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Abstract
In this paper, we develop a “modified” immersed finite element method (mIFEM), a non-
boundary-fitted numerical technique, to study fluid-structure interactions. Using this method, we
can more precisely capture the solid dynamics by solving the solid governing equation instead of
imposing it based on the fluid velocity field as in the original immersed finite element (IFEM).
Using the IFEM may lead to severe solid mesh distortion because the solid deformation is been
over-estimated, especially for high Reynolds number flows. In the mIFEM, the solid dynamics is
solved using appropriate boundary conditions generated from the surrounding fluid, therefore
produces more accurate and realistic coupled solutions. We show several 2-D and 3-D testing
cases where the mIFEM has a noticeable advantage in handling complicated fluid-structure
interactions when the solid behavior dominates the fluid flow.
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1 Introduction
Analyzing and understanding complex physical phenomena involving fluid-structure
interactions require reliable, robust, and efficient modeling techniques. In the past few
decades, numerous research efforts have been directed toward methods development of
fluid-structure interactions.

In general, the numerical approaches to model fluid-structure interactions can be classified
into two categories: boundary-fitted mesh and non-boundary-fitted mesh. One of the most
well-known and popularly used boundary-fitted mesh methods is the Arbitrary Lagrangian
Eulerian (ALE) [1–6]. It can handle complicated fluid-solid interface, but it also requires a
process of re-meshing or mesh-updating, in which the whole domain or part of the domain is
re-discretized spatially. This process can be computationally expensive, and more
importantly might reduce the accuracy at the interface due to the transferring of the solutions
from the degenerated mesh to the new mesh. Recent advances have been made toward
resolving the interfacial solution accuracies by using non-matching interfaces [7,8].
Research done by Tezduyar and Takizawa [9–11] demonstrated that a robust and efficient
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solutions can be obtained using a re-meshing and solution projection technique with a space-
time body-fitted approach.

To avoid such re-meshing or mesh-updating procedure, so-called non-boundary-fitted mesh
methods are developed, in which the solid object and the background fluid grid are meshed
independently. The solid described using a Lagrangian frame of reference can move freely
on top of a fixed fluid mesh that is described using Eulerian frame of reference. However,
interpolations are required to couple these two independent meshes. The interpolation
process inevitably introduces a “layer” of interface instead of a distinct boundary interface.
Some sharp interface treatments are proposed [12,13], which allow the local hydrodynamics
at the interface can be more precisely resolved. Among the non-boundary-fitted mesh
methods, one of the most noteworthy efforts is the immersed boundary method [10], which
was initially proposed by Peskin to study the blood flow around heart valves [14–20]. The
immersed boundary method inspired researchers around the world to further develop and
enhance the accuracy and efficiency of the method. One of them is the immersed interface
method [21,22] where LeVeque and Li obtained second-order accuracy in Peskin’s
immersed boundary method by imposing a derived second-order solution for Stokes fluid at
the interface. This method was later extended to solve more complicated Navier-Stokes fluid
flows [23–27]. Other methods include the extended immersed boundary method [28] which
uses the finite element approach to calculate solid boundary nodal forces and the immersed
boundary finite element method [29,30] which describes an immersed solid boundary in a
fluid domain that is modeled using finite elements.

The immersed finite element method [31–38] is another method that extends the immersed
boundary method to represent the background viscous fluid with an unstructured finite
element mesh and nonlinear finite elements for the immersed deformable solid. Similar to
the immersed boundary method, the fluid domain is defined on a fixed Eulerian grid and the
solid domain is constructed independently with a Lagrangian mesh. The major difference
between these two immersed approaches, however, is that with the immersed finite element
method, the solid material can be described with a detailed constitutive model such as the
linear elastic, hyperelastic, or viscoelastic. It is no longer limited to just a boundary layer,
instead, it can occupy a volume space in the entire computational domain. Such realistic
material representations are particularly useful when large deformation or movement of the
material must be realized and its affected hydrodynamics are altered through interactions
with the surrounding fluid. A semi-implicit two-way coupling algorithm [39] is later
developed. As a result of the semi-implicit coupling, the numerical difficulty dealing with
large fluid-solid density difference is resolved. The coupled solution converges better, faster,
and larger time step size can be used for significantly higher computational efficiency.

Even though the IFEM algorithm has been improved over time to resolve its numerical
stability and convergence issues, problems still remain when the solid dynamics needs to be
captured accurately. In the case involving large solid deformation or high Reynolds number
flows, the solid may behave unrealistically when its velocity and displacement are predicted
based on the overlapping fluid velocity field through interpolation. Given that the fluid and
the solid dynamics are inherently different from one another, it is not surprising a slight
mismatch would result at each time step. However, this over-estimated solution accumulates
over time causing severe solid mesh distortion. Moreover, if the background fluid is
incompressible, the solid that follows the fluid is also constrained to be incompressible or
nearly incompressible, where the volume change must be neglected. It further decreases the
accuracy of solid solution and limits the numerical applications to which the method can
apply. It is particularly critical if wave propagation in the solid is important.
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In this paper, we propose a newly developed “modified immersed finite element method”
(mIFEM) to resolve the above mentioned issues and to achieve more accurate coupled
solutions. The key idea of the mIFEM algorithm is that it lets the solid lead the fluid-
structure interaction and makes the fluid underneath to follow the solid motion. The internal
solid deformation are accurately solved by a set of solid governing equation with appropriate
boundary conditions instead of being evaluated using the interpolated fluid velocity field.
Doing so also allows the solid to have its natural compressibility instead of obeying the fluid
compressibility condition.

