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Abstract

The autosomal dominant spinocerebellar ataxias (also known as the SCAS) are a diverse and
clinically heterogeneous group of disorders characterized by degeneration and dysfunction of the
cerebellum and its associated pathways. Clinical and diagnostic evaluation can be challenging due
to phenotypic overlap amongst numerous acquired, genetic, and idiopathic etiologies, and a
stratified and systematic approach is essential. Molecular etiologies include DNA repeat
expansions (both polyglutamine and non-coding repeats), ion-channel dysfunction, and disorders
of signal transduction. Prompt recognition of acquired conditions or comorbidities is essential as
treatment options for the genetic ataxias are currently limited. Recent advances in the field include
the identification of additional genes causing dominant genetic ataxia, a better understanding of
cellular pathogenesis in several disorders, the generation of new disease models which may
stimulate development of new therapies, and the use of new DNA sequencing technologies,
including whole exome sequencing, to improve diagnosis.
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INTRODUCTION
Definition

The spinocerebellar ataxias (SCAS) are a heterogeneous group of degenerative disorders
with symptoms caused by dysfunction of the cerebellum and brainstem, along with their
associated pathways and connections, and with an autosomal dominant pattern of
inheritance.

Symptoms and Clinical Course
«  All patients exhibit cerebellar ataxia (limb, trunk, and/or gait)
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« Additional symptoms are variable and disease specific including extrapyramidal
features, long tract signs, peripheral neuropathy, and, in some cases, cognitive
impairment and seizures (see Table 1).

» Clinical course: The polyglutamine ataxias SCA1, SCA2, and SCA3 are
progressive disorders with death resulting primarily from brain stem dysfunction
[1]. In one series, median survival was in the mid-50s, 21-25 years following
symptom onset [2]. The other causes of SCA tend to have a more pure cerebellar
dysfunction leading to significant disability but with normal lifespan.

CLINICAL FINDINGS

Ataxia is defined as a disturbance of balance and coordination occurring in the absence of
muscle weakness, and can arise from dysfunction of the cerebellum, the vestibular system,
or of proprioception, alone or in combination (see Box 1) [3, 4]. The cerebellum plays a
critical role in this process through the integration of multimodal sensory data with motor
output predictions to yield smooth well-timed movement [5].

Box 1
Physical Examination Findings in a Patient with Ataxia*

* Cerebellar Examination
—  Gaze-evoked nystagmus
— Abnormal eye movements (ocular dysmetria, impaired smooth pursuit)
— Dysarthria (scanning)
— Limb Dysmetria (finger-to-nose, finger chase, heel-shin testing)
— Dysdiadochokinesis
— Loss of check on removal of extremity resistance
— Truncal ataxia and/or head titubation
—  Wide-based unsteady gait (“drunk” gait)
— Inability to tandem walk

+ Vestibular Examination
—  Spontaneous nystagmus
— Past-pointing
— Abnormal head thrust or Dix-Hallpike testing

e  Sensory Examination
— Reduced proprioception
— Reduced vibration sense
— Abnormal Romberg test

*Not comprehensive. Not all patients will exhibit all features.
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Physical Examination

The focus of thephysical examination should be on eliciting signs specific for cerebellar
dysfunction and extracerebellar findings.

»  Disruption of cerebellar function manifests as impairment in coordinated muscle
activity, most often observed clinically as dysarthria, dysphagia, ocular dysmetria,
altered visual pursuit, direction-changing nystagmus, limb dysmetria, gait
disturbance, and/or falls [3, 4].

» Inslowly progressive cases, gait impairment is often seen early and is frequently
associated with a sense of imbalance or feelings of generalized leg weakness.

»  Exacerbation may occur when walking on uneven surfaces or under conditions of
reduced sensory input, such as in low lighting. Stance often widens for additional
stabilization and patients may require support to walk, especially on turning. When
indoors, the practice of navigating from support to support (e.g., across items of
furniture) can become a common means of ambulation.

»  Depending upon the etiology of the ataxia, associated clinical features may be
present and, in some cases, could be helpful to establishing the diagnosis,
particularly in the case of genetic ataxias (see Table 1).

GENETICS

Despite their similarity in clinical symptoms, an array of diverse genetic causes underlie the
SCAs. The genes accounting for autosomal dominant spinocerebellar ataxia are summarized
in Table 1.

