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Abstract
In this article, we clearly demonstrate that the electric potential and the magnetic field can contain
different information about current sources in three-dimensional conducting media. Expressions
for the magnetic fields of electric dipole and quadrupole current sources immersed in an infinite
conducting medium are derived, and it is shown that two different point dipole distributions that
are electrically equivalent have different magnetic fields. Although measurements of the electric
potential are not sufficient to determine uniquely the characteristics of a quadrupolar source, the
radial component of the magnetic field can supply the additional information needed to resolve
these ambiguities and to determine uniquely the configuration of dipoles required to specify the
electric quadrupoles. We demonstrate how the process can be extended to even higher order terms
in an electrically silent series of magnetic multipoles. In the context of a spherical brain source
model, it has been mathematically demonstrated that the part of the neuronal current generating
the electric potential lives in the orthogonal complement of the part of the current generating the
magnetic potential. This implies a mathematical relationship of complementarity between
electroencephalography (EEG) and magnetoencephalography (MEG), although the theoretical
result in question does not apply to the non-spherical case (Dassios (2008), Math Med Biol, vol.
25, p. 133). Our results have important practical applications in cases where electrically silent
sources that generate measurable magnetic fields are of interest. Moreover, electrically silent,
magnetically active moments of higher order can be useful when cancellation due to superposition
of fields can occur, since this situation leads to a substantial reduction in the measurable amplitude
of the signal. In this context, information derived from magnetic recordings of electrically silent,
magnetically active multipoles can supplement electrical recordings for the purpose of studying
the physiology of the brain. Magnetic fields of the electric multipole sources in a conducting
medium surrounded by an insulating spherical shell are also presented and the relevance of this
calculation to cardiographic and encephalographic experimentation is discussed.

I. INTRODUCTION
Increasing attention has been devoted in recent years to the theory of multipolar expansions
of primary sources of bioelectric and biomagnetic activity [1, 10, 11]. Such expansions offer
an improved parametric approach over simpler models and have the ability to adequately
describe sources with significant spatial extent in the brain[16, 17, 23]. In
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magnetoencephalography (MEG) and electroencephalography (EEG), this can be essential
for the realistic localization of cortical activity from inverse procedures [17, 22]. In
magnetocardiography (MCG) and electrocardiography (ECG), quadrupolar sources are
important for the magnetic field mapping of electrophysiological functions [20]. For
example, the multipole model has been shown to be superior to the dipole modeling
approach for the localization of ventricular preexcitation sites [30] and recently [29], an
algebraic algorithm was developed for the reconstruction of dipole-quadrupole positions and
moments based on boundary measurements of the electric potential, with potential
applications to cardiography. Features of the magnetic field from stimulus and action
currents in the isolated rabbit heart are not consistent with the simple current dipole model,
because of the complicated electrical anisotropy of the tissue [3, 7, 14, 24]. The application
of multipole modeling to magnetopneumography [8] has shown that multipolar expansions
including dipolar, quadrupolar and octupolar moments are optimal for the characterization
of magnetisable particle retention in the lung. In magnetogastrography, multipole models are
important for the characterization of abnormal electrical activation patterns in the stomach
due to gastroparesis and ischemia [15]. Several authors have addressed the information that
is obtainable by inferring current dipole distributions from measurements of electric
potential as opposed to measurement of the magnetic field of the heart or brain [18, 19,
35-37]. Two key advantages of multipolar modeling over dipolar models are that (1)
multipole coefficients can be uniquely determined if they are used to model those source
components that produce a non-vanishing field outside the volume conductor and (2) the
multipolar approximation is mathematically close to the approximation of a few dipoles, but
with the added benefit that the former can better describe extended sources [31]. It has been
clearly established that fitting data from either electric or magnetic measurements to
effective sources can lead to different source distributions. To illustrate these particular
differences, we calculate the magnetic fields of current dipoles and quadrupoles and
consider the fields from higher order sources. The magnetic fields of current sources in an
infinite conducting medium are considered because the effects of inhomogeneities
introduced by the bounding surfaces (the body surface) can be removed [36]. Corrections
introduced by the presence of a spherical insulator enclosing the current sources are
presented in the last section. Aside from the relevance such corrections have to MCG/ECG
measurements, possible applications of these observations include MEG/EEG modeling.