The paper is organized as follows. We first briefly review the immersed finite element
method in Section 2. The key assumptions and their corresponding restrictions will also be
discussed. In Section 3, we will present the mIFEM algorithm and the detailed derivations.
To demonstrate the capabilities of this newly developed mIFEM algorithm, three testing
cases are studied in Section 4. Finally, the conclusions are drawn in Section 5.

2 Review of the Immersed Finite Element Method
In the IFEM, the fluid exists everywhere in the computational domain. One or more
deformable solid structures are immersed in the fluid, which occupy a finite domain, Ωs, as
illustrated in Fig. 1. The part of the fluid volume that overlaps with the solid domain is

called the “artificial” fluid, , since it does not physically exist. The fluid outside the solid
domain is the real fluid, Ωf. The fluid domain and the solid domain together construct the
entire computational domain, Ω = Ωf ∪ Ωs. The solid boundary Гs is also the common
interface intersecting with the fluid domain, called the fluid-structure interface ГFSI ≡ Гs.
Three major assumptions are made in the IFEM algorithm: 1) the fluid (real and artificial)
fills the entire computational domain; 2) both the real and artificial fluids are
incompressible; 3) the entire solid and the artificial fluid obey no-slip condition where the
solid motion follows that of the artificial fluid.

For completeness, here we briefly review the original IFEM algorithm with semi-implicit
coupling scheme (hereon will be referred to as IFEM). The detailed derivations can be
further found in our pervious papers [36,39].

The governing equations for the entire computational domain Ω which includes the real Ωf

and the artificial fluid domains , are the Navier-Stokes continuity and momentum
equations for incompressible flows:

(1)

(2)

where  is defined as:

(3)

The v and p are the state variables: velocity and pressure, respectively. fFSI,f is the fluid-
structure interaction force. g is the external body force. ρf and ρs are the densities of the fluid
and the solid, respectively. Superscript f represents fluid variables and s for solid variables.
The indicator function I is used to identify the artificial fluid from the real fluid. It is set to 1
in the artificial fluid domain and 0 in the real fluid domain; and varies from 0 to 1 at and
near the fluid-structure interface. Since the artificial fluid overlaps with the solid domain, the
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indicator field must be updated along with the motion of the solid. More information of the
indicator function and its detailed calculation can be found in [39-41].

The fFSI,f in the momentum equation (2) is defined as the fluid-structure interaction force
that represents the viscous effects due to the existence of the solid in the fluid domain. This
fluid-structure interaction force is first evaluated in the solid domain, fFSI,s as,

(4)

Here, σs is the solid stress evaluated based the solid constitutive law as a function of the
solid deformation; σf is the fluid stress interpolated onto the solid domain from the previous
time solution. This interaction force is to effectively subtract the artificial fluid’s viscous
force out of the solid’s internal force. Once fFSI,s is calculated, it is then distributed onto the
fluid domain as fFSI,f using an interpolation function. Noting that fFSI,f is a local force that

only exists in the artificial fluid domain . It is easy to notice that this equation only
involves the solid stress, where the dynamics of the solid is entirely “controlled” by the
fluid.

Once the state variables, vf and p are solved from Eqs. (1) and (2) for the entire
computational domain, the solid velocity field vs is directly mapped from the fluid velocity
field vf using either 1st order forward Euler scheme or 3rd order Runge-Kutta scheme
[42,43]. The algorithm flowchart of IFEM is shown in Fig. 2(a).

3 Modified Immersed Finite Element Method
3.1 Rationale of the mIFEM algorithm

The purpose of developing and implementing the modified immersed finite element method
(mIFEM) is to remove some constraints imposed by the assumptions made in the IFEM
algorithm. As mentioned previously, in the IFEM, the solid deforms along with the artificial
fluid. The velocity of every single nodal point in the solid domain is interpolated directly
from the velocity of the artificial fluid, i.e. vs = vf in Ωs. The underlying assumption here is
that the solid behavior is predicted by the fluid’s equations, whereas the effects from the
solid are not accounted for until the next time step through the interaction force. This
scheme relies heavily on the fluid’s equations yielding a fairly reasonable solid solution and
a small time step is often required. It would not cause any fundamental difference if the solid
behavior is similar to the fluid. However, in cases where the solid behavior is more
dominant, it is not appropriate to approximate the internal nodal solid movement based on
the fluid velocity. The fluid velocity often leads to unrealistic solid deformation. Sometimes,
it even causes severe distortion of the solid mesh. Similarly, if the fluid continuity equation
governs the artificial fluid, then it also governs the solid. The compressibility constraint of
the solid is forced to be the same as the fluid, which is often unrealistic.

