drive expression of fluorescent proteins. The use of DNA
site-specific recombinases, such as Cre/loxP and Flp/FRT sys-
tems, can also be used to drive conditional expression of GECIs or
fluorescent protein labels by crossing “driver” transgenic lines
with “reporter” lines or delivery of Cre- or Flp-dependent viral
constructs (Luo et al., 2008). Cell-type specificity can also be
achieved through intersectional strategies combining Cre/loxP
and Flp/FRT systems. Temporally induced expression of these
recombinases or in utero gene delivery (LoTurco et al., 2009) can
also be used to identify cell types defined by developmental origin
(Li et al., 2012; Ohtsuki et al., 2012; Yu et al., 2012).

In addition to molecularly defined cell types, anatomically
defined subpopulations can be identified using fluorescent

Figure 2. Genetic tools for dissecting neuronal circuits. a, Site-specific recombinase systems for use to identify neuronal cell types. Viral constructs or transgenic lines driving Cre or Flp
recombinase expression under a cell-type-specific promoter can be combined with a reporter for conditional, Cre-dependent, or Flp-dependent fluorescent protein or GECI expression. b, Examples
of strategies to identify molecularly and anatomically defined cell types for calcium imaging. Inhibitory (top) or long-range projection (bottom) neurons are labeled using transgenic crosses or
retrograde viruses, respectively. Left, Genetic crosses. Middle, Viral injections for imaging in primary somatosensory cortex (S1). Right, In vivo images of GECI-expressing neurons with cell types
identified.
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tracers. Calcium imaging in combination with synthetic or viral-
based retrograde tracers have proved to be useful in characteriz-
ing the functional responses of long-range projection neurons
innervating a target area (Sato and Svoboda, 2010; Jarosiewicz et
al., 2012; J. L. Chen et al., 2013). Synaptically connected neurons
can be identified and monitored using monosynaptically re-
stricted rabies virus expressing fluorescent proteins or GECIs
(Wickersham et al., 2007; Osakada et al., 2011). Cre-dependent
expression of specific viral components required for the infec-
tion, replication, and spread of the modified rabies can identify
neurons providing inputs to specific neuronal cell types (Wall et
al., 2010). In summary, in vivo two-photon calcium imaging
combined with rodent genetics and anatomical tools provide un-
precedented circuit-level access and throughput for studying the
mammalian cortex.

Head-fixed, sensory-guided decision making
Stability is a fundamental requirement for imaging calcium dy-
namics in awake animals with standard two-photon micro-
scopes. Inspired by experiments using a head-fixed, behaving
monkey preparation, where head fixation and body restraint pro-
vide stability for electrophysiological recordings as well as a high
degree of stimulus control and behavioral readout (Evarts, 1968;
Wurtz, 1968), head-fixed, choice-based mouse behavior para-
digms have been developed for optical imaging during behavior
(Andermann et al., 2010; Komiyama et al., 2010; O’Connor et al.,
2010b; Huber et al., 2012; Petreanu et al., 2012; Xu et al., 2012;
J. L. Chen et al., 2013). In a typical nonlocomotive head-fixed
task, the mouse receives a variety of sensory stimuli belonging to
two different categories of outcomes, e.g., tactile objects of vary-
ing textures or objects at varying positions (O’Connor et al.,
2010b; Huber et al., 2012; Petreanu et al., 2012; Xu et al., 2012;
J. L. Chen et al., 2013), different odorants (Shusterman et al.,
2011; Smear et al., 2011), or visual drifting gratings of different
directions or orientations (Andermann et al., 2010; Histed et al.,
2012; Lee et al., 2012). The animal’s task is to determine which
category a presented stimulus belongs to and respond with pre-
defined actions not requiring body locomotion, e.g., licking a
water port or pressing a lever to obtain reward.

