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Abstract
Shortly after the discovery of the first antibiotics, bacterial resistance began to emerge. Many
mechanisms give rise to resistance; the most prevalent mechanism of resistance to the
aminoglycoside (AG) family of antibiotics is the action of aminoglycoside-modifying enzymes
(AMEs). Since the identification of these modifying enzymes, many efforts have been put forth to
prevent their damaging alterations of AGs. These diverse strategies are discussed within this
review, including: creating new AGs that are unaffected by AMEs; developing inhibitors of AMEs
to be co-delivered with AGs; or regulating AME expression. Modern high-throughput methods as
well as drug combinations and repurposing are highlighted as recent drug-discovery efforts
towards fighting the increasing antibiotic resistance crisis.

The discovery of antibiotics, compounds that kill or stunt the growth of bacteria, has had a
profound impact on human health. Soon after the 1928 discovery of the first antibiotic,
penicillin, the first aminoglycoside (AG) antibiotic, streptomycin (STR), was isolated from
Streptomyces griseus in 1943 and used as the first effective treatment for tuberculosis (TB)
[1]. AGs are still commonly used today for broad-spectrum treatment of bacterial infections
[2]. The term AG encompasses the family of antibacterial compounds whose structure
consists of two or more modified amino-sugars (Figure 1A). AGs act by binding to the A-
site of the 16S rRNA subunit of the bacterial ribosome, hindering proper matching of
aminoacyl-tRNAs to the anticodon. This leads to the synthesis of aberrant proteins,
eventually resulting in bacterial cell death [3]. Streptomyces and Micromonospora are the
bacterial genera that produce AG natural products [4]. These organisms avoid inhibiting
their own ribosomes by methylating their 16S RNA, preventing key AG–rRNA interactions
[5]. Unfortunately, as with most therapeutics, AGs do have toxic side effects. For example,
nonspecific binding of AGs to the eukaryotic ribosome A-site, which only differs from that
of prokaryotes by a single base pair (the prokaryotic A1408 corresponds to G1408 in
eukaryotes), is one of the causes that lead to toxic side effects including nephrotoxicity and
ototoxicity [6,7]. The only AG currently known to not display ototoxicity is apramycin
(APR) [8].
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Clinically, AGs are used to treat infections caused by aerobic Gram-negative bacilli as well
as Gram-positive staphylococci, mycobacteria, some streptococci and others. Because of
their structural differences, individual AG compounds differ in their effectiveness towards
the various types of bacterial infections. Furthermore, AGs are often used in combination
with other antibiotics, especially β-lactams or vancomycin, with which they work
synergistically due to enhanced uptake of the AG. STR, the first drug discovered to be
effective against TB, is still used, but less often due to high rates of resistance [9]. As a
second line of defense, kanamycin A (KAN A) and amikacin (AMK) are used to treat
multidrug-resistant (MDR)-TB infections, which are resistant to the front-line drugs
isoniazid, rifampicin, and the fluoroquinolones. Also, AGs are used to treat life-threatening
infections caused by enterococci and streptococci, Enterobacteriaceae, Pseudomonas
aeruginosa, Yersinia pestis (plague) and others. Newer AGs, such as AMK and arbekacin
(ARB) are used to treat gentamicin (GEN)-resistant infections including methicillin-resistant
Staphylococcus aureus (MRSA) [3]. Aside from being used as antibacterials, AGs have been
explored for the treatment of genetic disorders featuring premature stop codons, such as
cystic fibrosis and Duchenne muscular dystrophy [10], as well as in the treatment of
Ménière’s disease [11]. AGs are also being explored as HIV therapies as recently reviewed
[2].

Clinical resistance to AG antibiotics is becoming a global health crisis as AGs are often
second line or last resort treatments for the aforementioned deadly diseases including MDR-
TB and MRSA infections. Bacterial resistance to an antibiotic arises from modification of
the antibiotic target, efflux of the antibiotic or enzymatic modification of the antibiotic [12].
The most common mechanism of resistance to AGs is chemical modification by a family of
enzymes called aminoglycoside-modifying enzymes (AMEs) [12]. There are three different
types of AMEs: AG acetyltransferases (A ACs), AG nucleotidyltransferases (ANTs) and
AG phosphotransferases (APHs). In Gram-positive pathogens, APH(3′)-IIIa and A AC(6′)-
Ie/APH(2″)-Ia are two of the most common resistance enzymes [13]. Also, the prevalence of
A AC(6′)-Ii in Enterococcus faecium leads to resistance to multiple AGs [14]. A multi-
acetylating AME in Mycobacterium tuberculosis, the enhanced intracellular survival (Eis)
protein is responsible for KAN A and in some instances AMK resistance in a significant
fraction of KAN A-resistant clinical isolates of M. tuberculosis [15–21].