In the mIFEM, we reverse the assumption made before where the solid follows the artificial
fluid, instead, the solid motion or the dynamics is solved and we let the artificial fluid to
follow the solid, i.e. vf = vs in Ωs. Doing so allows the solid motion and deformation to be
precisely controlled by the solid governing equations, constitutive laws, and the boundary
conditions derived from the fluid solution. To ensure the artificial fluid moves together with
the solid in order to still satisfy the no-slip boundary condition, it is set to have properties
that are the same as the solid so that when the fluid-structure interaction force is applied on
the artificial fluid domain, the velocity of the solid is reproduced in the artificial fluid region.
One can think that the artificial fluid is now governed by the solid equation. In this context,
it is not an unreasonable assumption because the artificial fluid physically does not exist.
Therefore it can move wherever it needs to as long as it satisfies the equilibrium of the
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system. In this case, the solid sees the fluid only through the actual interface or the solid
boundary. All the interior deformation is solved by the solid governing equation. This would
yield a much more accurate solid solution. In the meantime, the artificial fluid can be
manipulated to have the same compressibility as the solid and the solid compressibility is no
longer compromised.

Based on the above logic, a few key features must be represented in the formulation:

Given the fluid velocity and pressure fields from the initial or previous time step,
interpolate the velocity or pressure data onto the solid boundary or the interface ГFSI.
Use the boundary condition and the solid governing equation to solve for the solid
acceleration, velocity, and displacement.

Evaluate the fluid-structure interaction force fFSI using the fluid viscous stress and
internal solid stress.

With the known fFSI, proper boundary conditions, and properties applied onto the real
and artificial fluid, the Navier-Stokes equations are solved in the entire fluid domain.

In the section below, we will show the detailed formulation and derivation of the governing
equation for each of the domains: solid domain, artificial fluid domain, and the entire fluid
domain.

3.2 Derivation of the mIFEM algorithm
3.2.1 Solid domain—One of the major changes in the mIFEM is that the solid motion and
deformation are solved base on the solid governing equation with the solid constitutive law
and boundary conditions. A dynamic solid equation is:

(5)

where us is the solid displacement,üs is the solid acceleration, σsis the solid stress. The solid
stress σs is described based on the constitutive law as a function of the solid strain tensor εs

and material properties:

(6)

where . Different combinations of cijkl and ηijkl provide various choices of
solid material constitutive laws such as linear elastic, visco-elastic, and hyper-elastic, etc. In
this algorithm, we implemented linear elastic and visco-elastic materials for small strains
and hyperelastic materials with Mooney-Rivlin model for large strains. The details of the
constitutive laws for these particular materials can be found in [44] and [31].

The boundary condition of the solid domain is the actual interface that the solid ‘sees’ the
fluid. The solid boundary can be applied as either the Dirichlet boundary condition on Гsq

and/or Neumann boundary condition on Гsh:

(7)

(8)

To ensure the existence and the uniqueness of the solid solution, we further require Гs = Гsq

⋃ Гsh and Гsq ≠ ∅.
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Based on the no-slip and traction boundary conditions imposed at the fluid-solid interface,
the boundary conditions can be calculated through the interpolation function using the
known fluid velocity and pressure fields from the previous time step:

(9)

(10)

Here, φ is the interpolation function that is a function of the distance of a fluid grid point x
and a solid point xs; Δt is the time step size and n is the outward normal of the fluid-
structure interface.

For dynamic systems, the initial condition should also be known in order to solve for the
solid equation in Eq. (5), the initial displacement and the velocity conditions are:

(11)

and

(12)

If the solid starts from a resting position, the solid nodal velocity and displacement are
initially set to zero.

This set of solid equations described above is discretized using finite elements and solved
numerically using α-method which is an unconditionally stable scheme with second-order
accuracy [45]. Because the solid domain is defined and discretized on a Lagrangian mesh,
no continuity equation is specifically required and the mass balance is satisfied
automatically.

3.2.2 Artificial fluid domain—The goal of the mIFEM is to let the artificial fluid domain
to behave like the solid as much as possible because the artificial fluid physically does not

exist, so it should mimic the solid. The first thing is to enforce vf = vs in  so that the
artificial fluid domain can produce the same velocity as the solid. Again, no-slip boundary
condition is applied at the fluid-structure interface ГFSI and we also assume that there does
not exist any mass exchange between the fluid and solid domain.

