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Abstract

Background: Insulin-induced hypoglycemia is as a critical barrier in the treatment of type 1 diabetes mellitus patients and
may lead to unconsciousness, brain damage, or even death. Clinically, glucagon is used as a rescue drug to treat severe
hypoglycemic episodes. More recently, in a bihormonal closed-loop glucose control, glucagon has been used subcutaneously
along with insulin for protection against hypoglycemia. In this context, small doses of glucagon are frequently administered.
The efficacy and safety of such systems, however, require precise information on the pharmacokinetics of the glucagon
transport from the administrative site to the circulation, which is currently lacking. The goal of this work is to address this
need by developing and validating a mathematical model of exogenous glucagon transport to the plasma.
Materials and Methods: Eight pharmacokinetic models with various levels of complexity were fitted to nine clinical datasets.
An optimal model was chosen in two consecutive steps. At Step 1, all models were screened for parameter identifiability
(discarding the unidentifiable candidates). At Step 2, the remaining models are compared based on Bayesian information
criterion.
Results: At Step 1, two models were removed for higher parameter fractional SDs. Another three were discarded for location
of their optimal parameters on the parameter search boundaries. At Step 2, an optimal model was selected based on the
Bayesian information criterion. It has a simple linear structure, assuming that glucagon is injected into one compartment,
from where it enters a pool for a slower release into a third, plasma compartment. In the first and third compartments,
glucagon is cleared at a rate proportional to its concentration.
Conclusions: A linear kinetic model of glucagon intervention has been developed and validated. It is expected to provide
guidance for glucagon delivery and the construction of preclinical simulation testing platforms.

Introduction

Though the cornerstone of type 1 diabetes mellitus
(T1DM) glycemic control in current clinical practice, in-

sulin treatment can, and often does, lead to hypoglycemia,
which may be harmful to patients and has been recognized as
a major barrier to tight glycemic control.1 In health, hypo-
glycemia is prevented by glucagon secretion from the pan-
creatic a-cells; glucagon is secreted reciprocally to insulin and
opposes its action in the liver by stimulating the hepatic glu-
cose production. In T1DM patients, endogenous glucagon
response to insulin-induced hypoglycemia is impaired,2

which increases the risk of severe hypoglycemia and requires
use of exogenous glucagon injections as a rescue treatment in
the most severe cases. More recently, glucagon has also been
used in bihormonal artificial pancreas (AP) systems, where
insulin and glucagon are both injected using subcutaneous
(SC) pumps and dosed based on model prediction from
continuous glucose monitoring data and history of injections.
Castle et al.3 were the first to perform such a study and

demonstrate that glucagon interventions can be successfully
added to an AP system as a protection against hypoglycemia.
Further studies were carried by El-Khatib et al.4 and Ward
et al.,5 as well as the most recent randomized crossover trial by
Haidar et al.,6 which also showed improvement of glucose
control against hypoglycemia with nocturnal glucagon plus
insulin closed-loop strategy over open-loop insulin infusion.

As research interest and implementation of glucagon in-
tervention in the treatment of T1DM patients grow,3–9 es-
pecially in the field of modeling predictive AP systems, it
becomes necessary to establish a robust and easily identifiable
pharmacokinetic model of exogenous glucagon transport. In
addition, such a model will provide the foundation for de-
signing bihormonal strategies in AP systems,10 leading to an
easier regulatory pathway to clinical trials as well as acceler-
ated system design and optimization. Historically, only the
pharmacodynamics of glucagon have been included in com-
prehensive metabolism models, such as Sorensen’s model,11

revisions of the Sorensen model,12,13 and, more recently, the
Padova meal model.14 However, there is no publication yet on
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pharmacokinetic modeling of exogenous glucagon. Thus,
several glucagon transport mathematical models are pro-
posed and compared in this work. The amount of injected
glucagon in the SC space is considered as the ‘‘input,’’ and the
glucagon concentration in plasma is considered as the ‘‘out-
put’’ of these models. The ‘‘best’’ representation of exogenous
glucagon transport is chosen based on the criteria of accuracy
and identifiability. Thereafter, the parameters of the model
may provide a quantitative way to depict the efficiency of
glucagon delivery in various T1DM subjects and contribute to
control strategy design.