The information content in measurements of electric potential versus that of magnetic field
has been a controversy for some time. It is known that electric potential measurements do
not supply information regarding magnetic dipole moments [16]. Proponents of the
magnetic field method argue that unwanted secondary source contributions to the signal
from conductivity inhomogeneities such as the skull-scalp interface distort the spatial
frequency spectrum of the potential and increase the difficulty in obtaining an inverse image
of the source current. On the other hand, electric potential advocates would say that the
magnetic field detection is insensitive to dipolar sources oriented radially with respect to the
external surface of the body. A corollary of that principle is the fact that magnetic field
measurements are also insensitive to deep sources in approximately spherically shaped
conductors since deep sources are necessarily more radial than shallow ones. In partial
resolution of this controversy, many researchers believe that measurements of electric
potential and magnetic field provide complementary information and both should be
employed. The case we are presenting addresses this isssue.

Titomir and Kneppo [36] have discussed the differences in information content of electric
and magnetic fields by examining a Helmholtz decomposition of the magnetic field. They
note that the irrotational component of the magnetic field has the same radial component as
the total field, and they present a spherical harmonic expansion of the radial field. We
compare their expansion of B · r to our calculations of B to illustrate that the radial
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component contains the information needed to differentiate two quadrupole current
distributions that are electrically equivalent but physically different. This may have
important practical applications in cases where the existence of electrically silent sources
that generate measurable magnetic fields has been shown to be possible. It has been
demonstrated, for example, that the application of multipolar modeling within the
framework of inverse algorithms can reveal important information regarding the activation
of various cortex regions during the performance of auditive and visual tasks [13, 22, 27,
28].

II. SPHERICAL HARMONIC EXPANSION OF THE ELECTRIC POTENTIAL
The spherical harmonic expansion provides an elegant method for separating observation
parameters from source paramenters in MEG [16]. We consider an impressed dipole current
density Ji(r) that generates the current present in the medium. The total current density J(r)
is the sum of the impressed current density and the Ohmic current

(1)

where σ is the conductivity of the medium. The quasistatic electric potential Φ(r) outside the
region containing J(r) (to avoid confusion, V denotes a volume, not a potential) can be
represented by the spherical harmonic expansion

(2)

where anm and bnm are the multipole moments of the dipole current density Ji(r) and the
Legendre polynomials  are functions of cosθ unless otherwise specified explicitly. They
are expressed in terms of integration over Ji(r) in Table I.

The electric multipoles can be understood as the limit of certain point dipole configurations,
as the separation among these dipoles decreases while their strength increases
proportionally. Pictures and tables of these configurations through the octupole moment are
given in terms of point sources and sinks in [40]. The source-sink pairs can be replaced with
dipoles that point from sink to source, shown in the figures of [40]. The representations are
not unique, and Wikswo and Swinney [40] presented two configurations for each of the
quadrupoles a21, b21, a22 and b22. These two and a third alternate configuration for each of
these quadrupoles are shown in Fig. 1. The coordinate system used by Morse & Feshbach
[26] (see the caption to FIG. 1) is also employed here to maintain consistency with our
previous work [39, 40], which partly relies on [26]. In our figures, white arrows represent
the first configuration of the multipole being depicted, black arrows represent the second
one and gray arrows the third one. In the third representation, each of the quadrupoles,

 and , is constructed from four radial dipoles, in contrast to the pair of
tangential dipoles used in each of the first two representations. For example, Fig. 2 shows
a22 to be the combination of the axial quadrupoles c202 and c220; here we convert the source-

sink pairs into dipoles before subtracting c220 from c202 to form , and hence obtain two
pairs of radial (axial) dipoles. In the same way, adding and subtracting c200 from c201 can be

used with the appropriate pairing of sources and sinks to yield . In this manner, we are
exploiting degeneracies in the combination of the spherical harmonic (axx) and Taylor series
(cxxx) expansions of the potential to produce a third unique representation of the
quadrupoles.

Since any quadrupole can be represented, with a suitable rotation, as a sum of the
quadrupoles a20 and a22 [9], the three configurations in Fig. 1 for a21, b21, a22 and b22 are
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not unique, since any linear combination of representations for a particular quadrupole will
also have all other moments zero. For example, the quadrupole

(3)

has the same source-sink representation and hence the same electric field as the first three
configurations. However, because the limits associated with converting sources and sinks
into dipoles are taken in a different order for each configuration, each has a different dipole
representation.