MOLECULAR PATHOGENESIS

Although distinct genes account for the over 30 etiologies of dominant ataxia, groups of
disorders may be recognized with shared molecular mechanisms of disease. These include
the polyglutamine ataxias, ataxias associated with ion-channel dysfunction, mutations in
signal transduction molecules, and disease associated with non-coding repeats.

1. Polyglutamine ataxias

These include SCAL, SCA2, SCA3, SCA6, SCA7, SCA12, SCA17, and DRPLA, where
expansion within a glutamine encoding CAG repeat accounts for disease. An additional
disorder, SCAS, likely arises from the combined effects of a non-coding CTG repeat
expansion and the generation of a pure polyglutamine protein from the corresponding CAG
repeat on the opposite strand [6].

The exact mechanism for how a polyglutamine protein causes ataxia is not understood.
Potential mechanisms [7] include:

1. Protein misfolding resulting in altered function
Formation of toxic oligomeric complexes
Transcriptional dysregulation

Mitochondrial dysfunction

Impaired axonal transport

Aberrant neuronal signaling including excitotoxicity

N o o &~ w DN

Cellular protein homeostasis impairment

Neurol Clin. Author manuscript; available in PMC 2014 November 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Shakkottai and Fogel

8.

Page 4

RNA toxicity

2. lon-channel mutations/dysfunction

Either direct ion-channel mutations or secondary ion-channel dysfunction has been
implicated in the pathogenesis of SCA5, SCA6, SCA13, SCA15/16, SCA19/22, and SCA27

[8].

A.

SCADS: Mutations in the structural protein, beta-3 spectrin result in SCAS. In a
mouse model of disease Purkinje neurons exhibit reduced spontaneous firing,
smaller sodium currents, and dysregulation of glutamatergic neurotransmission [9].

SCAGB: Results from a modest polyglutamine expansion in the C-terminus of a
neuronal calcium channel, Cav2.1. The exact mechanism for disease pathogenesis
may include calcium channel dysfunction and/or polyglutamine protein associated
toxicity [10].

SCA13: Mutations in KCNCS3, the gene encoding the Kv3.3 potassium channel,
either suppress currents or alter channel gating in a dominant-negative manner [11].
The SCA13 mutations in Kv3.3 also reduce neuronal excitability in a zebrafish
model of disease [12].

SCA15/16: Mutations in the inositol 1,4,5-triphosphate receptor, an intracellular
ligand gated calcium channel, underlie this disorder. Decreased modulation of
Purkinje neuron intrinsic firing by excitatory synaptic input is described in a mouse
model of disease [13].

SCA19/22: Loss of function mutations in Kv4.3 cause ataxia [14, 15]. The
physiologic basis for this recently identified cause of SCA is unclear.

SCA27: Although SCA27 does not result from an ion-channel mutation, the
causative FGF14 mutations likely result in perturbed expression of voltage-gated
sodium channels in cerebellar neurons [16].

3. Signal transduction

Although alterations in cellular signal transduction likely play a role in the majority of
ataxias, mutations in signal transduction molecules are the direct cause of disease in SCA11,
SCA12, SCA14 and SCA23.

A.

SCA11: Results from loss of function mutations in TTBK2, a casein kinase 1
family member. Recent work has implicated this kinase as a dedicated regulator of
the initiation of ciliogenesis [17].

SCA12: Results from a CAG repeat expansion in the 5’-untranslated region of
protein phosphatase, PP2A. The mechanism for disease pathogenesis likely shares
common features with the other non-coding repeat disorders.

SCA14: Results from mutations in a serine-threonine family kinase, a protein
kinase C isoform, that is highly enriched in Purkinje neurons. In a mouse model of
disease, mutant PKCgamma reduced long term depression at parallel fiber-Purkinje
cell synapses and increased slow EPSC amplitude [18].

SCA23: Mutations in PDYN, the precursor protein for the opioid neuropeptides, a-
neoendorphin, and dynorphins A and B (Dyn A and B) cause SCA23. Cellular
models of disease suggest that alterations in Dyn A activities and/or impairment of
secretory pathways by mutant PDYN may lead to glutamate neurotoxicity,
underlying Purkinje cell degeneration and ataxia [19].
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4. Non coding repeats/ RNA toxicity

This is the likely mechanism of pathogenesis in SCA8, SCA10, SCA31 and SCA36. The
putative mechanism of disease includes [20]

1
2.