Experimental Methods

Datasets

Clinical data for this study were kindly provided by Dr.
E.R. Damiano’s group (Boston University, Boston, MA),
which were collected in a bihormonal closed-loop clinical
trial.4 The data were obtained from 11 adults with T1DM (age,
40 – 16 years; weight, 83 – 13 kg; body mass index, 28 – 3 kg/
m2; diabetes duration, 23 – 13 years; and hemoglobin A1c,
7.3 – 0.8%). The patients were studied for 27 h, during which
they were given three regular carbohydrate-rich meals. Some
patients enrolled twice and were studied with a separation of
at least 5 months, leading to 13 datasets available for analysis.
Frequent doses of insulin and glucagon were injected and
monitored to maintain glucose levels based on the AP system
described in El-Khatib et al.4 No glucagon was injected im-
mediately preceding the data collection. Venous glucose
concentrations were obtained every 5 min (GlucoScout�; In-
ternational Biomedical, Austin, TX) as a reference for the
closed-loop control algorithm; the concentrations of insulin
and glucagon in plasma were measured every 10 min initially,
changing to 30-min intervals for insulin and 20-min intervals
for glucagon thereafter.

Data analysis

In four of the 13 datasets, exogenous glucagon alone was
not able to prevent the hypoglycemia, which was treated with
glucose administration. Although the endogenous glucagon
response to hypoglycemia is impaired as discussed in the
literature, there was still some evidence of glucagon secretion.
(We address this in Discussion.) In order to establish a model
focused on exogenous glucagon transport, the datasets of
these four subjects were excluded from modeling optimiza-
tion. At the end, nine datasets from seven subjects were used
for model fitting and identification. The number of data
samples in each of these nine datasets ranges from 59 to 162,
which is large enough for the fitting process.

During fitting, the basal glucagon concentrations were
considered equal to endogenous secretion. The basal gluca-
gon concentration (xbasal) was estimated as an average from
segments prior to the first glucagon injection and/or from
segments with at least 90 min between glucagon injections.

These pharmacokinetic models of exogenous glucagon
were represented by a series of ordinary differential equations
and solved by Matlab� software (The MathWorks, Natick, MA).

Local clearance and transport saturation

We observed that a simple one-compartment model cannot
explain the experimental data without imposing non-

physiological values of its parameters. This justifies the
need to consider more complex model structures, which in-
clude clearance at the injection site and saturation of the
transport. Indeed, in the experiments, exogenous glucagon
entered the SC space and traveled to the plasma. If one as-
sumes that all of the injected glucagon will appear in plasma
and be cleared from there following an order 1 dynamic
(proportional to the plasma concentration),15 then the fol-
lowing equation holds:Z t2

t1

GCG¢(t)dt¼ � kc

Z t2

t1

GCG(t)dtþ +u(t)

Vd
(1)

where GCG(t) and GCG¢(t) represent the concentration of
glucagon and its changing rate in plasma, respectively; kc

represents the clearance rate of glucagon in plasma; u(t) rep-
resents the delivered amount of exogenous glucagon; and Vd

represents the volume of glucagon distribution. It is also as-
sumed that the experiment starts at t1 in a basal state, and it is
given enough time until t2 for glucagon concentration in
plasma to return to the basal value after injection, such that
GCG(t1) = GCG(t2) (and therefore the left-hand side of the
equation is equal to 0). Thus, the Vd may be determined by the
following equation:

Vd¼
+u(t)

kc

R t2

t1
GCG(t)dt

(2)

An example from the datasets is demonstrated in Figure 1
(kc is assumed equal to 0.12 min - 1 just for this illustration),
which describes the relationship between the injected glu-
cagon amount [+u(t)] and the Vd. Because the clearance rate
in plasma (kc, min - 1) is defined in the range of 0.01–0.5 for
model fitting and the volume of plasma is about 38.5 mL/kg,
the nominal volume of plasma, Vp, for this subject (body
weight, 73.0 kg) is about 2,810.5 mL, which is much smaller
than the Vd in the plot. This observation suggests that the
glucagon transport model should account for either (or
both):