III. MAGNETIC FIELD CALCULATION
We now proceed to compute the magnetic field from the first three representations. It has
been noted by several authors [18, 37, 40] that these representations can be added together to
give a distribution which, in the limit, is electrically silent but magnetically active. The
magnetic field B(r) of the current density given in Eq. 1 is calculated by the law of Biot and
Savart

(4)

where r is the field point and r′ is the source point. Integration over the Ohmic component of
J is zero because the medium is infinite, isotropic and homogeneous. We calculate the
magnetic fields of the multipole moments represented in Fig. 1 by utilizing the Dirac delta
functional expressions for Ji and taking the limit described earlier. The calculational details
are more tractable if the Green function 1/|r − r′| is expanded in terms of the spherical
harmonics

(5)

where we have made use of the assumption that the field point r lies outside the region
containing Ji. The gradient of Eq. 5 is

(6)

where the terms in the expansion for n = 0, 1 and 2 have been stated explicitly and the
Legendre polynomials are functions of the cosine of θ. Eq. 6 is used with the delta functional
expressions for the dipole and quadrupole sources. In the limit as dipole separation
approaches zero with dipole strength increasing proportionally (the product of dipole
separation and strength remains constant), all terms in Eq. 6 with n greater than 2 vanish.
The magnetic fields calculated by this method are listed in Table II. Although are
derivations are in spherical polar coordinates, we list the expressions for the magnetic fields
in Table II in Cartesian coordinates. Tackling multipole expansion problems in the latter
system is useful because the expressions for the dipolar and quadrupolar terms are
elementary and because the translational invariance of the Cartesian system simplifies the
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construction of source models in MEG [16]. Comparison of Tables I and II shows that the
magnetic fields reveal that the three different representations of the quadrupoles a21, b21, a22
and b22 are not the same.

The magnetic field of a localized impressed current source has been studied [35] by
decomposing the total field into an irrotational component B(2) and a component B(1) that
results from the radial electric quadrupole so that

(7)

In the reference frame where a21, b21 and b22 are zero, the magnetic field is

(8)

The irrotational component B(2) can be expressed as the gradient of a magnetic potential Vm,
which in turn is represented by a spherical harmonic expansion

(9)

Expressions for the magnetic moments are derived [35] by utilizing the condition that the
radial component of B(2) is also the radial component of B. There is only one non-zero
magnetic dipole moment for each of the electric dipole representations of the electric
quadrupoles. These are listed in Table III. Expressions in Table III are also the radial
component of B derived by taking the vector dot product of r ̂ with the fields of Table II.

IV. DETERMINATION OF THE CURRENT DIPOLE CONFIGURATION
Each electric dipole representation of a particular electric quadrupole has at most one non-
zero magnetic dipole moment. It is the radially directed current dipoles with no radial
magnetic field and no magnetic dipole moment from which Titomir and Kneppo [35]
constructed B. Furthermore, the other two representations for each quadrupole have the
same non-zero magnetic dipole moment with equal magnitude but opposite signs. For

example, the configuration  has magnetic moments  and  zero and  equal to

a22. Configuration  has  equal to −a22 and  and  are zero. Thus, if it is known
that a quadrupole source has a non-zero a22 moment, the magnetic moments (or radial
components of the magnetic field) are required to discern the simplest dipole configuration
which is representative of the source. This determination is not unique since the magnetic
dipole moments are either zero or oppositely directed. For example, assume that we have a

source, , constructed by the linear combination of  and 

(10)

Then,  has only the moment a22 as non-zero and zero magnetic dipole moment. In the

limit described earlier all other electric and magnetic moments are zero. However,  is not

the simplest dipole configuration with these properties.  has the same electric and
magnetic moments and is simpler. To discern such linear combinations of sources (i.e.,
when separations are not zero) the higher-order moments must be determined.

To replace two current dipole sources with a magnetic dipole source, the magnetic dipole is
placed centrally between the current dipoles and oriented perpendicular to the plane
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containing the current dipole vector. Its direction is determined by treating the two current
dipoles as a current loop and applying the right-hand rule. This example illustrates how the
current dipole configurations are related to the magnetic dipole moment. This procedure can
be applied to examine higher-order terms in what is an infinite series of electrically silent
multipoles. For example, in Table V, three equivalent representations for an electrically
silent, magnetically active octupole are presented. These representations can be obtained
from superpositions of quadrupoles, in a manner analogous to that in Table IV, where the
quadrupoles themselves were constructed using dipole representations (as shown in Fig. 1).
Three equivalent representations for an electrically silent, magnetically active octupole
based upon the three quadrupole terms in Table V are shown in FIG. 3.