First, we write the continuity equation for the artificial fluid, which should allow
compressibility. Here, we let the fluid to be pseudo-compressible so that a proper
compressibility is introduced. Letting the artificial fluid domain to be pseudo-compressible
is necessary in two aspects: 1) to ensure the artificial fluid velocity to be the same as the
solid velocity and 2) when any volume change in the solid has to be considered. In fact, all
solid is compressible or at least nearly incompressible. The compressibility of the material is
usually represented by the bulk modulus, κ, where a large value of κ means it is hard to be
compressed. The appoximated bulk modulus is 160 × 109Pa for steel, 107 ~ 108 for rubber,
and 104 ~ 5Pa for certain biological tissues. On the other hand, the bulk modulus is around 2
~ 109Pa for water and 105Pa for air. From this wide range of values, we can see that the
volume change of the solid domain must be considered under many circumstances. Even if
the solid material can be considered as nearly incompressible, a volume correction algorithm
must be introduced in order to ensure its compatibility with the incompressible fluid [46].
Using such a volume correction algorithm helps in limiting the amount of volume change,
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but errors are inevitably introduced into the solid displacement field, which causes
unrealistic solid behaviors [47]. Furthermore, even if the solid volume change can be
neglected globally, it is often necessary to consider the local changes of the solid volume,
such as in the case of wave propagation in the solid.

Here, we assume that the density in the artificial fluid domain is only a function of time and
the continuity equation can be written as:

(13)

where κ is the bulk modulus. Since we want the compressibility of the artificial fluid to be
the same as the solid, we replace κ with κs, which is the bulk modulus of the solid. Then the
continuity equation becomes:

(14)

Letting the solid and fluid domains share the same bulk modulus ensures the velocity in the
artificial fluid domain to be the same or at least very similar to the solid velocity.

The momentum Navier-Stokes equation is:

(15)

In the artificial fluid domain, we want the velocity in this domain to be the same as the solid

in . Therefore, we will replace ρ by ρs so that it has the same property as the solid:

(16)

Here, the velocity vf is an independent variable, the interaction force fFSI,f is there to further

enforce vf = vs in . This interaction force is first evaluated in the solid domain and
distributed onto the fluid domain through the interpolation function as,

(17)

The definition of the fluid-structure interaction force in the solid domain was shown
previously in Eq. (4),

(18)

in which σf is the fluid stress.

With the fluid-structure interaction force and appropriate material properties, the artificial
fluid domain can produce nearly the same velocity as the solid domain. However, it is still
possible that the artificial fluid may not be exactly the same as the solid velocity in the entire
artificial fluid domain due to the following reasons:

The Dirichlet boundary condition Eq. (7) is not necessarily applied onto the entire solid
boundary, because in some cases Neumann boundary condition may be more
appropriate to use as a part of the solid boundary condition. Therefore, the no-slip
boundary condition is not always strictly enforced on the entire fluid-structure
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interaction surface, which may cause minor differences between the artificial fluid and
solid velocities.

Although the artificial fluid domain and the solid domain share similar governing
equations, they are solved on the Eulerian and Lagrangian meshes respectively, which
inevitably introduces error between the artificial fluid velocity and the solid velocity.

The coupling between the solid and fluid domains involves a pair of interpolation and
distribution procedures which may also cause small discrepancies between the artificial
fluid and solid velocities.

To compensate the possible accumulative error in enforcing vf = vs in the artificial fluid
domain, we further introduce a correction force, fΔv,

(19)

The correction force is effectively the difference between the material derivatives of the
solid velocity and the artificial fluid velocity. Both errors introduced in the inertial and
convective acceleration forces are included. The reason to introduce this correction force is
purely an extra enforcement so that vf = vs is satisfied. It would be zero if the artificial fluid
follows the solid exactly. The correction force is added into the fluid structure interaction
force as,

(20)

This correction can be done once or iteratively depending on how precisely the solid
velocities are reproduced in the artificial fluid domain.

3.2.3 Fluid domain—The fluid domain here includes both the real fluid, Ωf and the

artificial fluid domain . As shown in Sec. 3.2.2, for accuracy the artificial fluid is
considered as pseudo-compressible, but the real fluid can be either incompressible or
compressible. For simplicity, we first assume the real fluid is incompressible, the continuity
equation can be written as,

(21)

And the momentum equations in the fluid domain are,

(22)

The fluid stress is,

(23)

and  is the viscous stress,

(24)
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Because the entire fluid domain is considered as a background and defined on a fixed
Eulerian mesh, the real fluid domain and artificial fluid domain can be combined together
and solved simultaneously. The indicator function is used so that we have a general form of
the governing equations defined on the entire computational domain. The indicator function,
I(x), is a delta function equals 0 in the real fluid domain and 1 in the artificial fluid domain,

(25)

The continuity equation for the entire fluid domain in Eq. (21) can be expressed using the
indicator function,

(26)

Similarly, the momentum equations in both real fluid domain and artificial fluid domain in
Eq. (22) are combined together by the indicator function as well,

(27)

where  is defined as

(28)

The velocity and pressure for both the real and the artificial fluids are obtained
simultaneously by solving the governing equations Eq. (26) and Eq. (27) at every time step.
The governing equations in the entire fluid domain are also discretized by finite element
method and solved by Matrix-free Newton Krylov method [48].

It is generally believed that the fluid flow should be considered as compressible when the
Mach number is larger than 0.3. Even when the Mach number is relatively small, the
compressibility of the fluid plays an important role in some fluid-structure problems such as
air flow compressed by piston, pulse wave of a tissue immersed in fluid, and voice
production through vocal folds vibration. Here, another set of equations are implemented for
compressible fluid governed by idea gas law. Such option makes the mIFEM suitable for
solving more complex fluid-structure interaction problems.