FIG. 1. Volume of distribution (Vd) with respect to the
amount of glucagon injected in a subject with type 1 diabetes
mellitus.
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� A local clearance or sequestration of a significant
amount of the injected glucagon in the SC space, creat-
ing a ‘‘pool’’ for a much slower release, or

� A saturation of transport with respect to the injected
amount (a nonlinearity), possibly resulting from gluca-
gon conformational transition through aggregation16,17

These mechanisms are represented as local clearance and
transport saturation in the proposed models.

Pharmacokinetics Models

Structures and identification of glucagon transport
models

We studied eight models of increasing complexity to rep-
resent the SC transport of exogenous glucagon (Table 1).
Among them, the structures of four models do not apply local
clearance at the administrative depot (Models 1–4), whereas
the other four models do (Models 5–8). The system input is
defined as u(t) (mg), representing the frequent glucagon in-
jection in the datasets. Fitting is performed using the forcing
function methodology [u(t) is such a function], which allows
for potential glucagon stacking in each compartment without
loss of generality. In addition, this methodology is particu-
larly suitable to the intended use of these models (i.e., simu-
lation platforms and control design). Some models may have
identical structures; however, some of their parameters are
defined as constants in order to improve parameter identifi-
cation and reduce parameter correlation.

Description of the models. Model graphical representa-
tions are presented in Table 1. In all models xbasal values are
determined as described previously in Experimental Meth-
ods, Data analysis.

Model 1, the simplest linear model representation with a
pool compartment (compartment 2), follows the structure of
the previously developed SC insulin delivery model.18,19

Exogenous glucagon is injected at compartment 1, part of
which may enter the pool for a slower release, whereas the
rest may directly enter the plasma (compartment 3). Glucagon
in plasma is cleared at a rate of kc (min - 1). The rates be-
tween compartments are linear to the amount of remaining
glucagon.

Model 2 adopts a Michaelis–Menten function to introduce
the possibility of the transport process depending saturably
on the concentration from the administrative site (compart-
ment 1) to the intermediate compartment (compartment 2).
The parameters of Michaelis–Menten function are given as the
maximal transport rate k1 (mg/min) and the half-saturation
amount k2 (mg).

Model 3 adds an additional compartment (compartment 2)
to create a delay in the transport pathway between the site of
administration (compartment 1) and the pool compartment
(compartment 3). The transport rates from this compartment
(compartment 2) to the pool compartment (compartment 3)
and the plasma (compartment 4) are represented by two
Michaelis–Menten functions. The parameters are given as the
maximal transport rates k2 and k4 (mg/min) and the half-
saturation amounts k3 and k5 (mg).

Model 4 has a structure identical to Model 3. However, the
parameters of half-saturation glucagon amounts are fixed as
constants of 10 - 3 (k3 [mg], from compartment 2 to compart-

ment 3, and k5 [mg], from compartment 2 to compartment 4).
The values are fixed because of the detected correlation dur-
ing fitting of Model 3.

Model 5 also has an additional diffusion compartment like
Models 3 and 4. However, glucagon clearance is introduced at
the injection area (compartment 1) with a time constant of k5

(min - 1).
Model 6 has similar compartments to Models 1 and 2 and

incorporates local clearance of k3 (min - 1) at compartment 1.
The intermediate compartment is represented by compart-
ment 2 in the model. This model does not have a fast pathway
from compartment 1 to the plasma (compartment 3).

Model 7 has the same structure as Model 6 and replaces the
linear transport from compartment 1 to compartment 2 with a
Michaelis–Menten function (saturation at high doses). The
Michaelis–Menten parameters are the maximal transport
rate k2 (mg/min) and the half-saturation amount k3 (mg).
The rates of glucagon absorption are given by kc1 (min - 1) at
the administrative site (compartment 1) and kc2 (min - 1) in the
plasma (compartment 3).

