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Abstract
Dietary assessment is important in health maintenance and intervention in many chronic
conditions, such as obesity, diabetes, and cardiovascular disease. However, there is currently a
lack of convenient methods for measuring the volume of food (portion size) in real-life settings.
We present a computational method to estimate food volume from a single photographical image
of food contained in a typical dining plate. First, we calculate the food location with respect to a
3D camera coordinate system using the plate as a scale reference. Then, the food is segmented
automatically from the background in the image. Adaptive thresholding and snake modeling are
implemented based on several image features, such as color contrast, regional color homogeneity
and curve bending degree. Next, a 3D model representing the general shape of the food (e.g., a
cylinder, a sphere, etc.) is selected from a pre-constructed shape model library. The position,
orientation and scale of the selected shape model are determined by registering the projected 3D
model and the food contour in the image, where the properties of the reference are used as
constraints. Experimental results using various realistically shaped foods with known volumes
demonstrated satisfactory performance of our image based food volume measurement method
even if the 3D geometric surface of the food is not completely represented in the input image.

Keywords
model-based framework; single view 3D/2D registration; active contour model; food volume
estimation; quantitative dietary assessment

1. Introduction
Dietary assessment is an important tool for overweight and obese individuals to monitor
their caloric intake for an effective weight control. This assessment is also important for
patients with certain chronic conditions, such as diabetes, some types of cancer, and
cardiovascular diseases [1]. Currently, dietary assessment relies on self-reporting in which
the subject recalls the consumed foods and their portion sizes. However, human memory of
the past eating events is imperfect; visually gauging the size of a food based on an imaginary
measurement unit (e.g., a cup or a tablespoon) is very subjective; and some individuals are
unwilling to accurately account all consumed foods and beverages. As a result, the self-
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reporting method is inaccurate and biased, especially among overweight individuals who
often under-report their caloric intake [2][3]. This problem makes the collected dietary data
unreliable, which not only causes inaccuracy in the results of scientific studies of obesity,
but also prevents the development of effective treatment methods for overweight
individuals.

In recent years, camera-enabled cell phones have been studied for their potential application
to dietary assessment. Several studies reported that the collection of digital images at the
time food is consumed offers a powerful approach to improve the accuracy of dietary
assessment [4][5]. Using such images, portion size can be estimated without relying on
subject’s recall. However, this approach is intrusive, and might influence food choice. To
eliminate the requirement of taking pictures manually, we developed a wearable computer
(called “eButton”) [6][7][8], which consists of a low-power, high-performance central
processing unit (CPU), a random-access memory (RAM), communication interfaces, a
number of peripheral components (mostly electronic sensors), and a Linux or Android
operating system. As a chest button worn on a shirt or blouse, this device has many
applications using different combinations of available sensors. In this specific study, a
camera on the device is utilized to take pictures automatically during eating events (figure
1). Using eButton, dietary assessment thus becomes completely passive, eliminating the
behavioral disruption inherent in manual photography.

Although the cell phone and eButton acquire food images in different ways, the images
obtained are similar. These images must be analyzed by a computer in order to estimate food
volume. Then, the volume (e.g., in cubic centimeters) is converted to portion size, which is
usually represented in a certain intuitive unit based on a number of commonly used utensils
or tools in the kitchen, such as a cup, a teaspoon or a tablespoon. The calories and nutrients
in the food are then determined from a database by inputting the food name and portion size.
There are several food databases available in the public domain, such as the Food and
Nutrient Database for Dietary Studies (FNDDS) developed by the U.S. Department of
Agriculture (USDA) [9].