For the real fluid that is compressible, the N-S equations are adjusted so that the density can
be a function of time. Here the real fluid is assumed to be isotropic ideal gas and the energy

equation is avoided. The continuity equations for the real fluid Ωf and the artificial fluid 
are:

(29)

Using the indicator function, the continuity equation for the entire fluid domain is written as,

(30)
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 was defined in Eq. (28).

The state equations for the artificial fluid and the ideal gas law for real fluid are,

(31)

Here, R is the specific gas constant (R = 286.9 Jkg−1K−1 for dry air) and T represents the
temperature which is a constant.

The momentum equation remains the same

(32)

where the fluid stress becomes,

(33)

The algorithm for compressible fluid remains the same as the incompressible one except that
the governing equations Eq. (30) and Eq. (32) are used.

3.3 Numerical algorithm
Here is a summary of the assumptions and the mIFEM algorithm. The assumptions are:

The fluid is everywhere in the entire computational domain;

The solid is completely immersed in the fluid;

The artificial fluid is pseudo-compressible to accommodate the compressibility of the
solid;

No-slip and traction boundary conditions are applied at the fluid-structure interface.

The numerical algorithm is summarized as follows. A flowchart of the mIFEM algorithm is
shown in Fig. 2(b).

Solve solid equation on the Lagrangian mesh to obtain solid motion and deformation
using Eq. (5); apply solid boundary conditions Eqs. (7) and (8) derived from fluid
solutions from the previous time step;

Calculate the fluid-structure interaction force fFSI using Eq. (20) in the solid domain;

Distribute the fluid-structure interaction force onto the fluid domain using Eq. (17);

Update the indicator field I based on the relative position of the solid in the fluid
domain;

Solve fluid equations on the Eulerian mesh to obtain velocity and pressure fields:
continuity Eq. (26) and momentum Eq. (27) for incompressible fluid, or Eqs. (30) and
(32) for compressible flows;

Interpolate fluid velocity and stress onto the solid boundary as its boundary condition
using Eqs. (9) and (10), go back to step (1).

Remarks: The solid domain and fluid domain are solved independently and strongly coupled
with each other within each time step. As opposed to the original IFEM, the solid dynamic
terms, i.e. the inertial and convective terms, in the mIFEM are solved simultaneously in the
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current time step instead of using the previous time step solution. It is still considered as a
semi-implicit coupling however, due to the fact that the solid boundary conditions Eq. (7)
and Eq. (8) still use the fluid solution at the fluid-structure interface from the previous time
step. Therefore, the fluid-structure interaction force is evaluated one time step behind
compared to all the other terms in the fluid’s momentum equation. Such time step mismatch
will cause coupling error proportional to the “stiffness” ratio between the two domains [39].
If the solid is very stiff, extra caution may be required to ensure the stability and
convergence of the coupled solution. Small time step may be used, or the coupled solutions
can be solved iteratively within each time step until the difference between the solid velocity
and the artificial fluid velocity becomes negligible, as explained in the previous section.

4 Numerical examples
Four numerical examples are presented in this section. The first example is a 3-D sphere
dropping in a channel due to gravity. This particular problem was previously studied using
the IFEM algorithm [39]. The purpose of this study is to demonstrate that such a case with
large displacement can be handled very easily without any mesh update or re-meshing as
would be required if boundary-fitted mesh were used. Here, we repeated this study using
mIFEM to illustrate that the mIFEM algorithm is able to capture very accurately the
displacement and velocity compared to the theoretical values. The second example is a 2-D
deformable leaflet placed in a fluid channel with a constant inflow velocity. The purpose of
this study is to make direct comparisons of the mIFEM and the IFEM. The third example is
a 2-D deformable oscillated plate in a fluid. It is a solid-initiated fluid-structure interaction
problem dominated by the solid motion and deformation. The fourth example is a 3-D flow
past a deformable cylinder that are fixed at two ends. The fluid-structure interaction is
initiated by the fluid flow and the contributions from both the fluid and the structure to the
drag and lift forces as well as the oscillation frequency of the cylinder are equally important.

4.1 3-D sphere dropping in a free fall
In this example, we study a 3-D ball dropping in free fall. The fluid domain is 2×2×4 cm3.
All the boundaries are considered as no-slip steady walls. The fluid simulated here is air
with a density of 10−3g/cm3. The 3-D sphere has a density of 1g/cm3 with diameter of 0.5cm
and is initially located at (1, 0, 0). The movement of the ball is driven by gravity of g =
980cm/s2. The sphere is described with linear elastic material with Young’s modulus of E =
10,000dyn/cm2, and Poisson’s ratio of ν = 0.49. The problem setup is illustrated in Figure 3.
The fluid domain is discretized with 16, 000 uniform hexagonal elements and 18, 081 nodes,
while the solid domain is discretized with 20, 754 tetrahedral elements and 4, 092 nodes.