Two versions of such tasks have been developed in head-fixed
mice based on how the behavioral choices are made. One is the
go/no-go task, in which an animal performs an action such as
licking a water port to obtain a reward after “go” stimuli and
withholds the action after “no-go” stimuli (O’Connor et al.,
2010a). The second is the two-alternative forced-choice (2AFC)
task (Mayrhofer et al., 2013; O’Connor et al., 2013), where an
animal makes one out of two choices based on sensory stimuli,
e.g., licking one of two water ports positioned to the left or right
of the mouth. The key difference between the two paradigms is
whether the sensory stimuli are always associated with actions
that could lead to reward. In the go/no-go task, only the stimuli in
go trials are potentially rewarding, whereas in the 2AFC task, both
actions could lead to reward. Each task has its strengths and
weaknesses depending on the questions being asked. For exam-
ple, the no-go trials in the go/no-go task are particularly useful in
isolating sensory responses without the potential influence of
reward anticipation or response. However, animals performing
the go/no-go task inevitably show response bias toward go stim-
uli, whereas in the 2AFC task, both categories of stimuli have
equal or similar reward-predicting values. This is more suitable
for experiments requiring symmetrical task structures, e.g., to
examine reaction time. Compared with traditional maze or

arena-based rodent behavior, head-fixed tasks provide a greater
number of trials (hundreds) per session with improved statistical
power. Mice can be trained to perform basic sensory discrimina-
tion tasks within 1–3 weeks. This short training duration com-
bined with the capacity for high-throughput training of rodents
makes it practical to perform experiments in which population
activity can be compared in sets of rodents trained to different
task conditions to identify task-dependent features of cortical
processing (J. L. Chen et al., 2013).

The stable imaging afforded by head fixation in combination
with the subcellular resolution of two-photon microscopy pro-
vides the unique opportunity to directly observe axonal and den-
dritic activity during behavior. Activity of long-range inputs can
be isolated by imaging spiking-related calcium signals of axons in
a region innervated by projection neurons from distant cortical
or subcortical areas where GECI expression has specifically been
induced. Specific questions regarding information transmission
in the cortex can be addressed, such as, What information does a
cortical circuit have access to and from where? For example, cal-
cium imaging of vibrissal motor cortex (vM1) axons innervating
barrel cortex (vS1) has demonstrated that vM1 sends informa-
tion about whisking motor behavior directly to vS1 during active
tactile sensation (Petreanu et al., 2012) and that, in the hip-
pocampus, inhibitory neurons of the medial septum send
multimodal sensory information about stimulus intensity to in-
hibitory neurons in CA1 (Kaifosh et al., 2013). The distinction
can also be made between what information is computed within
the local circuit versus what is inherited from elsewhere by com-
paring axonal signals in a given pathway with somatic signals in
the upstream and downstream area. Comparisons of visual re-
sponse properties of axonal projections from primary (V1) to
higher (V2) visual areas with that of the local population in V1
and V2 suggest that some of the specialized visual responses that
define V2 may, in fact, be computed and inherited from V1
(Glickfeld et al., 2013). Complementing work on axons, calcium
imaging in dendrites has allowed us to address how these long-
range input signals are integrated locally. Imaging of dendritic
activity in vS1 during active tactile sensation suggests that den-
drites can nonlinearly integrate long-range corticocortical input,
such as from vM1, with ascending sensory input during behav-
iorally relevant computations (Fig. 3) (Xu et al., 2012). This find-
ing emphasizes the need to study both dendritic- and circuit-level
computation to understand cortical function.