In FIG. 4, we depict the fields for three configurations of the electrically silent, magnetically
active quadrupole a21 shown in FIG. 1. Similarly, FIG. 5 shows the field components and
magnitudes for the three octupolar configurations in FIG. 3. For convenience, we associate a
distinct color scheme with the fields for the three types of multipoles (magenta to yellow for
dipoles, green to yellow for quadrupoles and red to yellow for octupoles). The physical
parameters selected to illustrate the fields were chosen to reflect a typical physiological
measurement and are in good agreement with those selected in [31]. A source-to-sensor
distance of 5 cm was chosen for calculating the fields (this distance is typical of field
recordings from the brain or heart in MEG or MCG, respectively). Similarly, the current
dipole strength (1 µA · m) and magnetic field magnitude are both physiologically plausible.
Our illustrations qualitatively agree with other visual representations of multipolar patterns
in other studies (see, for example, [16, 31, 32]), with the notable difference that our
investigation deals with sources that are electrically silent. What is clear from our figures is
that the three configurations produce distinct magnetic field patterns. In [31], Nolte & Curio
show the magnetic field patterns of quadrupoles and octupoles due to electrically active
sources located either in a sphere or in a homogeneous half-space. Our depictions in FIG. 5
(and especially that of configuration 3 in that figure) obviate a fact that has been pointed out
by these two authors, namely that the octupole field might be difficult to detect
experimentally because it shares structural features with the dipole field (this is particularly
apparent upon comparison of configuration 3 in FIG. 5 to the dipolar pattern in the first row
of FIG. 6). From a practical standpoint, the measurement of octupolar or higher-order terms
is somewhat problematic in general because, although many SQUID systems for MEG/
MCG research have the ability to measure even aT fields, their typical noise level of 
(fT·Hz1/2) raises SNR-related complications which are difficult to overcome. Nevertheless,
the confirmed prediction that the magnetic field of a realistic electric octupole is of (fT)
[31], coupled with recent progress in SQUID technology [13] and with the fact that peak-to-
peak noise levels of the same order are attainable in certain MEG experiments [5] are
encouraging.

In FIG. 6, we compare examples of the magnetic fields due to three configurations: (1) an
electrically-active current dipole oriented along the x axis, (2) the electrically-silent

quadrupole  (see FIG. 1) and (3) the electrically-silent octupole in the first configuration
of FIG. 3. In the first row of FIG. 6, the field components and magnitude for a current dipole
are shown. Since the current is along x and ∇ · B = 0, Bx vanishes. Both By, Bz and the
magnitude B = |B| have values of the order of pT, which are realistic for physiological
measurements. The second row of the figure displays the same quantities as in the first row,

though this time for the electrically-silent quadrupole , which is illustrated using black
arrows in the top left plot of FIG. 1. Inspection of the equation for the magnetic field
associated with this quadrupole (see Table II) and its visual representation in FIG. 1 both
reveal that |By| is largest in the immediate vicinity of the dipoles from which the quadrupole
representation is constructed. Comparison of the colorbars for By and Bz shows that By has a
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larger magnitude than Bz (as also predicted by the equation of the field for our problem of
choice). Thus the plot for the magnitude of the quadrupolar field (second row, third column)
essentially displays very similar information to that in the plot of By, with the appropriate
difference that the absolute value of the field is shown. Perhaps the most interesting set of
plots are associated with the octupolar field (third row). There, the line bisector for the
minima and maxima of By is oriented at a 45-degree clockwise angle with respect to the y
axis. From visual inspection of the figure, one would thus expect two of the maxima in the
plot for |B| to occur at the locations of the two extreme values in the By plot, and this
prediction is indeed confirmed (see plot of |B| in the third row, third column). The plot for
the Bz component of the octupolar field is qualitatively similar to the corresponding one for
the dipole configuration (top row, second column), which is not a surprise considering the
underlying spherical harmonic formalism of the problem. What is at first sight curious about
the octupolar field, however, is the fact that no maxima appear in the plot for |B| at the same
points where extremas occur in the plot for Bz. This discrepancy can be explained by the
fact that |By| in this case is about six orders of magnitude stronger than |Bz| (see axis units),
which makes the latter’s contribution to |B| negligible. Thus, in the octupolar case again, the
magnitude of the field is determined primarily by that of By for the particular parameters
chosen for our illustration and it is possible that this is also the case for other higher-order
terms in the expansion. For the dipole configuration, By and Bz have comparable
magnitudes. In the case of the quadrupole, however, the absolute values of the extremas of
By in the plane depicted are two orders of magnitude larger than those of Bz, while for the
octupole the corresponding difference is of 𝜪(106). From the formulas for B(a11) and

 in Table II, it can be inferred that the reason for this behavior is that By and Bz have
the same falloff rate (i.e. 1/r3), whereas for the octupole By ∝ 1/r3 and Bz ∝ 1/r5, and so on
for terms of higher order. Finally, in FIG. 7, the falloff of the fields in FIG. 6 is shown as a
function of distance from the source; this last figure summarizes some of the quantitative
information in FIG. 6 and additionally provides the magnitude profile of the field as a
function of source-to-sensor separation.