AACs use AcCoA as a cosubstrate. A ACs belong to the GCN5-related N-acetyltransferase
superfamily of protein folds, which catalyze acetylation of free amines on the substrate
molecule. Over 50 AACs have been identified in various organisms and they are capable of
acetylation at the 1, 3, 2′ or 6′ positions of various AGs (Figure 1A). Eis is a unique enzyme
capable of acetylating multiple positions on any given AG scaffold [22] and on lysine-
containing molecules [23]. Eis homologues are found in a variety of mycobacteria (e.g.,
Mycobacterium smegmatis [24,25]) and non-mycobacteria (e.g., Anabaena variabilis [26]).
There are five classes of ANTs, capable of adenylating at the 6, 9, 4′, 2″ or 3″ positions of
AGs. APHs catalyze the transfer of a phosphate to the 4, 6, 9, 3′, 2″, 3″ or 7″ positions of
AGs. ANTs and APHs both use ATP as a cosubstrate; ANTs transfer an adenosine
monophosphate group to the AG substrate, while APHs transfer a single phosphate to the
AG substrate. ANTs and APHs can also use GTP as a cosubstrate [27–30].

Traditionally, AMEs are named based on the AG position that they modify. For example,
AAC(6′) acetylates at the 6′ position. Furthermore, a roman numeral, followed by a lower-
case letter as an individual identifier describes AMEs based on their particular pattern of
resistance. Ramirez and Tolmasky provide a comprehensive summary of the many AMEs
identified [31]. Most AMEs are regioselective for a single position, though some are capable
of multiple modifications. To date, four bifunctional AMEs have been identified and
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studied: ANT(3″)-Ii/A AC(6′)-IId [32,33]; A AC(6′)-30/ A AC(6′)-Ib′[34]; A AC(3)-Ib/A
AC(6′)-Ib′ [35,36]; and AAC(6′)-Ie/APH(2″)-Ia [37–40].

Crystal structures of all three types of AMEs, including that of Eis, have been determined,
providing valuable structural information for efforts to thwart the AME modifications of
AGs responsible for clinical resistance. All currently published AME structures are
summarized in Tables 1–3. Many structures of AACs and APHs exist, while, to date, only
three structures of ANT are available from the PDB. Structures of a sample of each type of
AME are reported in Figures 2–4. In addition to these structures, a model of the bifunctional
AME AAC(6′)-Ie/APH(2″)-Ia has been reported [41].

Multiple approaches have been explored to combat bacterial AG resistance by AMEs
(Figure 5). Here, recent methods to overcome the increasing threat of AG resistance will be
highlighted, discussing advantages and disadvantages of these approaches.

New AGs
Perhaps the most obvious method to evade AG resistance is to create new AGs, known as
neoglycosides. The goal of this approach is to design novel AGs, or modify existing AGs,
that will effectively bind to the bacterial ribosome and inhibit protein synthesis, but will not
fit into the active site of AMEs. This type of strategy has been successfully applied to the
discovery of novel β-lactam and other second- and third-generation antibiotics. In this
section, recent highlights on progress towards developing new AGs by traditional chemical
synthesis and by newer biosynthetic and chemoenzymatic approaches will be summarized.
For more details on development of new AGs, we direct the reader to other excellent review
articles [42–46].

Chemical synthesis of neoglycosides
Since the discovery of STR, with the goal of improving antibacterial activity and alleviating
bacterial resistance associated with the action of AMEs, numerous AG derivatives have been
synthesized. With the plethora and growing number of crystal structures of AMEs and A-
site RNA fragments in complex with AGs, fragment-based virtual screening [47] and
rational design of new AGs have gained popularity in the last decade. The strategies used to
develop neoglycosides include: the formation of AG dimers; conformationally constrained
AGs; AGs that can evade the action of multiple AMEs; and self-regenerating AGs (Figure
5).