Head-fixed locomotion and virtual navigation
While the head-fixed paradigms described above allow for the
study of cortical activity during sensory-guided decision making,
use of a spherical treadmill with head fixation (Dombeck et al.,
2007) permits the measurement of processes occurring during
behaviors involving locomotion in combination with controlled
sensory stimuli (Fig. 4). Inspired by experiments initially per-
formed in insects (Dahmen, 1980; Mason et al., 2001; Stevenson
et al., 2005), this setup typically involves a head-fixed animal
resting or walking on a Styrofoam ball that is raised with air and
thus able to rotate as the animal moves. The movement of the
floating ball is measured with optical sensors to provide informa-
tion about the speed and direction of the locomotion. The rela-
tively small mass of the mouse walking on the low-friction
environment of the floating spherical treadmill minimizes the
amount of forces applied against the head holder, allowing for
stable imaging. This has opened new avenues for studies on the
effects of locomotion on mammalian cortical function, which has
previously been limited in larger mammals.
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Early work has so far been focused on the influence of loco-
motion on sensory processing in V1. Visual stimuli presented to
moving animals in relation to spherical treadmill movement can
either be in an open loop (where visual input is presented without
taking into account locomotion) or a closed loop (where loco-
motion drives the motion of visual input as to mimic the visual
field flow). Open-loop paradigms are often used to map visual
receptive fields (Niell and Stryker, 2010; Andermann et al., 2011;
Keller et al., 2012; Ayaz et al., 2013), whereas closed-loop para-
digms are used to examine the relationship between locomotion
and visual input (Keller et al., 2012). Several studies have dem-
onstrated that locomotion increases the firing rate of cells in V1
(Niell and Stryker, 2010; Andermann et al., 2011; Keller et al.,
2012; Ayaz et al., 2013), which occurs, at least to some degree,
through noradrenergic input (Polack et al., 2013). Whether di-

rect motor-related inputs to V1 play a role
in this modulation of visual responses re-
mains to be seen.

Imaging population activity in V1 dur-
ing locomotion, but in the absence of vi-
sual stimuli, also presents an approach to
study nonvisual-related cortical dynamics
that could either be motor related or are
otherwise spontaneous. The large and un-
biased sampling obtained through popu-
lation imaging enables the identification
of sparse representations. Through this,
small subsets of V1 cells have been ob-
served to respond to abrupt switches from
closed- to open-loop visual stimuli (Keller
et al., 2012), suggesting that these cells re-
spond to a mismatch between the pre-
sented visual stimuli and the expected
visual representation based on the loco-
motion. Neurons correlated to distinct

phases of running were also observed. However, locomotive-
related neurons lacked any spatial organization in V1, unlike seen
in other brain regions (Dombeck et al., 2009; Mukamel et al.,
2009). The additional use of GECIs for chronic imaging has also
allowed new investigations on cortical plasticity after changes in
sensory experience. By using locomotion to assay cortical activity
levels, it was found that nonvisual-related activity drops in V1
after complete retinal lesion and recovers in a homeostatic man-
ner over the subsequent 48 h (Keck et al., 2013).

Visual stimuli can also be presented as virtual environments,
updated by changes in trackball speed and direction, in which
animals can navigate (Dombeck et al., 2007, 2010; Harvey et al.,
2009, 2012; Ravassard et al., 2013). This provides a framework in
which virtual mazes can be presented where locomotion serves as

Figure 3. In vivo two-photon imaging of dendritic Ca 2� signals in task-performing mice. a, Experimental setup; a head-fixed mouse performs a whisker-dependent object localization task under
a microscope. The scanning laser beam (red) is focused on distal dendrites of GCaMP3-labeled neurons (green) through an imaging window. The mouse actively whisks to find the pole and makes
a lick response (go) or withholds licking (no-go). Whisker motion was recorded with high-speed video (bottom) and quantified (whisker angle, �, and curvature change, �; gray shows touch). Top
left, Schematic showing two-photon imaging setup. Top right, GCaMP3 is expressed in deep layers of barrel cortex. N.A., Numerical aperture. b, Dendritic tuft branches (top and middle) and Ca 2�

signals (�F/F; bottom) from different subregions of a single branch (green dashed boxes). Middle panel is a magnified region in the top panel (green square box). c, Color raster of Ca 2� signals
(�F/F ) from all trials of a behavioral session sorted into touch (bottom block, with whisker– object contact) and nontouch (top block, without whisker– object contact) trials. [Adapted from Xu et
al. (2012) with permission].