It is clear that, in this procedure, food volume estimation is an essential data analysis step.
Traditionally, image-based volume estimation methods have been developed using multi-
view images. Puri et al. [10] and Kong et al. [11] proposed a method to estimate food
portion size based on a 3D reconstruction algorithm using three images captured around a
plate of food by a mobile phone. Although multi-view images can provide more spatial
information about food geometry, it is quite inconvenient for the subject to collect multiple
images around the food. While food volume estimation based on a single image is often
preferred in practice, significant technical problems exist. First, multi-color food textures or
shadows in the input image often disrupt the food segmentation process. Second, a single
view of a 3D object does not provide complete spatial information (e.g., the back of the
object is unobservable). It is thus difficult to obtain an accurate reconstruction. Third, a
metric scale (similar to the scale on a map) must be present or implied in the image
otherwise it is impossible to know the actual size of the food.

In order to estimate volume, the relevant food objects in the image must be segmented. This
is a difficult task because the image background is often complex. Mrey et al. [12] proposed
a segmentation method based on a global thresholding. Zhu et al. [13][14] utilized a region-
based active contour model (ACM/snake) and a multi-level method for both segmentation
and classification. Although the reported methods incorporate statistical feature clusters,
region associations, and homogeneity information into the segmentation process, they
segment objects mainly based on pixel or regional intensity properties without using object
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shape constraints. As a result, fragmental regions appear frequently after segmentation due
to shadows and multiple colored textures.

Sun et al. [15] proposed an interactive tool to determine the food portion size from a single-
view image based on perspective geometry. Chae et al. [16] and Zhu et al. [13] designed
model-based methods to infer the food volume from a single-view image. Fellegari et al.
[17], Koc et al. [18], and Rashidi et al. [19] utilized ellipsoidal and spherical models to
estimate the sizes of kiwi, watermelon, orange and other food items. In these methods, only
limited key feature points in the food object are utilized. Therefore, they are sensitive to
feature detection errors and are suitable only in limited cases. Moreover, these methods
require subjects to place a checkerboard card or a similar referent into the field of view
before imaging the food. Again, this requirement is inconvenient, negatively affects the
natural dinning environment, and potentially modifies subjects’ eating behavior.

In this paper, we address these challenging problems and develop an efficient, reliable and
semi-automatic computational tool for single-view image food volume estimation. We
construct a food shape library to confine food objects. This key approach enables us to
estimate a 3D volume from a 2D image since the volume of the 3D shape model can be
calculated analytically after properly fitting the food object. This new approach takes the
advantage that most common foods have roughly known shapes. When compared to
conventional methods, our method utilizes global shape properties, rather than only a small
number of feature points, to determine food dimensions (e.g., diameter, length, height and/or
width). In addition, we develop a combined method with adaptive thresholding and snake
model deformation to segment multi-colored food items efficiently.

2. Method
2.1. Overview

The proposed method involves three stages: base plane localization, food segmentation, and
volume estimation. The flowchart of this method is shown in figure 2. We first calculate the
base plane of the food which is defined as the plane on which the base of the food is sitting
with respect to the camera coordinate system. In this process, an input of food name is
required to associate the food with a predetermined 3D geometric shape model in the model
library. Then, an algorithm using adaptive thresholding and edge-based snake deformation is
implemented to extract the contour of the food from the background image. Finally, food
volume is estimated from the size of the shape model after registering the 3D shape model to
the 2D food contour (here we call it 3D/2D model-to-image registration). The following
sections describe the details of these computational steps.

2.2. Food base plane localization
In this step, we reconstruct the spatial relationships between the food, camera and real world
coordinates. Unlike the traditional methods which use a checkerboard card as a referent, in
our approach, we use the serving container itself as the referent to link the image scale with
the world coordinate system [20]. In the western culture, this container is usually a circular
dining plate. In order for the plate to provide a scale reference, its diameter must be
measured, while its depth can be either measured or estimated. If a bowl is used as a serving
container as usually seen in the Asian culture, both the diameter and height of the bowl must
be measured. Since the measurements can be performed by the subject either before or after
the dietary study, the subject does not need to place any referent on the dining table,
eliminating the disturbance to the actual dining event.