Electrically silent, magnetically active moments of higher order can be of interest when
cancellation due to superposition of currents and/or fields can occur, since this situation
leads to a substantial reduction in the measurable amplitude of the signal. In the context of a
brain source model, for example, it has been rigorously demonstrated [6] that the part of the
neuronal current generating the electric potential lives in the orthogonal complement of the
part of the current generating the magnetic potential, which implies a clearly defined
relationship of complementarity between EEG and MEG. In this context, information
derived from magnetic recordings of electrically silent, magnetically active multipoles can
supplement electrical recordings for the purpose of studying the physiology of the brain [12,
21]. In this respect, Jerbi et al. [16] showed that multipole expansion methods can accurately
describe sources with significant spatial extent and arbitrary activation patterns and that
multipole methods can be superior to equivalent current dipole models in providing source
representations of extended regions of activity.

The set of physiological cases where electrically silent current multipoles may produce
experimentally detectable magnetic fields is not restricted to the context of neurophysiology.
For example, transverse tubules in skeletal muscle fibers, muscular tissue at the apex of the
heart and helicoidal smooth muscle layers in the intestine are three distinct systems where it
may be possible to measure magnetic fields in the absence of a recordable electric potential.
The two essential characteristics shared by all these systems is that they have a helix-like
anatomic structure and a spiral-like conductivity profile. In such conditions [33, 34], an
impressed current can be written as a multipole expansion in which the antisymmetric part
of the current multipole tensor can produce electrically silent magnetic fields.
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V. MAGNETIC FIELDS OUTSIDE AN INSULATED SPHERE
Some authors [4, 25] have studied the electric activity of the heart by measuring the electric
potential on the surface of a hollow spherical tank containing a beating animal heart
immersed in a saline solution. Physical models of discrete dipole densities have been used to
calibrate such tanks and the potential measurements on the tank surface are then used to
infer the dipole current distribution model for the heart. It is possible to use these models to
verify the multipolar calculations presented thus far if (1) magnetic field measurements are
made outside the tank, and (2) the inhomogeneity introduced by the insulated sphere is taken
into account before applying Table II. For this reason, we present the derivation of the
corrections to Table II when the conducting medium is constrained to lie within an
insulating spherical shell and the magnetic field measurement is made outside the sphere.
The magnetic field can be calculated using the law of Biot and Savart

(11)

The first term is the magnetic field if the conducting medium is infinite while the second
one, involving an integration over the surface of the heart tank, is the correction that must be
added to the infinite medium field, B∞(r). We term this the spherical tank correction, and
denote it by Bs(r)

(12)

The potential on the surface of the tank, expressed as a spherical harmonic expansion, is

(13)

where R is a vector from the origin at the center of the tank to the tank surface and anm and
bnm are as in Eq. 2. The spherical tank correction for a particular multipole anm or bnm is
calculated by assuming that all other moments are zero and using the potential from Eq. 13
to perform the integration in Eq. 12. The spherical tank correction calculated in this manner
is

(14)

for m = 0 and

(15)

for m ≠ 0, where

(16)

The explicit expression for the dipoles (n = 1) and quadrupoles (n=2) is listed in Table VI.
We point out that, since Bs(r) is a result of the potential on the surface of the sphere, the
corrections for the two different representations of a21, b21, a22 and b22 are the same. This
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implies that the introduction of an inhomogeneity into the medium does not alter the
ambiguity in determining the current distribution of an electrically silent multipole from
measurements of potentials. This statement is supported by the work of Amir [2], who
showed that two spatially distinct generators cannot create the same scalp potential map. In
our situation, the locations of the sources and sinks composing the multipole configurations
are identical (and hence their potential maps are identical, in agreement with Amir’s
statement), which again justifies the fact that the corrections to the magnetic field for the
quadrupoles named above are the same. However, as shown by our present work, the fact
that the locations of the sources and sinks in question are identical does not exclude the
possibility for spatially distinct current distributions due to identical configurations of
sources and sinks to exist (as in the quadrupole and octupole cases discussed and visualized
in the present article). In [2], such currents (which make the subject of our work) are
described first as sources which share common points and then as “equivalent generators”.
Furthermore, in Section III of [2], it is shown that “two [such] different but overlapping
distributions create the same scalp potential”, a statement for which mathematical proof is
provided by the author. In conclusion, Amir’s work (which does not address magnetic
fields) fully justifies our previous statement regarding the ambiguity of determining the
current distribution of such equivalent generators based solely on measurement of potentials.
In conclusion, the essence of our argument can be most clearly captured in the context of
[2], namely that distinct current distributions due to identical configurations of source-sink
pairs can produce different magnetic fields, though not different electric potentials at the
enclosing surface.