Figure 4. Visual responses are increased during locomotion. Left, Schematic of mouse on spherical treadmill with coupled visual
feedback [adapted from Keller et al. (2012) with permission]. Right, Changes in fluorescence measured with GCaMP3 in a behaving
mouse on a spherical treadmill equipped with a brake (top). Gray bars indicate periods of visual stimulation with drifting gratings.
The running speed of the mouse (bottom) shows that visual responses are enhanced by increased running speed.
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readout for decision making. The use of
delay periods during choice-based reward
tasks has been useful in distinguishing
neuronal activity related to processing
sensory evidence, decision making, work-
ing memory, and action. Virtual environ-
ments can be designed to create tasks with
delay periods in the trial structure by plac-
ing extended corridors that separate an
area containing reward-related stimuli
from the reward site. The delay period in
this case represents the time needed to tra-
verse this extended corridor. “Stretching”
the trial structure across space and time
during two-photon calcium imaging has
been particularly useful in allowing dis-
tinct cognitive processes to be resolved by
compensating for the current limitations
in imaging temporal resolution and
calcium indicator kinetics. Through
such approaches, sequence-based circuit
dynamics representing a mouse’s decision
to turn left or right in a virtual T-maze
have been discovered in posterior parietal
cortex before the action of turning (Har-
vey et al., 2012). The use of virtual reality
also allows for individual components un-
derlying spatial coding to be dissected. A
comparison of hippocampal place cell ac-
tivity in virtual versus real environments
suggests that distal visual and nonvestibu-
lar self-motion cues that are preserved in
virtual reality are sufficient to provide
spatial selectivity, but vestibular and other
sensory cues present in real-world envi-
ronments are required to fully activate the
place-cell population (Ravassard et al.,
2013). Overall, imaging head-fixed ani-
mals in virtual reality provides a mean to
study the cortical circuits underlying spa-
tial navigation, working memory, and de-
cision making.

Imaging neuronal activity in freely behaving rodents using
miniature microscopes
For decades, neuroscientists have been recording neuronal
spiking activity in freely behaving rodents using wire elec-
trodes, an approach that has led to many seminal discoveries,
such as place cells in the hippocampus and grid cells in medial
entorhinal cortex (O’Keefe and Dostrovsky, 1971; Hafting et
al., 2005). Functional optical imaging in freely behaving ro-
dents draws on the same idea: relating neuronal activity to
self-determined behavior, but with additional advantages of
circuit-access described previously. However, implementing
this idea requires the fabrication of a microscope small and
light enough to be mounted onto the head of the animal with-
out significantly interfering with the animal’s behavior. To be
useful for investigating neural activity, the microscope has to
permit stable imaging with sufficient speed and resolution to
detect action potential-evoked Ca 2� transients in neuronal
populations, with single-cell resolution.

Miniaturized two-photon microscopes consist of a remov-
able head-mounted microscope containing an objective lens

and scanning system that is then mounted on a head-plate
system secured to the rodent’s skull. Excitation light from the
Ti:sapphire light source is “shaped” and delivered via a flexible
fiber optic tether, whereas resulting emitted light can be either
collected by a head-mounted photomultiplier tube (Helm-
chen et al., 2001) or with an additional optical fiber (Flusberg
et al., 2005; Engelbrecht et al., 2008; Piyawattanametha et al.,
2009; Sawinski et al., 2009). Although these microscopes
maintain the advantages of using two-photon excitation, such
as optical sectioning and the ability to image deep into the
cortex, trade-offs currently exist between their optical perfor-
mance and their size. So far, systems only suited to be carried
by animals �70 g (e.g., rats) have been demonstrated to
achieve Ca 2� imaging with cellular resolution during freely
moving behavior (Sawinski et al., 2009).