In order to determine the food base plane, we first calculate the perspective matrix Min of
the camera via a general calibration procedure [21]. Figure 3 shows the schematic diagram
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indicating the relationship between the circular dining plate and its projected image on the
image plane. The plate projection contour is depicted on the image plane and its shape can
be represented by an ellipse equation:

(1)

where a′, h′, b′, g′ and f′ are parameters which are known after fitting the plate boundary in
the input image. By using this ellipse as the base of a quadric cone, the 3D representation of
the cone with respect to the camera coordinate system can be defined as:

(2)

where f is the focal length of the camera. It can then be observed from figure 3 that the
position and orientation of the plate can be uniquely identified as long as we find a 3D plane
P, which intersects with the quadric cone in a perfect circle with radius r. It is further
considered that there exists a distance deviation of plate depth (which may be estimated or
ignored for a sallow plate) between the plate and food planes. We hence shift plane P with a
plate depth value d along the normal of the plate away from the origin O, and consequently
obtain the food plane P1: lx + my + nz = q + d, where (l, m, n) represents the surface norm
of the food base plane with l2 + m2 + n2 = 1, and q is the distance of the plane to origin O.
The detailed derivations of l, m, n, and q can be referred to our previous study [20]. The
position and orientation of the food plane provide useful geometric constraints for the
following 3D/2D food model registration process.

2.3. Food segmentation based on adaptive thresholding and snake model
In this section, we present a combination of adaptive thresholding approach and edge-based
snake model to segment foods from the detected plate region. At first, a simple user-drawing
step is carried out on the background, as shown in figure 4(a), in order to acquire
information of background color distribution. Then, a dissimilarity map Md (figure 4(b)) that
characterizes the color difference between each pixel i and the background is calculated:

(3)

(4)

where P is the set of drawing points, ci and c̃k represent the YCbCr color vectors of pixel i
and drawing point k, respectively. A k-d tree data structure [22], which is built based on a
binary partitioning process to handle the problem of nearest neighbor search in O(logN), is
implemented to speed up the multidimensional search process in equation (4).

Next, Otsu’s adaptive thresholding [23], which separates two classes by maximizing inter-
class variance, is applied to the dissimilarity map in order to extract the food region. Then,
morphological closing is performed to connect adjacent regions segmented, and each
connected component with its size greater than a certain minimum value is considered to be
a food region. We then build convex hulls, each of which encloses the corresponding food
region by using Andrew’s monotone chain algorithm [24]. Each hull serves as an initial
contour of snake model in a deformation process which is achieved by minimizing an
energy function Esnake, which is defined in terms of deformation degrees of snake model and
image evidences for specifying target boundaries:
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(5)

where Eshape, Econtrast, and Ehomogeneity are, respectively, the shape energy, contrast energy,
and homogeneity energy, v(s) is the coordinate of the s-th point of the snake contour, and α
and β are weight values determining the relative importance of these energies. The total
energy value increases as the model deforms away from the target object. Eshape, which
measures stretching and bending degrees of the snake, is defined as

(6)

where v′(s) and v″(s) are the first and second order derivatives of the snake contour,
respectively.

Human foods often contain multi-color textures. As a result, only using a color gradient as
the edge evidence for attracting the snake is very likely to locate undesirable edges inside
the food [25]. However, it can be observed that the boundary of a complete food item is
mostly between the food and the plate, rather than between ingredients. In order to attract
the snake to the target boundary, we hence design the contrast and homogeneity energies
(equations (7) and (8)) based on the dissimilarity map.