VI. SUMMARY
We have derived equations for the magnetic field of the electric multipole moments and
demonstrated that measurements of the electric potential and the radial component of the
magnetic field are sufficent to determine uniquely the configuration of dipoles required to
specify the electric quadrupoles. We demonstrate how this can be extended to even higher
order terms in an electrically silent series of magnetic multipoles. This is a clear
demonstration that the electric potential and the magnetic field can contain different
information about current sources in three-dimensional conducting media. In addition, we
have provided equations useful when measuring magnetic fields outside of an insulated
spherical tank.
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FIG. 1.
Three electrically equivalent dipole source representations for the four quadrupole terms a21,
b21, a22, b22. Here and throughout, white arrows represent the first, black arrows the second
and gray arrows the third configuration. Here and throughout, we use a right-handed
coordinate system where the vertical axis is along x and where y and z point to the left and
right, respectively (see text for explanation).
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FIG. 2.
a22 (third column) as the combination of the axial quadrupoles c202 (first column) and c220
(second column).
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FIG. 3.
Three equivalent representations for an electrically silent, magnetically active octupole
based upon the three quadrupole terms in Table V. The first configuration is in the first row,
etc.

Swinney et al. Page 14

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2013 November 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIG. 4.
(Color online). Two-dimensional plots of the magnetic field components (Bx, By and Bz)
and magnitude (|B|) due to the three alterative configurations of the electrically silent

quadrupole a21 in FIG. 1. The field components and magnitude for  are in the first

column (configuration 1 - white arrows in FIG. 1), those for  are in the second column

(configuration 2 - black arrows in FIG. 1), and those for  are in the third column
(configuration 3 - gray arrows in FIG. 1). Colormap scaling is symmetric for each plot in the
sense that the minimum and maximum in each colormap have the same absolute value.
Moreover, the colormap scaling is identical for each field component as well as field
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magnitude so that differences in amplitude between configurations can be more easily
visualized. The origin of the coordinate system is located at (0, 0, 0) cm and the horizontal
surface for which data are drawn is located at a height of x = 5 cm above the y − z plane.
The unit of dipole strength q is equal to 1 μA · m. For configuration 1, because the resultant
dipole vectors from which the multipoles are composed are directed along ẑ, the quantity Bz
is identically equal to zero in the horizontal plane, though it is depicted for completeness. An
analogous situation occurs in the case of the second configuration. For the third
configuration, however, the constitutive dipoles (shown in gray in FIG. 1) are not aligned
along any of the coordinate system axes, hence the analogy does not hold in this last case.
The abbreviations used are pT (picoTesla = 10−12 T), fT (femtoTesla = 10−15 T) and aT
(attoTesla = 10−18 T).
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FIG. 5.
(Color online). Visual depictions of the magnetic field components and magnitude due to the
three alterative configurations of the electrically silent octupoles in FIG. 3. As in FIG. 4, the
field components and magnitudes for the first configuration (white arrows in FIG. 3) are in
the first column, etc. One difference here is that, as opposed to FIG. 4, colormap limits are
different for each plot due to the large field amplitude differences between plots.
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FIG. 6.
(Color online). Comparison of the magnetic field components (By and Bz) and magnitude (|
B|) due to an electrically active current dipole located at the origin and oriented along x ̂ (first

row), an electrically silent quadrupole ( , second row, see FIG. 1) and an electrically silent
octupole (first configuration in FIG. 3, third row here). The physical parameters used are the
same as in FIG. 4. Because the resultant dipole vectors from which the multipoles are
composed are directed along x̂, the quantity Bx is identically equal to zero in the horizontal
plane depicted and hence it is not displayed.
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FIG. 7.
(Color online). Log-log plot for the fall-off of the dipolar, quadrupolar and octupolar
magnetic fields displayed in FIG. 6 as a function of distance. The data shown are for a line
segment along the x axis in the distance range 5 ≤ x ≤ 500 cm.
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Swinney et al. Page 20

TABLE I

Spherical harmonic multipole moments in terms of dipole density Ji

Dipole

a10 = ∫ d3 r′ Jiz (r′)

a11 = ∫ d3 r′ Jix (r′)

a11 = ∫ d3 r′ Jiy (r′)