GENOMICS

Transcriptional alterations and the generation of antisense transcripts

Sequestration of mMRNA-associated protein complexes that lead to aberrant mMRNA
splicing and processing

Alterations in cellular processes, including activation of abnormal signaling
cascades and failure of protein quality control pathways

Anticipation: The polyglutamine ataxias show the phenomenon of anticipation,
where disease onset is seen earlier in successive generations. This occurs due to
germ line CAG repeat instability leading to additional repeat expansion. SCA7, for
example, has marked anticipation of approximately 20 years/generation [21].

Association with other neurological disorders: Intermediate-length polyQ
expansions (27-33 glutamines) in ATXNZ2 are significantly associated with
amyotrophic lateral sclerosis (ALS) [22]. Ataxin 2 acts as a modifier of TDP-43
toxicity, a protein thought to be critical for ALS pathogenesis, in animal and
cellular models. ATXN2 and TDP-43 associate in a complex that depends on RNA.

DISEASE MODELS

The autosomal dominant spinocerebellar ataxias disorders have been studied in cultured
cells, animal models, and, most recently, in human inducible pluripotent stem cell derived

neurons.

1

Cultured cells: Mutations have been studied in both cultured neurons and non-
neuronal cell lines.

Animal models: Various animal models of these disorders exist and include
mouse, zebrafish, and fly models of disease that are summarized in Table 2.

Inducible pluripotent stem cell derived neurons: Patient-derived cells lines have
been generated for SCA3 [23].

EVALUATION AND MANAGEMENT

The evaluation and management of a patient with spinocerebellar ataxia involves the rapid
identification of any treatable etiologies and, once those are excluded, an efficient and
systematic search for a genetic cause, coupled with symptomatic therapies to minimize
functional loss.

Clinical Examination and Diagnostic Testing

A detailed neurological assessment with careful attention to the examination of
coordination, sensation (especially proprioception), and vestibular function is
essential to the diagnosis of an ataxia (see Box 1) [3, 4].

Examination must include a careful evaluation of the movements of the eyes for
errors in targeting, tracking, dysmetria, or nystagmus.

Speech may be dysarthric, typically with a scanning quality.

Neurol Clin. Author manuscript; available in PMC 2014 November 01.
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Ataxia must be defined as either sporadic or familial. Sporadic cases typically favor
an acquired process, which should be prioritized for initial testing (see Figure 1) as
this has the greatest potential for effective treatment.

In sporadic cases, once acquired conditions are excluded, genetic and idiopathic
disorders represent the next line of investigation.

A familial history of ataxia necessitates earlier consideration of genetic etiologies,
however acquired processes must still be adequately explored (see Figure 1).

The tempo of disease onset and progression can be very helpful in the prioritization
of acquired etiologies for subsequent testing (see Table 3).

Idiopathic disorders, of which multiple system atrophy is the most likely to present
initially with ataxia,[3, 4, 24] remain diagnoses of exclusion and should not be
made unless a reasonable exploration of acquired and genetic etiologies has first
been pursued.

For cerebellar ataxia, magnetic resonance imaging of the brain is the initial
diagnostic test of choice [3, 4, 25, 26]. Imaging is critical to assess for the presence
of cerebellar atrophy (see Figure 2) as well as for the presence of any identifiable
evidence of structural or vascular damage (e.g., stroke, tumor, etc.) [27] and/or
other lesions or associated neurodegeneration which could be diagnostically useful
(e.g., white matter hyperintensities, atrophy of the brainstem or spinal cord, loss of
transverse pontine fibers, etc.) [4, 25, 26].

Subsequent laboratory and diagnostic studies for acquired causes of cerebellar
ataxia should be performed in a stepwise fashion and tailored to the presentation of
the individual patient (see Figure 1).

Careful attention must be paid to clinical phenotype. In general, the autosomal
dominant spinocerebellar ataxias (SCAs) show phenotypic heterogeneity,[1, 3, 4]
however certain clinical features can aid in the prioritization of disorders for
genetic testing (e.g., seizures in SCA10, parkinsonism in SCA3, or dementia in
SCAL7; see Table 1).

Ethnicity and geographic origin should also be considered, as several SCAs are
more common in specific populations (e.g., SCA3 in Brazil or DRPLA in Japan)
[1, 4, 28]. Worldwide, the most common SCA is SCA3, which together with SCA1,
SCA2, SCABG, and SCA7 comprise 50% of all dominant ataxias [1, 28, 29]. In late
onset cases (onset greater than age 50), SCA6 and Fragile X tremor/ataxia
syndrome are most frequent [1, 3, 4].