(7)

where n(v(s)) represents the outer-pointing norm of the snake contour at v(s), and λ is a
weighting factor whose value is inversely proportional to the average intensity of the
neighborhood outside the snake contour. If this neighborhood presents lower pixel values in
Md, it has a higher probability that the model is situated at the transition from the food to the
plate. For such a case, the value of λ will increase to enhance the food edge evidence. In
addition, the homogeneity energy that calculates the regional dissimilarity variances outside
the snake contour is defined as

(8)

where c is the mean of dissimilarity values outside the snake contour regions. When the
snake contour is attracted by undesired edges with a large contrast value, Ehomogeneity will
increase, and the energy function ESnake will be penalized. Overall, the contrast and
homogeneity energies can efficiently capture the desired food boundaries for segmenting a
complete food item, while the shape energy properly constrains the degree of contour
deformation to maintain smoothness and avoid excessive distortions. The segmentation
result of the snake deformation is shown in figure 4(c).

During our implementation, equation (5) was minimized iteratively by adjusting the snake
contour to fit the food boundary. The iteration was stopped when the sum of the changed
points in the contour points between the previous and current iterations was less than 5, or
when the number of iterations reached 20. To achieve a better convergence during the
iterative minimization process, the width of the search region perpendicular to the snake
contour decreased progressively from 140 to 30 as the value of α (weight of the shape
energy) decreased progressively from 0 to 0.5. The value of β (weight of the contrast
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energy) was set to 0.6*(1–α) and the weight value of the homogeneity energy was set to 1–
α–β. These parameters were empirically determined and the same settings were used
throughout all experiments. After the snake deformation, we are able to obtain the
segmentation result for the food from the given image, and then proceed to the 3D/2D
model-to-image registration.

2.4. 3D/2D model-to-image registration
Based on our observation, the shapes of most real-world foods can be modeled by a set of
geometric shapes. Therefore, we construct a 3D geometric shape library, in which
correspondences between each model to a group of foods are pre-established based on
human knowledge. For each food in the image, we proposed a 3D/2D model-to-image
registration scheme to fit a 3D shape model with the food. Then, the volume of the food is
estimated based on the analytically calculated volume of the fitted shape model.

2.4.1. 3D geometric shape library—We have established an initial version of the
geometric shape library as shown in table 1 where columns 1 to 5 represent the model name,
model appearance, examples of the corresponding foods, pose parameters and number of
pose parameters, respectively. This initial version contains only nine regularly shaped
models, including cuboid, wedge, cylinder, sphere, upper and bottom half spheres, ellipse,
half ellipse, and tunnel. The volumes of the regularly shaped models can be directly
calculated using established formulas. In addition to these regularly shaped models, we also
include an irregularly shaped model in order to measure foods of other shapes, such as a
steak. The bottom surface of the irregularly shaped model is adaptively determined by the
segmented food contour, and its 3D structure is constructed by stacking the bottom surface
in the norm direction of the food base plane. Specifically, the bottom surface area of the
food is first calculated by using a 2D region growing method [26]. Then, the volume is
obtained by multiplication of the bottom area and the stacking height. For all shape models
in the library, the pose parameters (column 4) are optimized through the 3D/2D model-to-
image registration (next section) to determine the food volume.

2.4.2. Registration procedure—Figure 5(a) conceptually illustrates the concept of
model-to-image registration. First, a 3D model corresponding to the given food item is
generated on the food plane. We can project the model onto the image by using the
perspective projection matrix Min obtained from the camera calibration procedure. The
projection points S′ are obtained by

(9)

where Mex is the extrinsic matrix specifying the geometric transformation between the
camera and world coordinate systems, T is a 4 × 4 transformation matrix which depends on
the pose parameters, and S is the set of surface points of the shape model with Θ = (tx, ty, tz,
θx, θy, θz, sx, sy, sz) as its pose parameters, including three displacements, three rotation
angles and three scales with respect to the camera coordinates. Here, S is written as a
homogeneous coordinate matrix for calculation convenience. If the origins of camera and
world coordinate systems are assumed to be the same for the camera projection, Mex can be

simplified as .
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The 3D/2D registration is to find the optimal pose parameters Θ of the 3D shape model such
that the projected contour best matches the segmented food contour by minimizing a cost
function Freg:

(10)

where vj ∈ S′ represents the j-th projected model contour point, m is the number of projected
contour points, and IDT is a distance image, which is obtained at the first iteration of the
minimization process by using the sequential distance transformation [27]. The value of
each pixel in IDT represents its closest distance to the segmented food contour. For the rest
iterations, we do not need the searching process for the closest points between the projected
model contour and segmented food contour. Instead, we just refer the pixel positions of the
distance image, which coincide with the projected contour of the 3D model, and then sum up
these pixel values as the value of the cost function. As a result, the time complexity can be
reduced from O(N2) to O(N).