Model 8 has a similar structure to Model 7. However, the
nonlinear transport part leaving from the administrative site
(compartment 1) is assumed to be a sigmoid function given by

_x(t)¼ � k1þ k2
(x1(t)=k3)k4

1þ (x1(t)=k3)k4
þ k6

 !
x1(t), (3)

where k1 (min - 1) and k2 (min - 1) represent the minimal
and maximal transport rates, respectively; k3 (mg) represents
the half-saturation amount; k4 (dimensionless) represents the
changing slope of the transport rate curve; and k6 (min - 1)
represents the clearance rate of glucagon at compartment 1.

Fitting procedure. All of the nine datasets (without glu-
cose interventions as described before) were used to fit each
candidate of the proposed models. The lower boundaries for
transport between compartments are set as 0.001, accounting
for the fact that glucagon injection is promptly cleared from
the circulation, and the upper boundaries are set as 0.05,
functionally determined to avoid rapid spikes in the model
output that are not present in the clinical data. The lower
boundaries of clearance compartment(s) are set as 0.01 (a half-
life of 70 min), and the upper boundaries are set as 0.5 (a half-
life of 1.39 min) considering the physiology range of glucagon
half-life in plasma (around 3–7 min).20,21

The method of least squares was adopted for data fitting,
which was implemented in Matlab via the function of
lsqnonlin. These models were represented by a series of ordi-
nary differential equations solved numerically by Matlab. The
cost function of optimization was defined as the sum of
squared errors between the simulation output of the model
and the clinical data at the sampled time points (the first da-
tum point at time 0 was excluded). The optimal parameters of
each patient were obtained when the cost function achieved
its minimal value.

Model selection based on model identifiability

Thereafter, the parameter values were analyzed for model
identifiability by first using the method of fractional SD (FSD)
such that, for a specific parameter in the model, if the ratio of
the SD of the estimated parameter divided by its mean value
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across the population does not exceed 100%, this parameter is
designated as identifiable.22 In a second phase of the model
identifiability analysis, a model was deemed unidentifiable if
one or more of its optimal parameters were located on the
parameter search boundaries.

Model selection based on information criteria comparison

The Bayesian information criterion (BIC), calculated from
information on fitting accuracy, the number of parameters to
be determined, and the number of sample data points, was

Table 1. Structures of Models

Model Structure ODEs Linear
Total number
of parameters

1 k1

k2 k3

kc

u (t)
1 2

3

_x1(t)¼ � (k1þ k2)x1(t)þ u(t)

_x2(t)¼ k1x1(t)� k3x2(t)

_x3(t)¼ k2x1(t)þ k3x2(t)� kcx3(t)þ kcxbasal

Yes 4

2 k1,k2

k3 k4

kc

u (t)
1 2

3

_x1(t)¼ � (k1x1(t)=(k2þ x1(t))þ k3)x1(t)þ u(t)

_x2(t)¼ (k1x1(t)=(k2þ x1(t)))x1(t)� k4x2(t)

_x3(t)¼ k3x1(t)þ k4x2(t)� kcx3(t)þ kcxbasal

No 5

3 k2,k3

k4,k5

k1

kc

k6

u (t)
21 3

4

_x1(t)¼ � k1x1(t)þ u(t)

_x2(t)¼ k1x1(t)� (k2x2(t)=(k3þ x2(t))þ k4x2(t)=(k5þ x2(t)))x2(t)

_x3(t)¼ (k2x2(t)=(k3þ x2(t)))x2(t)� k6x3(t)

_x4(t)¼ (k4x2(t)=(k5þ x2(t))x2(t)þ k6x3(t)� kcx4(t)þ kcxbasal

No 7

4 Same as Model 3. Fix k3 = 10 - 3, k5 = 10 - 3 No 5

5 k2

k3 k4

k1

kc1

kc2

u (t)
21 3

4

_x1(t)¼ � (k1þ kc1)x1(t)þ u(t)

_x2(t)¼ k1x1(t)� (k2þ k3)x2(t)

_x3(t)¼ k2x2(t)þ k4x3(t)