Recently, an integrated fluorescence microscope has been
developed that incorporates all the optical components of a
fluorescence microscope within a �2 g head-mounted hous-
ing (Ghosh et al., 2011). This one-photon microscope is com-
posed of mass-produced parts such as a bright LED-based
light source and a complementary metal-oxide semiconductor
image sensor, which have facilitated its fabrication and com-

Figure 5. Time-lapse imaging of CA1 place cells in freely moving mice. a, An integrated microscope is equipped with a microen-
doscope and images CA1 neurons expressing the Ca 2� indicator GCaMP3 via the CAMK2A promoter. The base plate and microen-
doscope are fixed to the cranium for repeated access to the same field of view. b, A total of 1202 CA1 pyramidal cells (red somata)
identified by Ca 2� imaging in a freely moving mouse, atop a mean fluorescence image (green) of CA1. Vessels appear as dark
shadows. c, Spatial distributions of the mouse’s location during Ca 2� excitation for two example cells in a mouse that explored two
arenas. Top, Blue lines show the mouse’s trajectory, and red dots mark its position during Ca 2� events. Bottom, Gaussian-
smoothed density maps of Ca 2� events, normalized by the mouse’s occupancy time per unit area and the cell’s maximum response
in the two arenas. d–f, Time-lapse imaging of place cell dynamics in a familiar linear track reveals changes in the ensemble
representation of space over a month. Shown are place field maps for cells identified on multiple days, ordered by the place fields’
centroid positions along the linear track on day 5 (d), day 20 (e), or day 35 (f ). Data pooled across n � 4 mice. Scale bars: b, 100
�m; c, 20 cm; d–f, 84 cm. [Panels a and c–f adapted from Ziv et al. (2013) with permission].

17636 • J. Neurosci., November 6, 2013 • 33(45):17631–17640 Chen et al. • Imaging Neuronal Populations in Behaving Rodents



mercialization. The electrical wires that transmit power and
data to and from the microscope provide greater flexibility in
animal movement than tethering used in fiber optic micro-
scopes. These devices enable imaging with greater optical sen-
sitivity, field of view, resolution, and stability than previous
one-photon microscopes (Flusberg et al., 2008). However, the
inherent limitations of one-photon imaging in optical section-
ing and depth penetration restrict the brain areas that can be
noninvasively imaged with cellular resolution. Despite these
limitations, this approach is well suited for imaging superficial
structures and has been used to image cerebellar Purkinje neu-
rons during freely behaving conditions, which has revealed the
existence of large-scale synchronized Ca 2� spiking in micro-
zones during locomotion and grooming (Ghosh et al., 2011).

A recent study combined the integrated microscope with a
chronic microendoscopy mouse preparation to access deeper
areas of the brain (Barretto et al., 2011) to monitor GCamp3-
expressing CA1 hippocampal neurons and longitudinally as-
say the dynamics of hippocampal place cells (Fig. 5). The
authors asked a basic question un-addressable with previous
techniques: To what extent is the CA1 place cell representation
of a familiar environment stable (or changing) over the long
term? The study tracked the place fields of thousands of CA1
hippocampal neurons over 1 month as mice repeatedly ex-
plored a familiar linear track (Ziv et al., 2013). The results
revealed an unexpected degree of dynamism in the spatial
code: on each day, the ensemble representation of this envi-
ronment involved a unique subset of cells. Only a small por-
tion of the place cells (�15–25%) overlapped between any two
of these subsets and retained the same place fields, which were
sufficient to preserve an accurate spatial representation across
weeks.