When equation (10) is implemented, a non-uniqueness problem may arise that a 3D model
with different pose parameters may produce the same projection contour in the single-view
image, yielding ambiguous solutions. Since we have known the location of the food plane,
the three displacements, tx, ty, and tz, can be represented using only two displacements tx1
and ty1 on the x-y plane of the camera coordinates:

(11)

where (u, v, w) = (l, m, n) × (0, 0, 1) with “×” being the cross product, and θP is the rotation
angle around (u, v, w). Moreover, the three angles θx, θy, and θz can be replaced with one
rotation angle around the norm of the plate. Furthermore, sx, sy, and sz can be simplified
depending on whether the selected model needs isotropic or anisotropic scale adjustment.
Here, the isotropic scale adjustment means that a shape model is enlarged or shrunk by a
scale factor that is identical among all directions, and otherwise, it is so-called anisotropic
scaling. Consequently, the dimension of pose parameters of a 3D model can be reduced (less
than or equal to six) to accelerate the registration process. Figures 5(b)(d) and 5(c)(e) shows
the projection contours of 3D shape models before and after registration, respectively.

3. Results and discussion
Experiments were conducted to evaluate accuracies in food contour segmentation and
volume estimation. Seventeen realistically shaped food replicas of known volumes (figure 6)
were utilized. Five images were acquired for each food at different locations on the plate
with a Logitech webcam (Pro 9000, Logitech). The distance between the food and the
camera was around 30 cm. The dimension of each image was 1600 by 1200 pixels, and the
pixel size was 0.0028 millimeter. For each image, the proposed method was implemented to
estimate food portion size automatically after the background of food image was identified
via user drawing. The average processing time was approximately five seconds per image,
which may be accelerated considerably since our software was not optimized for
computational speed.
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3.1. Accuracy evaluation of food contour segmentation
The accuracy of food segmentation was quantitatively evaluated by comparing our
segmentation results to the ground truth, which was obtained manually by hand
identification of the contour. As this process was tedious for the large set of data (eighty-five
digital images), we randomly chose one image out of the five images for each food. Thus,
only seventeen images were utilized for validation. A contour distance measure based on the
mean error (ME) and a spatial dependency measure based on the dice similarity coefficient
(DSC) [28] were utilized to evaluate the consistency between the automatic result and the
ground truth:

(12)

(13)

where ai and bj represent the coordinates of the i-th pair of closest contour points of our
automatic segmentation result and the ground truth, respectively, Q is the number of contour
points of the automatic result, and A and B are the sets of pixels of the automatic result and
ground truth, respectively. Table 2 lists the MEs and DSCs of the 17 food images. The
averaged ME and DSC were 2.61 ± 0.93 pixels and 97.64 ± 0.78 %, respectively. For each
food, the ME was less than 3 pixels, which was quite small compared to the contour length
(between 136 and 492). Moreover, the DSC was higher than 0.95, indicating a good overlap
between the automatic and manual results [28].

3.2. Accuracy evaluation of food volume estimation
In this experiment, we first measured the true volumes of the seventeen foods either
manually or using water displacement. Then, the accuracy of the estimation was evaluated
based on relative error E:

(14)

where VE and VG are, respectively, the estimated and ground truth volumes. For each food
item, the relative error, mean and standard deviation were calculated five times using the
five available images. The evaluation results for the seventeen foods are listed in Table 3.