_x4(t)¼ k3x2(t)þ k4x3(t)� kc2x4(t)þ kc2xbasal

Yes 6

6

k2

k1

kc1

kc2

u (t)
21

3

_x1(t)¼ � (k1þ kc1)x1(t)þ u(t)

_x2(t)¼ k1x1(t)� k2x2(t)

_x3(t)¼ k2x2(t)� kc2x3(t)þ kc2xbasal

Yes 4

7

k3

k1,k2

kc1

kc2

u (t)
21

3

_x1(t)¼ � (k1x1(t)=(k2þ x1(t))þ kc1)x1(t)þ u(t)

_x2(t)¼ (k1x1(t)=(k2þ x1(t)))x1(t)� k3x2(t)

_x3(t)¼ k3x2(t)� kc2x3(t)þ kc2xbasal

No 5

8

k5

k1,k2,k3,k4

kc1

kc2

u (t)
21

3

_x1(t)¼ � k1þ k2
(x1(t)=k3)k4

1þ (x1(t)=k3)k4

 !
x1(t)� kc1x1(t)þ u(t)

_x2(t)¼ � k1þ k2
(x1(t)=k3)k4

1þ (x1(t)=k3)k4

 !
x1(t)� k5x2(t)

_x3(t)¼ k5x2(t)� kc2x3(t)þ kc2xbasal

No 7

ODE, ordinary differential equation.
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adopted to determine which model has the a better perfor-
mance over the other candidates. It is given by the following
equation:

BIC¼N � ln (RSS=N)þ k � ln (N) (4)

where N represents the count of sample points (the first data
point at time 0 is excluded), k represents the number of pa-
rameters in the proposed model, and RSS represents the re-
sidual sum of squared errors. For each model candidate, BIC
values are obtained through all the datasets and compared
among the various models. A smaller value of BIC represents
a better performing model.

Results

The values of model parameters were obtained by achiev-
ing the minimal cost function value for every dataset. For the
analysis of model selection, the FSD values for parameter
identifiability are presented in Table 2. The FSD values are
adopted as the first step of model selection. As shown in Table
2, Models 2 and 5 have parameters whose FSD values are
greater than 100%, which means that these corresponding
parameters may not be identifiable. Thus, Models 2 and 5
were removed from the subsequent analysis.

Second, whether optimal results are located on the search
boundary of parameters is another criterion of model selection.
In Table 2, there are small FSD values found in Models 1 (k3 and
kc), 3 (k6 and kc), and 4 (k6 and kc), which means these results
may hit the search boundary caused by a nonfeasible structure
design. Thus, these parameters are not identifiable. For exam-

ple, in Model 1, most k3 values in these subjects are located on
the lower boundary (0.001). This value represents a half-life
time of about 11.6 h. A longer half-life time (smaller transport
rate) may not be observed in the current experimental settings.
When a much slower glucagon release is required by data, the
optimization of this model may keep hitting the lower
boundaries. On the other hand, most of the optimal values of
clearance rate in plasma (kc) are located on the upper boundary,
which is set at 0.5 min - 1 (corresponding to a lower boundary of
half-life of 1.39 min). Therefore, these models may not be
identifiable and are removed from the analysis in the next step.

Lastly, the model selection among the remaining candi-
dates (Models 6–8) was performed by comparing their BIC
values through the datasets (Table 3). Model 6 outperforms
Model 7 for all BIC values and achieves about 70% im-
provements of the individual datasets over Model 8. Plus,
Model 6 has the smallest sum of BIC values among them.
Therefore, Model 6 (simple three compartments; glucagon
cleared at both the administrative site and the plasma) is
considered as the best choice of the proposed models.