The snapshots of the simulation are shown in Figure 4. The small vortices near the ball as it
falls are clearly captured and the fluid velocity field is developed based on the movement of
the sphere as it falls under gravity. The time history of the sphere displacement and velocity
are shown in Figure 5. The displacement matches the theoretical prediction almost perfectly
when gravity of g = 980cm/s2 is used. Based on the velocity history plot, we perform a
linear fit which yields an acceleration of this free fall to be 972.60cm/s2 before it hits the
bottom. The no-slip side walls and the sphere rigidity do not seem to have major effects on
the solution when comparing to a rigid sphere falling in an open-spaced channel, as also
observed in the snapshots in Fig. 4. We acknowledge that the solution of the problem is
obvious without much complex phenomena. The purpose of this example is merely to
demonstrate the capability of the mIFEM algorithm which can handle large displacement
without any re-meshing. This problem had been solved previously in [36] using the original
IFEM that has working fluid as water and has a density that is in the same order of
magnitude as the solid. It was also solvedusing the semi-implicit algorithm in [39], which
produced the acceleration of 968.47cm/s2.
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4.2 2-D leaflet in a channel
A 2-D deformable leaflet placed in a rectangular fluid channel is studied. The fluid domain
is a rectangular channel of size 8cm × 2cm. A leaflet of 1.0cm in height and 0.5cm in width
is positioned at 3cm from the inflow boundary and it is fixed at the bottom of the channel.
The problem setup is illustrated in Figure 6. The results of this particular numerical example
was reported in our previous study [39] using the IFEM. Here, several cases are examined
using the same geometric setup so that more detailed analysis can be performed.

The fluid is incompressible air with a density of 1.3 × 10−3g/cm3 and a dynamic viscosity of
1.8 × 10−4g/(cm · s). The entire system is driven by × a constant inflow velocity, U0, at the
left boundary of the channel. The outlet on the right has stress-free boundary condition, and
both top and bottom boundaries have no-slip boundary condition. The leaflet is a linear
elastic material with Young’s modulus of E = 1000dyn/cm2 or 100Pa and Poisson’s ratio of
0.3. Three sets of parameters with different combinations of solid densities ρs and inflow
velocity U0 are studied. These parameters then correspond to different density ratios and
Reynolds numbers using the leaflet length as the characteristic length. They are listed in
Table 1.

For the first two cases with Re=144.5 and density ratio of 77.92 and 770.2, the overall
deformation of the leaflet when reaching the steady state (~ 1.4s) is quite small due to the
low Reynolds number flow, see Figures 7(a) and 7(b). The deformed shape from mIFEM
yields a slightly smaller deformation comparing to the IFEM. This is coming from the fact
that the IFEM overestimates the solid deformation because the solid is set to be the fluid
velocity which is usually larger and the dynamics of the solid itself is not being solved.

A quantitative comparison of the two cases can be seen by measuring the x-coordinate at the
top left corner of the leaflet, see Figure 8. Both density ratios converge to almost the same
solution when reaching steady state, which is expected when using the same Reynolds
number where the inertial force takes almost no effect at steady state. It is evident that with a
relatively low density (or lighter solid), the leaflet oscillates back and force a few times
before finally reaching steady state, while high density leaflet steadily deforms to the steady
state. This behavior is also expected as a light solid can be easily swayed by the surrounding
fluid.

In the case of a higher Reynolds number of 722.3 (case 3), the leaflet experiences a larger
deformation, see Figure 9(a). While the mIFEM captures the deformed leaflet at the steady
state, the IFEM algorithm failed to reach the steady state solution due to a highly distorted
mesh of the leaflet. An enlarged mesh of the solid at its left corner is shown in Figure 9(b).
The velocities near the solid boundary nodes are inaccurately estimated based on the fluid
and severe mesh distortion occurs at this point, which eventually results in a total failure of
the simulation. This problem cannot be improved even with finer mesh. Figure 10 shows
that each increase of the mesh resolution (regular tetrahedral mesh of 6400, 10000, and
256000 elements, respectively) allows the simulation to last slightly longer time, but
ultimate cannot reach a steady state. However, using the mIFEM, all mesh resolutions
converge to the same solution, as shown in Figure 11. The fluid field solutions (pressure
contour and velocity vector) at different time steps are also shown in Figure 12.

This example shows that the mIFEM can more realistically and accurately capture the solid
deformation when the IFEM cannot, especially in cases of high Re number flows where the
solid dynamics cannot be computed accurately based on the fluid solution.
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4.3 2-D oscillating deformable plate in a flow
In this example, we show a solid initiated fluid-structure interaction problem where a de -
formable plate is attached to the bottom of a fluid and is prescribed with an oscillatory
motion. The fluid domain is a 2-D rectangular channel with 8cm in length and 2cm in width.
The problem setup is shown in Fig. 13. The deformable plate is 0.5cm × 1cm, placed in the
middle of the channel length. The bottom surfaces of the plate and the fluid domain are
overlapped. The bottom surface of the plate is prescribed with an oscillating motion in the
horizontal direction using a sinusoidal function  which has a frequency of
1Hz.