Three foods (ketchup, haddock, and ice cream) showed the largest estimation errors. The
cause was found to be their geometric properties. The size of the ketchup was small, which
led to higher sensitivity in calculating the relative error. Moreover, although it seems that the
shapes of haddock and ice cream could be very well approximated by cuboid/half sphere
models, parts of their surfaces were concave, thus their volumes were subject to an over-
estimation. However, for most other foods with irregular shapes, our method had an average
error of 3.69%. This error was much lower than that made by visual estimation, roughly
20% on average, by subjects in terms of some assistive aids for size comparison, such a golf
ball or a deck of card [29]. In addition, it was smaller than the relative errors reported in [30]
as 10% and in [31] as 15%.

3.3. Performance evaluation of the proposed system
3.3.1. Statistical analysis on food volume estimation results—The estimation
results of food volumes were evaluated using the Bland–Altman plot and linear regression.
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A Bland–Altman plot, combining with liner regression analysis using 95% confidence and
prediction intervals, was generated to quantify agreement between the average estimated
result and the true volume for the validation images, as shown in figure 7. The green solid
lines represent the mean bias, the solid blue line indicates the regression line, the dashed
brown curves indicate the 95% confidence interval, and the dashed orange curves show the
95% prediction interval. Figure 7(a) was obtained from all seventeen food items, while
figure 7(b) excludes ketchup, haddock, and ice cream. The plot reveals no obvious
systematic error in estimation. Moreover, most estimates fall in the 95% prediction interval,
indicating good reliability of the proposed method. It can also be observed that the slope of
the regression line is close to 0 and the y-intercept is very small, indicating a high
correlation between the food volumes estimated by the proposed method and the true
volumes. The resulting plots also show that if ketchup, haddock, and ice cream are excluded
from the linear regression analysis, much smaller confidence and prediction intervals are
achieved, indicating that the potential estimation errors for most foods obtained by our
proposed system are 95% likely to fall in the small range of [+5, −5].

3.3.2. Effect of different plates on food volume estimation—The food plane
localization method used in our system requires users to provide the radius and depth
parameters of a plate. We were therefore concerned about how different plates would affect
volume estimation accuracy. Four plates with different radius and depth values were
prepared and used in the experiment. A block of cornbread, whose shape is relatively regular
compared to the other foods, was selected in order to minimize the effects of irrelevant
factors (e.g., food shape) on the accuracy of registration and segmentation. The cornbread
was placed at three locations on each plate and digital images were acquired. Three
estimation results were then automatically obtained from each plate image using the
proposed method. The results for different plates were then evaluated based on comparison
with the ground truth, as listed in table 4. The averaged estimation errors for all the plates
were less than 3%. Thus, the evaluation results indicate no obvious association between the
errors and the plates. Although a circular plate was adopted as the reference to localize the
food base plane in this paper, other regular objects of known dimensions, such as a credit
card, iphone, or coin, could be used as an alternative when implementing the proposed
model-based measurement system.

The proposed method includes a drawing step to obtain the information of color distribution
of the plate. The number of points in the drawing is dependent on the complexity of the
plate. As long as the drawing passes a part of the plate to sample its color, there should be
enough information to facilitate the food segmentation process. In our experiment, certain
variations in shadow and lighting reflections were observed even when the same plate was
used for different foods. The drawing step was performed on the YCbCr color space which
is relatively immune to the illumination variation [32]. Although the numbers of drawing
points were different, the segmentation results (mean error: 2.61 ± 0.93; dice similarity
coefficient: 97.64 ± 0.78) were consistent. It hence indicated that, to a certain extent, the
segmentation accuracy was not sensitive to the number of drawing points.