Discussion

The main goal of the current modeling effort is to develop a
model that could operate within a simulation platform and be
applied for the testing and design of dual-hormone glucose
control strategies. It is therefore paramount that the model
accurately represents the time course of plasma glucagon after
frequent variable SC injections. We have proposed a series of
candidate models with increasing complexity (in both pa-
rameter number and nonlinearity) and determined which

Table 2. Identifiability of Parameters

Fractional SD of estimation (%)

Model Identifiability k1 k2 k3 k4 k5 k6 k7

1 Yes 29.43 70.62 0.70 0.091 — — —
2 No 22.90 108.35 57.26 117.56 10.82 — —
3 Yes 83.65 37.67 54.43 43.24 26.72 0.90 0.96
4 Yes 25.82 54.90 — 40.27 — 0.046 6.2e–3
5 No 42.63 52.00 211.09 60.48 54.29 18.79 —
6 Yes 46.60 43.82 42.84 31.20 — — —
7 Yes 29.32 18.12 38.57 19.36 36.85 — —
8 Yes 60.93 58.55 39.91 65.43 69.18 75.54 72.55

Table 3. Bayesian Information Criterion in Models 6–8

Dataset Model 6 Model 7 Model 8 Model 6 vs. Model 7 Model 6 vs. Model 8

1 336.10 339.08 326.65 Better Worse
2 382.04 383.44 387.31 Better Better
3 496.74 500.84 507.92 Better Better
4 1069.56 1069.86 1041.85 Better Worse
5 529.50 538.59 508.86 Better Worse
6 475.11 476.81 483.87 Better Better
7 418.24 435.06 438.68 Better Better
8 372.34 381.45 389.62 Better Better
9 1049.30 1094.13 1079.93 Better Better

Total 5128.93 5219.26 5164.70 Better Better

PHARMACOKINETICS MODELING OF GLUCAGON 939



model offered the best balance between complexity and ac-
curate description of the data.

Of the proposed models, the simplest model (Model 1)
has the structure of a widely applied SC insulin delivery
model,18,19 whereas the more complex model candidates in-
clude additional diffusion compartments, clearance from the
injection site, and/or nonlinear transport. It may be observed
in Model 1 that the simple structure and the constraint on
clearance in plasma result in poor identification such that most
estimated values of k3 are located at the search boundary of
0.001 and values of kc are located at the boundary of 0.5. Similar
results are observed in Models 3 and 4. This shows that glu-
cagon removal in plasma is not compatible with the injection
amount and that a slower transport from the administrative
site may be required. However, under the current experimental
settings as well as the overall duration of the study, such slow
time constants (less than 0.001) are very imprecisely identified,
and because of the absence of readily available physiological
explanations, we consider that model structures necessitating
such slow processes are likely inadequate.

Other methods exist to limit the transport rate, the most
common of which is the use of Michaelis–Menten kinetics.
Nonetheless, the use of Michaelis–Menten kinetics did not, in
our analysis, improve the optimal results without an addi-
tional clearance at the administrative site as shown in Models
2–4 (Michaelis–Menten transport without local clearance;
larger BIC values).

We therefore concluded that the inclusion of a clearance
term (or deterioration of the molecule) was the optimal
modeling solution to explain the observed data, a conclusion
that was validated by smaller BIC values in the models in-
cluding this term (Models 5–8). Moreover, some of the data-
sets demonstrate a possible nonlinear relation between the
size of glucagon dose and its appearance in plasma, which
may be the result of conformational change of glucagon ag-
gregation.16,17 Thus, nonlinear forms of transport (Michaelis–
Menten and sigmoid functions) are introduced in Models 7
and 8. However, these nonlinear representations were not
able to improve the fitting.

Finally, Model 6 is chosen as the best representation of the
glucagon transport. It includes three compartments: the injec-
tion site, an intermediate pool, and the plasma compartment.
The underlying mechanisms of the local clearance and the in-
termediate transport are unclear at this stage. Nonetheless, we
conjecture that they may be at least in part mediated by con-
formational transitions through aggregation as mentioned in
Experimental Methods. Its parameter values demonstrate log-
normal distributions (data not shown). The parameter kc rep-
resents the half-life of glucagon in plasma (5.21 – 1.77 min).
Compared with the reported information from the pharma-
ceutical company (3–6 min)20 and the literature (6.6 – 0.5 min),21

the optimal parameters reside in the physiological range.
There are some limitations of this study due to the way