Quadrupole

a20 = ∫ d3 r′ [3z′ Jiz (r′) − r′ · Ji(r′)]

a21 = ∫ d3 r′ [x′ Jiz (r′) + z′ Jix(r′)]

b21 = ∫ d3 r′ [y′ Jiz (r′) + z′ Jiy(r′)]

2a22 = ∫ d3 r′ [x′ Jix (r′) − y′ Jiy(r′)]

2b22 = ∫ d3 r′ [x′ Jiy (r′) + y′ Jix(r′)]
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TABLE II

Magnetic fields of electric multipole moments immersed in an infinite medium of conductivity σ

Dipoles

B(a10) =
1

4π

a10

r 3
(xŷ − yx̂)

B(a11) =
1

4π

a11

r 3
(y ẑ − zŷ)

B(b11) =
1

4π

b11

r 3
(zx̂ − x ẑ)

Quadrupoles

B(a20) =
1

4π

3a20z

2r 5
(xŷ − yx̂)

B(a21
1 ) =

1
4π

a21

r 5
− 3xyx̂ + (3x 2 − r 2)ŷ

B(a21
2 ) =

1
4π

a21

r 5
3yz ẑ − (3z 2 − r 2)ŷ

B(a21
3 ) =

1
4π

3a21

2r 5
− xyx̂ + (x 2 − z 2)ŷ + yz ẑ

B(b21
1 ) =

1
4π

b21

r 5
3xyŷ − (3y 2 − r 2)x̂

B(b21
2 ) =

1
4π

b21

r 5
− 3xz ẑ + (3z 2 − r 2)x̂

B(b21
3 ) =

1
4π

3b21

r 5
(z 2 − y 2)x̂ + xyŷ − xz ẑ

B(a22
1 ) =

1
4π

a22

r 5
(3(x + y)2 − 2r 2)ẑ − 3z(x + y)(x̂ + ŷ)

B(a22
2 ) =

1
4π

a22

r 5
(2r 2 − 3(x − y)2)ẑ + 3z(x − y)(x̂ − ŷ)

B(a22
3 ) =

1
4π

3a22

r 5
− yzx̂ − xzŷ + 2xy ẑ

B(b22
1 ) =

1
4π

2b22

r 5
3xzx̂ + (r 2 − 3x 2)ẑ

B(b22
2 ) =

1
4π

2b22

r 5
− (r 2 − 3y 2)ẑ − 3yzŷ

B(b22
3 ) =

3
4π

b22

r 5
zxx̂ − zxŷ + (y 2 − x 2)ẑ
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TABLE III

Radial component of magnetic field and magnetic dipole moments

Dipole

Br(a10) = 0

Br(a11) = 0

Br(b11) = 0

Quadrupoles Non-zero magnetic moments

Br(a20) = 0 None

Br(a21
1 ) = −

a21
4π

y

r 4
B11

m = a21 ∕ 2

Br(a21
2 ) = −

a21
4π

y

r 4
B11

m = a21 ∕ 2

Br(a21
3 ) = 0 None

Br(b21
1 ) = −

b21
4π

x

r 4
A11

m = b21 ∕ 2

Br(b21
2 ) =

b21
4π

x

r 4
A11

m = − b21 ∕ 2

Br(b21
3 ) = 0 None

Br(a22
1 ) =

a22
4π

2z

r 4
A10

m = a22

Br(a22
2 ) = −

a22
4π

2z

r 4
A10

m = − a22

Br(a22
3 ) = 0 none

Br(b22
1 ) =

b22
4π

2z

r 4
A10

m = b22

Br(b22
2 ) = −

b22
4π

2z

r 4
A10

m = b22

Br(b22
3 ) = 0 None
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TABLE IV

Coordinates of the dipoles for the three configurations in Fig. 1, where  and . The
strength is given in units of p.