Genetic testing should be performed in a stratified fashion based on phenotype (see
Figure 3). In sporadic cases, it may be reasonable to screen for the most common
autosomal dominant spinocerebellar ataxias, however widespread screening should
be avoided as the diagnostic yield is disproportionally low relative to the cost of
testing [1, 4, 30].

Autosomal recessive disorders, particularly late-onset variants of Friedreich ataxia,
become a consideration in sporadic patients from small families,[31, 32]
complicating diagnostic testing (see Figure 3).

Newer genome-wide methods of sequencing technology may alleviate a majority of
testing problems and become a staple for future testing algorithms (see Box 2,
Figure 3)[33, 34].
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Box 2
Clinical Exome Sequencing

Recent advances in DNA sequencing technology have made it possible to rapidly and
cheaply sequence large amounts of DNA, including whole genomes [38, 39]. Sequencing
of the 1-2% of the genome expressed as protein (known as the exome) can examine the
approximately 20,000 genes in the human genome simultaneously to localize protein-
altering sequence variation, and is expected to dramatically impact the evaluation of
neurogenetic disease [33, 34, 39]. Although unable to detect mutations caused by repeat
expansion, noncoding variation, or large deletions/duplications [34], with regard to
cerebellar ataxia, there are already key examples illustrating the use of this technology in
the identification of new ataxia genes, [40, 41] the detection of novel mutations, [42, 43]
and the diagnosis of patients with clinically heterogeneous spinocerebellar phenotypes
[44]. Questions still remain regarding how best to bioinformatically process these large
amounts of sequence information to identify pathogenic variants in individual patients,
particularly those involving novel mutations and genes, but there is little doubt that this
technology will see widespread clinical use in the immediate future [33, 34].

Current Management and Therapeutic Options

e Many of the acquired causes of cerebellar ataxia (see Figure 1) can be treated or
modified, emphasizing the need for prompt recognition to minimize damage to the
cerebellum and its associated pathways [4].

» Paraneoplastic and other autoimmune mediated ataxias are particularly important to
consider since, if left unchecked, rapid and severe damage to the cerebellum can
result and, unfortunately, current treatments are often less than fully effective [4,
35].

« No cures or effective treatments yet exist for genetic or idiopathic ataxias and
treatment is therefore wholly symptomatic, however, exercise therapy has been
shown to be beneficial in maintaining patient function over time and should be
employed for all patients [36, 37].

SUMMARY

The autosomal dominant spinocerebellar ataxias (the SCAS) are late onset progressive
degenerative disorders that may be categorized into repeat disorders, disorders of ion-
channel dysfunction, and disorders of signal transduction molecules. The identification of
additional genes and the development of better cellular and animal model systems of disease
pathogenesis continue to advance understanding and suggest new avenues for better
diagnosis and potential intervention. Due to the considerable clinical overlap between these
disorders and other acquired causes of ataxia, the evaluation of patients with cerebellar
ataxia must first include an investigation into potentially treatable causes. If genetic testing
is considered, it is best to take a tiered approach, with initial testing including the most
common dominant genes, namely SCAL, SCA2, SCA3, SCA6, SCA7 and, in sporadic cases,
Friedreich ataxia, the most common recessive cause. Management is mainly supportive, but
exercise therapy has been shown to be beneficial in maintaining patient function over time.
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KEY POINTS

The SCAs or spinocerebellar ataxias are aheterogeneous group of dominantly
inherited disorders, the most common of which are SCA1, SCA2, SCA3, SCA6
and SCAY7, all of which result from glutamine encoding repeats in the respective
genes.

The polyglutamine ataxias tend to be “ataxia-plus” disorders with
extrapyramidal symptoms, long tract signs and cranial nerve dysfunction and
have a poorer prognosis. In addition to polyglutamine ataxias, other molecular
mechanisms for ataxia include ion-channel dysfunction, disordered signal
transduction, and non-coding repeats.

Advances in DNA sequencing technologies, including whole exome sequencing,
are expected to improve the diagnosis of genetic ataxias.

Animal models of disease recapitulate many of the key features of the human
disease and may be good model systems to test therapies.