The fluid is incompressible air at room temperature with ρf = 1.3×10−3g/cm3 and dynamic
viscosity of μ = 1.8×10−4g/(cm·s). The plate is a viscoelastic material with Young’s modulus
of E = 10Pa, Poisson’s ratio ν = 0.3 and damping factor η = 100 poise. The density of the
solid is ρs = 1.001g/cm3. No-slip and no-penetration boundary conditions are assigned to all
the fluid boundaries so that the fluid is contained in the box. Periodic boundary condition is
used on the bottom surface of the fluid domain. The fluid and the plate are discretized with
6400 and 1250 uniform quadrilateral elements, respectively. The time step size used in the
simulation is 1 × 10−2s.

The fluid velocity field at four instances during one oscillation cycle is shown in Fig. 14.
Because it is incompressible fluid, the same amount of fluid pushed by the moving plate
goes back to the other side of the plate and causes a reverse flow. This explains the vortex
generated near the top surface of the plate. To clearly show the instantaneous snapshots of
the deformation and the location of the plate, we superimpose the plate boundaries at these
four particular time steps and its initial undeformed state in Fig. 15.

The plate movement and deformation are dominated by the oscillatory motion prescribed on
the bottom surface. The oscillatory wave travels through the plate in the vertical direction
causing a slight phase lag between the plate velocity on the bottom and top surfaces. The
velocities of the left bottom corner and the left top corner are shown in Fig. 16(a). As shown
from the figure, the vibration magnitude is slightly larger on the top surface. The vibrational
frequency of the top surface of the plate remains the same as the prescribed oscillatory
frequency at 1Hz. The same frequency and wave form are also found in the volume flow
rate computed across the vertical line at x = 4cm of the fluid domain, shown in Fig. 16(b).
However, because the plate is much denser than air and no driving force is applied in the
fluid domain, the air flow can hardly affect the plate deformation, even though the
displacement of the plate is much larger.

4.4 3-D flow past a deformable cylinder
This numerical example is a 3-D fluid flow over a deformable cylinder. The fluid domain
has dimensions 8 × 2 × 2 cm3 in x, y, z directions, respectively. The fluid is considered as
incompressible air at room temperature with a density ρf = 1.3 × 10−3g/cm3 and dynamic
viscosity μ = 1.8 × 10−4g/(cm · s). The cylinder has a diameter of d = 0.5cm and length of l
= 2cm in the z-direction. The center of the cylinder is located at (1.5cm, 1.0cm) in the x – y
plane. The two ends of the cylinder are fixed on the front and the back of the fluid channel
walls. The problem set up is shown in Fig. 17. The cylinder is a viscoelastic material with
density ρs = 1.001g/cm3, Young’s modulus E = 500Pa, Poisson ratio ν = 0.3 and a damping
factor η = 100poise.

A constant inflow boundary condition U0 = 100cm/s is applied at the channel inlet (x =
0cm). The channel exit (x = 8cm) is given as the outflow stress-free boundary condition. No-
penetration boundary condition is applied at the top and the bottom boundaries of the fluid
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channel (y = 0 and 2cm). The front and back surfaces (z = 0 and 2cm) are no-slip and no-
penetration steady walls. The Reynolds number is Re = ρfU0d/μ = 361. For a cylinder that is
rigid and stationary, a Strouhal number of St = fd/U0 = 0.2 is expected [49], where f is the
vortex shedding frequency.

The fluid domain is discretized using 77, 818 non-uniform hexahedral elements with higher
mesh density concentrated around the cylinder surface. The cylinder is discretized with 32,
053 uniform tetrahedral elements. The time step size used in the simulation is Δt = 1 ×
10−4s.

A few time snapshots of the velocity field in the mid-z x-y plane are shown in Fig. 18.
Vortex shedding is clearly observed. To further obtain the quantitative shedding frequency,
we examine the lift and drag coefficients from this simulation. The lift coefficient

 and drag coefficient  are defined based on the lift and
drag forces L and D where A is the flow frontal projected area of the cylinder l×d. These
forces are obtained by integrating the pressure force, P , in the x and y directions such that:

(34)

(35)

The time history of drag and lift coefficients are plotted in Fig. 19. The time averaged drag
coefficient is found to be < CD >t = 1.5. The time averaged lift coefficient is < CL>t = − 3.5
× 10−4, which is very close to zero. The oscillatory frequency of CLand CD through FFT
power spectrum are found to be fCL = 41.02Hz and fCD = 82.03Hz. The frequency of the
drag coefficient is approximately twice as the frequency of the lift coefficient, which is
consistent with results found in [49]. Due to the alternating vortex wake the oscillations in
lift force occur at the vortex shedding frequency. Based on the oscillation frequency of the
lift coefficient, the Strouhal number from our deformable cylinder case is St = 0.205. All the
values, such as the drag coefficient, lift coefficient and Strouhal number come quite close to
the expected values of a flow past a stationary, smooth, infinitely long cylinder case [50].
The lift coefficient fluctuates about a zero mean value and the instantaneous drag coefficient
fluctuates about the mean value of the drag coefficient at 1.15, although at a much smaller
oscillatory amplitude.