The possibility of imaging under freely moving conditions
provides an opportunity to study cortical function under be-
havioral contexts usually constrained or precluded under the
head-fixed condition, such as self-determined and social be-
havior. In the absence of experimentally restricted behavior,
greater emphasis must also be placed on the development of
behavior tracking and analysis tools that cover the range of
possible behaviors to be related to neuronal activity. For ex-
ample, a miniaturized ocular-videography system has recently
been developed that uses two lightweight head-mounted cam-
eras for recording eye movements in rats (Wallace et al., 2013).
This system has shown that during free movement, eye move-
ments reflect a trade-off between detailed vision and pan-
oramic surveillance that compromises the rat’s capacity for
binocular fusion and that these eye movements are substan-
tially reduced when head movement is restricted. This form of
eye movement fundamentally differs from that of other mam-
malian species whose eye movements are coordinated to fixate
on visual targets (Leigh and Zee, 1999). How the cortex han-
dles such different active viewing conditions across species is
an open question, but such examples illustrate how freely
moving behavior can reveal aspects of biological processes
otherwise hindered under more controlled conditions and the
need for imaging technology for observing cortical function
under such contexts.

Conclusion and outlook
In this review, we have provided a glimpse of some of the many
exciting recent developments that illustrate the complemen-
tary strengths of calcium imaging in neuronal populations
during rodent behavior. Behavior is vast, complex, and evolves

over time and its representation in the cortex can be sparse and
highly variable. The ability to simultaneously monitor a large
set of neurons of identified types chronically over time is crit-
ical in providing the resolution and statistical power to attack
questions involving microcircuit processing across short and
long time scales during behavior.

Although still nascent in its application, these paradigms have
already provided new insights into and directions for studying
mammalian cortical function, and its use will only grow in the
years to come. The experiments provided here as examples are
still reductionist by design: sampling specific subpopulations un-
der well controlled conditions. However, these paradigms extend
the spectrum of experimental approaches to that in which one
can essentially “witness” the brain in action through multiple
behavioral contexts while measuring sufficient numbers of pa-
rameters to make relevant comparisons to yield meaningful in-
sight. Perhaps a greater challenge that emerges is finding the
means to analyze and interpret the large, complex datasets that
are generated. Already, each new study published is seemingly
accompanied by a unique method for analyzing calcium signals
and its relationship to stimulus or behavior. Whereas such diver-
sity fosters new ways of gaining insight into biological questions,
it can also be problematic for standardizing datasets, comparing
and building consensus on the interpretation of results. Hope-
fully, as more studies are conducted, a common framework in
which data can be easily analyzed and shared across research
groups will emerge.

Looking forward, multiple avenues exist for incorporating
current and emerging technologies to expand the range of ques-
tions that could be addressed with these paradigms. Variations on
decision-making tasks originally established in primates, as well
as tasks unique to rodent studies, provide a battery of behaviors
for monitoring cortical activity during different cognitive de-
mands. The combination of calcium imaging with optogenetic or
pharmacogenetic manipulation of neural activity in specific cell
types enables the causal investigation of the function role of cir-
cuit components on both behavior and cortical processing (Ro-
gan and Roth, 2011; Packer et al., 2012; Prakash et al., 2012;
Wilson et al., 2012). Ongoing improvements in two-photon mi-
croscopy and head-mounted microscopes will allow neuronal
populations of greater numbers across larger and deeper brain
regions to be monitored (Mittmann et al., 2011; Peron et al.,
2012). Although high-speed random access scanning still re-
quires methods for detecting and correcting for brain motion to
be practical under awake conditions, the use of multiple spatio-
temporal multiplexed beams to perform high-speed frame scan-
ning serves as a viable alternative for increasing the temporal
resolution for monitoring network dynamics (Cheng et al.,
2011). The steady improvement of voltage-sensitive fluorescence
proteins suggests that a micron-scale, all-optical electrical read-
out and manipulation of cortical activity may also be on the
horizon (Akemann et al., 2012; Kralj et al., 2012). All these diverse
tools represent a new experimental vocabulary that will benefit
neuroscientists’ quest for understanding the neural basis of be-
havior and help to answer such questions as “What does the
cortex do?”
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