Current management for the SCAs is mostly supportive. However, exercise
therapy has been shown to be beneficial in maintaining patient function over
time

and should be employed for all patients.
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Clinical
Examination

Cerebellar Ataxia

Page 11

I

Metabolic/
Toxic

o Electrolytes

* Renal function
e Liver function
e Lactate

e Pyruvate

YTLLLLLLLI I .
..... SEEREERRREREE)R

e Ammonia

e Ceruloplasmin

o Creatine Kinase

e Fasting Lipids

o Ketones

e Urine Heavy
Metals

e Lysosomal Enzymes

e Plasma Amino Acids

e Urine Organic Acids

e Very Long Chain
Fatty Acids

Neoplastic Infectious
| I
e CBC ¢ RPR
Lumbar
Puncture

H BRREYSR

o HTLV

Inflammatory/ Nutritional/
Autoimmune Endocrine
| I
e ESR e VIT B12
® ANA o Folate
o MMA
e HC
o VITE
e Copper
e HGB A1C
e TSH
e ACE
Autoantibodies
e GAD65
o Gliadin
e Thyroid
e SSA/SSB

- v

Celiac Autoantibodies
Endomysial
Tissue-Transglutaminase

Thyroid Autoantibodies
Thyroid Peroxidase

Thyroglobulin

Cerebellar Autoantibodies
Yo, Hu, Ri, Tr, Zic4,
mGIuR1, VGCC, Ma1,
CRMPS5, PCA2, Others

e Cerebellar

Autoantibodies e Lyme
e SPEP + IFE o HIV
e UPEP

CSF Studies

Protein, Glucose, Cell Count, Cultures,
VDRL, IgG Synthesis Rate, IgG Index,
Oligoclonal Bands, Cytology, Lactate,
14-3-3 Protein, Neurotransmitters,
Cerebellar Autoantibodies, Others

Figure 1. Diagnostic evaluation of an acquired cerebellar ataxia

All patients with clinically identified cerebellar ataxia should have an MRI of the brain
performed to assess for masses, vascular lesions/anomalies, traumatic injury, and/or
structural problems in addition to evidence of heurodegeneration and/or white matter
changes. Additional diagnostic studies (gray boxes) should be performed as warranted based
upon the clinical examination (dashed line). If the MRI does not reveal the cause, then
laboratory tests (white boxes) should be performed systematically as indicated. Studies are
listed under the heading of the class of disorders they most often identify. Note that some
tests could identify disorders in more than one class. In a complete evaluation, a patient
should receive, at a minimum, all studies listed above the dotted line. Items listed below the
dotted line are chosen for more in-depth evaluation of specific etiologies and not all patients
may require all studies. The dotted line represents the threshold for performing a lumbar

Neurol Clin. Author manuscript; available in PMC 2014 November 01.
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puncture in a patient undergoing initial workup. Suggested cerebral spinal fluid studies are
indicated (arrow). Specific cerebellar (paraneoplastic), celiac, and thyroid autoantibodies are
also shown (arrow). Note that there are additional rare acquired causes of cerebellar ataxia
which are not listed in this figure.

Abbreviations: ACE = angiotensin converting enzyme, ANA = antinuclear antibodies,
BAER = brainstem auditory evoked response, CBC = complete blood count, C/T/L =
cervical, thoracic, and/or lumbar, CSF = cerebral spinal fluid, CT = computed tomography,
DTI = diffusion tensor imaging, EEG = electroencephalogram, EMG = electromyogram,
ENG = electronystagmogram, ESR = erythrocyte sedimentation rate, GAD = glutamic acid
decarboxylase, HC = homocysteine, HGB = hemoglobin, HIV = human immunodeficiency
virus, HTLV = human T-lymphotropic virus, IFE = immunofixation electrophoresis, MMA
= methylmalonic acid, MRI = magnetic resonance imaging, MRA = magnetic resonance
angiography, MRS = magnetic resonance spectroscopy, NCS = nerve conduction study, PET
= positron emission tomography, PSG = polysomnogram, RPR = rapid plasma reagin, SSA/
SSB = Sjdgren’s syndrome antigen, SPEP = serum protein electrophoresis, SSEP =
somatosensory evoked potentials, TSH = thyroid stimulating hormone, UPEP = urine
protein electrophoresis, VDRL = venereal disease research laboratory test, VEP = visual
evoked potential, VIT = vitamin.