3.3.3. Application to the eButton in real eating activity—In this section we describe
our experiment on the use of eButton to perform dietary assessment in daily eating activity.
The details of the eButton hardware were reported previously [7]. During our experiment,
subjects worn the eButton on their chest to record eating process (frame rate: 1 frame/sec;
dimension: 640 by 480 pixels). We found that the distance between the eButton and the food
on table is usually between 20 and 30 cm when the subject was in the sitting position. To
ensure the food(s) can be imaged in such a short distance, a 105° wide-angle camera was
installed within the eButton. A sequence of eButton images recording the subject’s eating
activity was acquired and then saved in a SD memory card within the eButton.
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In the off-line analysis, one of the best images (i.e., without motion blur artifacts and
missing parts in the plate of food) was selected for estimating food portion size (see figure
8(a)). In order to achieve an acceptable measurement, we developed the software capable of
the model-based measurement and lens distortion correction [33]. Firstly, the software
performed the undistortion process on the input image and localized the food base plane (see
figure 8(b)). Then, the food in the plate was segmented and an appropriate 3D shape model
was initialized as shown in figure 8(c). Next, the 3D shape model was automatically
adjusted to fit the segmented food contour using the 3D/2D registration procedure (figure
8(d)). Finally, the food volume was approximated by the volume of the registered shape
model. If the food was consumed incompletely, the user can still choose another image after
the recorded eating event, estimate the leftover food volume, and subtract the volume from
that estimated before eating.

It was further considered that there were several practical problems in segmentation, such as
shadows, reflection, complex food ingredients, motion blurring, and object occlusions,
which frequently appear in real eating activity. These problems may cause a failure in
automatic segmentation and volume approximation. To make the software more practical in
case of such failure, we have further provided a user-friendly interface (see figure 8(e)) to
facilitate manual adjustment of the shape model. The user can manipulate all pose
parameters with ease by dragging the control points of shape model using a mouse. As a
result, an accurate measurement of food volume can still be achieved using the manual
estimation mode of our software, even though the foods were partially occluded by an
object, such as a spoon as shown by the example in figure 8(f). In addition, it was also found
that using a generic multi-view method like the one used in [10], which needs correct
correspondence of feature points to reconstruct the 3D surface of food item, could be
difficult to handle the case of liquid food. The major reason is because liquid food is usually
textureless and is seriously occluded by the container. Figure 8(g) shows an example of
estimating volume of a cup of soymilk from a single-view eButton image. We have hence
found from these experiments that, if a single-view image was carefully selected from the
sequence of eButton images, volume estimation can be performed efficiently by using the
proposed virtual shape model.

3.3.4. System limitations—As the eButton data may suffer from certain imaging
artifacts, such as the radial distortion of wide-angle lens, we need additional pre-processing
steps to correct the food images for the purpose of measuring the portion size. The biases of
these pre-processing steps are very likely to be accumulated in the measuring result. We
hence tried to simplify the imaging environment and adopted a higher-resolution camera to
carry out the above quantitative experiments, so that the effectiveness of the virtual model-
based measurement can be evaluated more objectively (without being influenced by other
factors). In addition, there are still some unresolved issues in automatic estimation of food
volume due to large variations of cooking habits, ingredient types, and dietary cultures in
different human populations. One challenging problem is automatic segmentation of the
foods with textures and colors similar to their container (e.g., rice and white plate). To
handle this issue, other physical features such as infrared radiation, instead of image
features, may be required for discriminating the foods from the plate. Moreover, if the eating
environment does not contain any known-size referent, it is extremely difficult, if not
impractical, to recover the metric scale of food volume measurement that the subject has
taken.