data were collected: AP study versus pharmacokinetics/
pharmacodynamics study. For example, in an AP trial, en-
dogenous glucagon secretion is not inhibited and may con-
found the analysis. In addition, glucagon doses are delivered
when the control algorithm detects risk for hypoglycemia,
and, although glucagon counterregulation is impaired in
T1DM,23 we cannot exclude the possibility of some endoge-
nous secretion. Therefore, patients experiencing hypoglyce-
mia during the study were removed from the analysis;

nonetheless, some endogenous glucagon secretion was still
detected in the remaining subjects. For example, in the second
admission of subject 121, exogenous glucagon was not de-
livered before t = 600 min; however, glucagon concentrations
fluctuations were easily observed before the intervention,
which indicates varying secretion around the basal state (a
similar phenomenon found in the other subjects). Moreover,
discrepancies in model fit and data also emerge around glu-
cagon peak concentrations (subject 122, the second admission,
at t = 200 and 1,600 min). These discrepancies may be related
to the concentrations of glucose and insulin, which may bring
disturbances to endogenous glucagon secretion and affect the
model fit. The correlation analysis of absolute values of sim-
ulation errors and concentrations of glucose and insulin in
these two examples (121-2 and 122-2) shows that the absolute
values of fitting errors may not have a significant correlation
with insulin in both subjects (which agrees with the physi-
ology because insulin levels are low in the pancreas of T1DM
patients and have limited influence on glucagon secretion),
whereas a significant positive relation exists between the er-
rors and glucose concentrations (the significant P values are
0.051 and approximately 0, respectively). The correlation of
fitting errors and glucose or insulin may be further investi-
gated in a future study. It should be noted that it cannot be
definitely shown that this is due to secretion and not model
structure. Indeed, glucagon injection is driven by an algo-
rithm informed by glucose measurements and historical in-
sulin injection, triggering SC injection and therefore sharp
glucagon concentration increases under conditions where an
unimpaired regulatory system would secrete glucagon. In
addition, the central nervous system also modulates gluca-
gon secretion,24,25 which increases the complexity and diffi-
culties of identifying a transport model. Efforts to limit these
factors, although warranted for appropriate modeling, could
also create nonphysiological experimental conditions (e.g.,
hyperinsulinemic clamp), which have their own pitfalls. A
careful assessment of identical model structures in both
physiological and nonphysiological conditions would lead to
a deeper understanding of the influence of these factors on the
fitted parameters and provide a better quantification of the
parameters’ distribution in the T1DM population. Moreover,
glucagon inhibitors, such as octreotide or somatostatin, may
be used in future studies to mitigate the confounding effect of
endogenous glucagon secretion.

These conclusions are based on the analysis of a limited
number of subjects. Although sufficient for model fitting and
evaluation, this dataset is hardly representative of the entire
T1DM population. Therefore, the parameter distributions are
likely rough estimates of the true population variability. Fu-
ture analysis of a larger number of patients will allow reme-
diation of this limitation. Finally, a transport model is only
one of the pieces needed for appropriate integration of glu-
cagon within an automated system: a pharmacodynamics
model of glucagon action, representing its stimulation effects
on endogenous glucose production, would need to be com-
bined with the proposed transport model. Studies using
clamped insulin levels, stable tracers, or radiolabeled glucose
can be performed to directly measure endogenous glucose
production and link exogenous glucagon delivery to gluca-
gon action. Such models are currently being developed for
endogenous glucagon, and preliminary results have been re-
ported by Dalla Man et al.26
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Conclusions

In this article, we have proposed several pharmacokinetic
models of exogenous glucagon transport from the adminis-
trative site to plasma and have selected the optimal model in
terms of both data fit and parameter identifiability. This model
may provide guidance for the time and amount of glucagon
delivery for prevention of hypoglycemia in practice. Also, this
model may be combined with other metabolic models (e.g., an
insulin delivery model) to establish bihormonal closed-loop
control for the maintenance of euglycemia in T1DM patients.
This work will advance both algorithm design and preclinical
simulations (in silico testing) in view of clinical implementa-
tions. This model (and an ad hoc in silico population generated
from this work) has now been added to the University of
Virginia–Padova T1DM simulation platform, which is ac-
cepted by the Food and Drug Administration as replacement
for preclinical data supporting AP systems.
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