Location
coordinates

Direction
cosines

Moment Strength X Y Z X Y Z

Configuration 1

a 21 +1 −a/2 0 0 0 0 −1

+1 +a/2 0 0 0 0 +1

b 21 +1 0 −a/2 0 0 0 −1

+1 0 +a/2 0 0 0 +1

a 22 +1 −b −b 0 − 1 ∕ 2 +1 ∕ 2 0

+1 +b +b 0 +1 ∕ 2 − 1 ∕ 2 0

b 22 +1 −a 0 0 0 −1 0

+1 +a 0 0 0 +1 0

Configuration 2

a 21 +1 0 0 −a/2 −1 0 0

+1 0 0 +a/2 +1 0 0

b 21 +1 0 0 −a/2 0 −1 0

+1 0 0 +a/2 0 +1 0

a 22 +1 +b −b 0 +1 ∕ 2 +1 ∕ 2 0

+1 −b +b 0 − 1 ∕ 2 − 1 ∕ 2 0

b 22 +1 0 −a 0 −1 0 0

+1 0 +a 0 +1 0 0

Configuration 3

a 21 +1 +c/2 0 +c/2 +1 ∕ 2 0 +1 ∕ 2

+1 −c/2 0 −c/2 − 1 ∕ 2 0 − 1 ∕ 2

+1 +c/2 0 −c/2 − 1 ∕ 2 0 +1 ∕ 2

+1 −c/2 0 +c/2 +1 ∕ 2 0 − 1 ∕ 2

b 21 +1 0 +c/2 +c/2 0 +1 ∕ 2 +1 ∕ 2

+1 0 −c/2 −c/2 0 − 1 ∕ 2 − 1 ∕ 2

+1 0 +c/2 −c/2 0 − 1 ∕ 2 +1 ∕ 2

+1 0 −c/2 +c/2 0 +1 ∕ 2 − 1 ∕ 2

a 22 +1 +a/2 0 0 +1 0 0

+1 −a/2 0 0 −1 0 0

+1 0 −a/2 0 0 +1 0

+1 0 +a/2 0 0 −1 0

b 22 +1 +c +c 0 +1 ∕ 2 +1 ∕ 2 0
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Location
coordinates

Direction
cosines

Moment Strength X Y Z X Y Z

+1 −c −c 0 − 1 ∕ 2 − 1 ∕ 2 0

+1 +c −c 0 − 1 ∕ 2 +1 ∕ 2 0

+1 −c +c 0 +1 ∕ 2 − 1 ∕ 2 0
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TABLE V

Coordinates of the dipole representations of quadrupoles for the three octupolar configurations in Fig. 3,
where f ≡ a/21/3 and g ≡ a/(2 · 61/3). The strength is given in units of p.

Dipole location
coordinates

Dipole direction
cosines

Moment Strength X Y Z X Y Z

Configuration 1

c 301 +1 0 0 −f +1 0 0

+2 0 0 0 −1 0 0

+1 0 0 +f +1 0 0

c 303 +1 +2g 0 0 +1 0 0

+2 0 0 0 −1 0 0

+1 −2g 0 0 +1 0 0

c 321 +1 0 +f 0 +1 0 0

+2 0 0 0 −1 0 0

+1 0 −f 0 +1 0 0

Configuration 2

c 301 +1 +f/2 0 −f 0 0 −1

+1 −f/2 0 −f 0 0 −1

+1 +f/2 0 +f 0 0 +1

+1 −f/2 0 +f 0 0 +1

c 303 +1 +2g 0 0 +1 0 0

+2 0 0 0 −1 0 0

+1 −2g 0 0 +1 0 0

c 321 +1 +f/2 +f/2 0 0 +1 0

+1 −f/2 +f/2 0 0 +1 0

+1 +f/2 −f/2 0 0 −1 0

+1 −f/2 −f/2 0 0 −1 0

Configuration 3

c 301 +1 0 0 0 +1 ∕ 2 0 +1 ∕ 2

+2 0 0 0 −1 0 0

+1 0 0 0 +1 ∕ 2 0 − 1 ∕ 2

c 303 +1 +2g 0 0 +1 0 0

+2 0 0 0 −1 0 0

+1 −2g 0 0 +1 0 0

c 321 +1 0 0 0 +1 ∕ 2 +1 ∕ 2 0

+2 0 0 0 −1 0 0

+1 0 0 0 +1 ∕ 2 − 1 ∕ 2 0
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TABLE VI

Spherical tank corrections to magnetic field of electric multipoles

Dipole

Bs(a10) =
1

4π

a10

2r 3
(yx̂ − xŷ)

Bs(a11) =
1

4π

a11

2r 3
( − y ẑ)

Bs(b11) =
1

4π

b11

2r 3
(x ẑ)

Quadrupoles

Bs(a20) =
1

4π

3a20

4r 5
z(yx̂ − xŷ)

Bs(a21) =
1

4π

3a21

4r 5
xyx̂ + (z 2 − x 2)ŷ) − yz ẑ

Bs(b21) =
1

4π

3b21

4r 5
− (z 2 − y 2)x̂ − xyŷ + xz ẑ

Bs(a22) =
1

4π

3a22

2r 5
yzx̂ + xzŷ − 2xy ẑ

Bs(b22) =
1

4π

3b22

2r 5
− xzx̂ + yzŷ + (x 2 − y 2)ẑ

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2013 November 06.