Original figure previously published[4] © Cambridge University Press 2011. Reprinted with
permission.
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Figure2. MRI Findingsin Spinocerebellar Ataxia

Sagittal T1-weighted magnetic resonance imaging is shown for a patient with A)
Spinocerebellar Ataxia Type 3 (SCA3) and B) Multiple System Atrophy (MSA). Cerebellar
atrophy (arrow) and brainstem atrophy (bracket) are noted. Note the similarity in imaging
characteristics between these patients as this is common among the different ataxia
etiologies (i.e., acquired, hereditary, and idiopathic).
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‘ Establish Phenotype
] Detailed Clinical History
Comprehensive Neurological Examination
Complete Family History
MRI of the Brain

v

Rule Out Acquired Causes of Ataxia

v

Initial Genetic Testing Algorithm

1. If pigmentary retinopathy
SCA7
2. If late onset (> age 50 years) test:
SCA6
FXTAS (unless male-to-male transmission)
FRDA (if sporadic or family history unclear)

3. For all others test:
SCA1, SCA2, SCA3, SCA6, SCA7
FRDA (if sporadic or family history unclear)

If negative, consider additional dominant
gene testing for familial cases based on phenotype
(consider whole exome sequencing if available)

Figure 3. Diagnostic evaluation of a genetic cerebellar ataxia
Abbreviations: FRDA = Friedreich ataxia, FXTAS = Fragile X tremor/ataxia syndrome,

SCA = spinocerebellar ataxia.
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Animal models of SCA.

Table 2

Page 19

Name Type of model2 Phenotype Pathology Selected Therapy Trials
SCA1 Transgenic-(Purkinje Motor incoordination Shrinkage and marked loss ShRNA [59]
neuron specific), 82Q [ of Purkinje neurons
Knock-in, 154Q [4] Cognitive impairment Mild loss of Purkinje Lithium [54]
Kyphosis neurons Vascular Endothelial
Motor incoordination Growth Factor (VEGF)
Premature death 55]
Weight loss [
SCA2 Transgenic 58Q and 127Q  Motor incoordination Shrinkage and mild loss of Dantrolene [57]
(Purkinje neuron specific) Purkinje neurons . s
s SK channel activator [58]
[*9
SCA3 Transgenic (many models  Motor incoordination Variable shrinkage and mild  godjum butyrate [$29]
(Machado— including 79Q[59], 148Q Premature death neuronal loss
el (52, 710 {14, 940
Disease/ MJD) ' '
(14, 77Q 1)
Yeast Artificial Motor incoordination Mild and late loss of brain Dantrolene [$29]
Chromosome stem and cerebellar neurons
Transgenic [$14-16]
Rat model-lentiviral Circling behavior following Fluorojade positive neurons  shrNA [529]
injection and unilateral substantia nigra and cell shrinkage
overexpression of mutant injection
ataxin-3 in the striatum or
substantia nigra [$£7]
Fly eye [$18] Loss of ommatidia
SCAS Knock-out [$24] Motor incoordination Shrinkage and mild loss of
Purkinje neurons
SCA6 Knock-in 84Q [$24] Motor incoordination Very mild Purkinje neuron
loss
SCA7 Transgenic [$29] Motor incoordination Mild Purkinje neuron loss
SCA8 KIh1 deletion [$24 Motor incoordination Purkinje neuron shrinkage
SCA10 Transgenic 500 repeats in Motor incoordination Loss of CA3 hippocampal
3’ UTR [$29] Seizure susceptibility neurons
SCA13 Knockout [526] Motor incoordination No neuronal loss
Zebrafish R420H human No neuronal loss
mutation [527]
SCA14 Transgenic H501Y [$28] Abnormal clasping Altered Purkinje neuron
morphology
SCA15/SCA16  Knockout [$29)] Motor incoordination Seizures  No neuronal loss
SCA17/ Transgenic 109Q [53q Motor incoordination Loss of Purkinje neurons
Huntington
diseaselike 4
(HDL4)
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Name Type of model2 Phenotype Pathology Selected Therapy Trials
SCA27 Knockout [53]] Cognitive deficits No neuronal loss
Motor incoordination
DRPLA Transgenic variable repeat  Cognitive deficits Purkinje neuron shrinkage
length 760- 1290 [53. Motor incoordination and progressive brain
g Q Ql 2] Premature death atrophy

a A -
Refers to mouse models unless otherwise specified.
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Using the tempo of disease onset and progression to aid diagnosis.

Symptom Onset/Progression

Etiologiesto Consider”

Episodic (Minutes to Hours)

Genetic
Inflammatory
Toxic

Vascular

Acute (Hours to Days)

Infection
Metabolic
Toxic
Trauma

Vascular

Subacute (Weeks to Months)

Autoimmune
Infection
Inflammatory
Neoplastic

Paraneoplastic

Chronic (Months to Years)

Autoimmune
Degenerative
Genetic
Inflammatory
Metabolic
Neoplastic

Paraneoplastic

Static (Years to Decades)

Congenital

Cerebellar Injury (any source)

*
Not a comprehensive list.
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