The velocity of a particular point on the cylinder surface at (1.5, 1.25, 1) is examined, shown
in Fig. 20. The velocity in the y-direction has the same frequency as the drag coefficient.
The wave form of the velocity in the x-direction shows 2 modes of frequencies, the higher
frequency mode matches the one of the lift coefficient fCL, which is the same as the vortex
shedding frequency. The lower frequency mode is found to be 11.72Hz. We believe that this
lower frequency mode is related to the natural frequency of the cylinder, which is dependent
on the material properties. This cylinder vibration is caused by the fluid generating a
pressure difference in the x-direction across the cylinder. This pressure difference has a
larger amplitude and smaller frequency than the one that induces drag. It pushes the cylinder
in the flow direction and is balanced with the force acting on the two ends of the cylinder.
When the vortex shedding frequency and the natural frequency of the cylinder are close to
each other, the phenomena of lock-in would happen which can lead to large vibration or
even structure damage.
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5 Conclusion
In this study, we presented a new algorithm, the mIFEM, that reverses the coupling process
of the original IFEM. The method is designed so that the dynamics of the solid is been
solved rather than been imposed based on the dynamics of the background fluid. It is
particularly important when the solid dynamics plays a major role in the fluid-structure
interaction process. Comparing to the IFEM algorithm, the solid behaviors are much more
realistically captured, especially in the case with high Reynolds numbers. Instead of having
the entire solid (interior and boundary) to follow the overlapping fluid, the solid only “sees”
the fluid at the boundary via boundary conditions.

The idea of using indicator function to decompose the fluid domain into real and artificial
fluids has several contributions in both physical and mathematical aspects. The real and
artificial fluid are identified by the indicator function so the real and artificial fluids can be
treated separately. It is important not only because the artificial fluid can be assigned
properties close to the solid so that the artificial fluid can follow the solid behavior more
easily, but also the artificial fluid can be compressible while the real fluid can be either
compressible or incompressible. Accounting for the compressibility of the artificial fluid is
important because the volume change of the solid can now be considered. Therefore, the
mIFEM is not restricted to only solve fluid-structure interaction problems when the solid is
nearly-incompressible. Moreover, because the volume correction algorithm [46] is no longer
required to conserve the solid volume, the solid behaviors are more accurate and realistic.

Our 2-D and 3-D testing cases show that the mIFEM captures the dynamics of the solid
more precisely comparing to the original IFEM. Even though these examples involve
relatively small deformations, it is not a limitation in the algorithm. We choose these
specific cases so that the solutions can be compared with IFEM and other techniques more
easily. Although the second example with the oscillating leaflet is also small deformation, its
displacement is not. We show, based on the solutions of the examples, that the mIFEM is a
robust algorithm and is appropriate to be applied in a wide range of fluid-structure
interaction problems.
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Fig. 1.
Computational domain decomposition.
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Fig. 2.
Algorithm flowcharts for IFEM and mIFEM.
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Fig. 3.
Problem statement of a 3-D sphere dropping in a free fall.
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Fig. 4.
3-D sphere dropping in a free fall in a channel at different time steps.
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Fig. 5.
Time history of the displacement and velocity at the center of mass as the sphere drops in a
free fall.
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Fig. 6.
Flow over a deformable leaflet in a channel.
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Fig. 7.
Deformed leaflet at steady states.
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Fig. 8.
Time history of the x-position of the top left corner of the deformed leaflet in a channel at
Re=144.5.
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Fig. 9.
Deformed leaflet for Case 3: Re=722.3, ρs/ρf = 77.92
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Fig. 10.
Time history of the x-position at the top left corner of the leaflet for different mesh
resolution.
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Fig. 11.
Deformed leaflet at steady state using different mesh resolutions.
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Fig. 12.
Pressure and velocity fields at different time steps towards steady state.
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Fig. 13.
2-D deformable plate with prescribed oscillatory motion in a fluid domain.
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Fig. 14.
Fluid velocity vector field during one cycle.
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Fig. 15.
Plate boundaries during one oscillation cycle.
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Fig. 16.
The history of plate velocity and fluid volume flow rate.
(a) x-velocity on the left bottom corner (νx1) (b) Volume flow rate measured across x = 4cm.
and the left top corner (νx2).
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Fig. 17.
Numerical example II: Flow over 3-D deformable cylinder.
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Fig. 18.
Velocity magnitude contour on the mid-plane (y = 1cm) at different time steps.
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Fig. 19.
Drag coefficient CDand lift coefficient CL.
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Fig. 20.
Velocities in x- and y- directions on the cylinder surface.
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Table 1

Cases with different density ratios (ρs/ρf) and Re studied for the 2-D leaflet example.

Case ρs(g/cm3) U0(cm/s) ρs/ρf Re

1 0.1013 20.00 77.92 144.5

2 1.001 20.00 770.2 144.5

3 0.1013 100.0 77.92 722.3
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