4. Conclusion
We have presented a new model-based framework to segment food items from single-view
images, register a 3D geometric shape model to the segmentation result, and then estimate
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food volume based on the registered shape model. This framework has several advantages
over the conventional methods. First, we combined the adaptive thresholding algorithm with
edge-based snake deformation to efficiently segment foods with multi-color textures.
Second, our registration method adopted global shape properties of the 3D food object to
compensate the insufficiency of spatial information in a single-view 2D image. Third,
during the registration process, the localization result of the food plane was utilized to
reduce the solution domain and derive the pose parameters of the 3D shape model from the
single-view 2D image. Fourth, the proposed system efficiently recovered the metric scale of
the food volume by using a new circular reference approach which integrates the parameters
of camera, image and physical food coordinate systems. Our experiments have demonstrated
that this framework can provide an average error of 3.69% in food volume estimation
despite the incomplete volumetric information in the single-view 2D image. More
importantly, this method has been generalized to common foods by utilizing a 3D shape
model library which contains both regularly and irregularly shaped models. In the future, we
plan to combine different models to further improve food volume estimation results.
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Figure 1.
(a) eButton; (b) electronic circuit board within the device; (c) a subject wearing the device
while eating.
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Figure 2.
Flowchart of the proposed method.
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Figure 3.
Schematic diagram illustrating the process of food plane calculation and the perspective
relationship between a circular plate and its image. Origin O is the focus of the camera lens.
Symbols XYZ define a real word coordinate system, in which Z is perpendicular to the
image plane.
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Figure 4.
Food segmentation: (a) original image with user-drawn points (green); (b) dissimilarity map
Md; (c) segmentation result after the snake deformation.

Chen et al. Page 17

Meas Sci Technol. Author manuscript; available in PMC 2014 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
3D/2D model-to-image registration: (a) illustration for the 3D/2D registration; (b)(d) and (c)
(e) projected 3D models before and after registration, respectively. Yellow contours are the
projections from 3D models, and the blue contours are from food segmentation.
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Figure 6.
Food items used in the validation experiments.
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Figure 7.
Bland–Altman analysis comparing the proposed method to the ground truth: (a) plot using
all the 17 food items. The linear regression line (solid blue line) in (a) is y = 0.54313 –
0.01740 x, with coefficient of determination R2 = 0.038; (b) plot using only the 14 food
items (without ketchup, haddock and ice cream). The linear regression line in (b) is y =
0.2740 + 0.004052 x, with coefficient of determination R2 = 0.021. The green solid lines are
the mean bias, the dashed brown curves indicate the 95% confidence interval and the dashed
orange curves show the 95% prediction interval.
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Figure 8.
Estimation of food portion size in real eating activity using the eButton: (a) original image;
(b) undistorted image; (c) superposition of segmented food contour and initial shape model
onto (b); (d) automatically fitted shape model using 3D/2D registration; (e) user interface of
the software; (f) case of object occlusion (spoon) showing superposition of manually
registered shape model and image; (g) case of a cup of soymilk by manual fitting of the
cylinder model.
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Table 1

3D geometric shape model library.

Model Appearance Corresponding food examples Pose parameters # of parameters

Cuboid Cornbread Translations (2), rotation (1), scaling (3) 6

Wedge Pizza, pie Translations (2), rotation (1), fan angle (1),
radius (1), height (1)

6

Cylinder Hamburger, drinks, jelly Translations (2), radius (2), height (1) 5

Sphere Peach, orange Translations (2), radius (1) 3

Half sphere Half peach Translations (2), radius (1) 3

Ellipse Potato Translations (2), rotation (1), lengths (3) 6

Half ellipse Half potato, plate of rice Translations (2), rotation (1), lengths (3) 6

Tunnel Cut carrot Translations (2), rotation (1), length (1), tunnel
radius (2)

6

Irregular shape Steak, pork chop Translations (2), rotation (1), scaling (3) 6
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Table 4

Comparison between volume estimation based on different plates by the relative error (%).

Plate 1 Plate 2 Plate 3 Plate 4

Radius r (cm) 13 11.5 11.35 7.25

Depth d (cm) 1.7 1.6 3 1.3

Sample

1 3.07 −1.75 2.90 0.47

2 2.97 7.10 0.37 −0.53

3 0.10 −3.75 0.22 −0.53

Average 2.05 0.53 1.16 −0.20

Std 1.69 5.77 1.51 0.58
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