AG dimers—As dimerized AGs displayed promise in enhancing RNA binding [48], early
neoglycosides examined for bacterial MIC values and inactivation by AMEs were 5-linked
neamine (NEA) dimers (Figure 6A) [49]. The best NEA dimers with methylene bridges of
3–5-C in length proved to be poor substrates of AAC(6′)-Ii, APH(3′)-IIIa and AAC(6′)-Ie/
APH(2″)-Ia. Because of their improved antibiotic activity, affinity for the rRNA A-site and
inertness towards AMEs, a variety of other AG homo- and heterodimers have been
synthesized (Figure 6B) [50–53]. However, none of these novel AG dimers have been
evaluated for their potential to resist the action of AMEs. It will be interesting to see, in the
future, how these novel AG dimers will fair against AMEs. In addition to AG dimers
composed of two complete distinct AGs, AG hybrids containing some features of neomycin
B (NEO) or paromomycin (PAR) with sisomicin (SIS) were synthesized by Tsuji palladium-
catalyzed deoxygenation at the 3′ and 4′ positions (Figure 6C) [54]. These hybrids were
found to display activity superior to that of NEO and to evade APH(3′) and ANT(4′) activity
in P. aeruginosa and S. aureus, respectively.
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Conformationally constrained AGs—Several groups have attempted to make
conformationally restrained AG derivatives that selectively tightly bind to the A-site rRNA
sequence, but bind poorly to AMEs. Rigidified NEO derivatives with methylene (1- or 3-C)
linkers between the 2′-NH and 5″-C were designed to resemble the conformation of NEO
bound to A-site RNA, but to differ from the conformation of NEO in the ANT(4′) active site
(Figure 6D) [55–58]. These compounds displayed good antibacterial activity and, as desired,
were poor substrates for S. aureus ANT(4′) and M. tuberculosis AAC(2′). By using a similar
approach, PAR analogs tethered between the 6-hydroxy and 6‴-amino moieties were
designed (Figure 6E) [59]. The 6 and 6‴ positions were selected based on the differences
between the structure of PAR bound to a A-site rRNA fragment and NEO bound to
APH(3′)-IIIa. Unfortunately, these compounds were poor inhibitors of the growth of S.
aureus and Escherichia coli, suggesting that this particular conformational constraint
interferes with A-site binding.

AGs that evade the action of multiple AMEs—A large number of chemical
modifications have been made to AG antibiotics in an attempt to evade the action of AMEs.
By rational design, multiple series of NEA derivatives were synthesized [60,61]. In the first
series, 4-amino-2-hydroxybutyryl (AHB) was inserted at position 1 of NEA to mimic that of
AMK known to impart resistance to modification by various AMEs, whereas aliphatic
amines were added at position 6 to cover the distance between the oxygen at that position
and the phosphate backbone of the A-site of rRNA (Figure 7A) [60]. The two best NEA
derivatives in that series were found to have activities superior to those of the parent drug
and to be poor substrates of APH(3′)-I and A AC(6′)-Ie/APH(2″)-Ia. A small library of O-
alkylated NEA derivatives was also prepared and an analog bearing 6-, 3′-, and 4′-(2-
naphthylmethylene) substituents was found to be the most potent against S. aureus strains
expressing APH(3′), ANT(4′), and A AC(6′)-Ie/APH(2″)-Ia as well as P. aeruginosa and E.
coli strains expressing AAC(6′)-IIa, AAC(6′)-IIb, and ANT(2″)-IIa (Figure 7B) [61].

Based on the fact that substituents attached at the 4′ and 6′ positions of NEA have little
effect on its binding to RNA and modification by AMEs would deactivate a non-4′-modified
drug, a series of 4′-modified K AN B derivatives was synthesized to alleviate AME activity
while retaining binding to RNA (Figure 7C) [62]. These compounds inhibited the growth of
drug-resistant bacteria such as Klebsiella pneumoniae expressing ANT(2″), P. aeruginosa
expressing APH(3′)-IIb, MRSA expressing APH(3′), ANT(4′) and A AC(6′)-Ie/APH(2″)-Ia,
as well as Staphylococcus epidermidis expressing APH(3′)-IIIa. Based on the premise that
acylated AGs are sometimes more potent and less toxic than their non-acylated counterparts,
AGs acylated at the 6′ position have been synthesized to study the mechanism of AAC(6′)-Ii
[63]. A series of 6′- and 6‴-N-acylated tobramycin (TOB) and PAR analogs was also
synthesized [64]. These compounds, especially the 6′-N-glycinyl-TOB (Figure 7D), were
active against a variety of Gram-negative and -positive bacterial strains and resistant to the
action of a number of recombinantly overexpressed AMEs. As TOB derivatives proved
promising in alleviating resistance caused by AMEs, a variety of 6″-thioether TOB analogs
with aliphatic and aromatic chains was next investigated (Figure 7E) [65]. The best
compounds bearing C12 and C14 aliphatic chains displayed lower MIC values than the
parent TOB against several Gram-positive and -negative pathogens and resisted
modifications by a variety of AMEs.

2″-O-substituted analogs of PAR were also synthesized, evaluated for their antimicrobial
activities against E. coli and S. aureus, and their binding modes to the ribosome were
investigated by co-crystallization with an RNA fragment [66]. Two compounds prevented S.
aureus infection in mice with full protection at 1.2 and 0.5 mg/kg, respectively (Figure 7F).
Based on these promising results, 2″-O-substituted PAR analogs further derivatized by
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addition of an AHB group at position 1 were prepared [67]. These compounds were very
active against many resistant E. coli, S. aureus and S. epidermidis strains.

Finally, a series of 5-epi-substituted-4′-hydroxy derivatives of ARB was prepared and found
to display increased activity against MRSA strains expressing A AC(6′)-Ie/APH(2″)-Ia
(Figure 7G) [68]. The improved MIC for the 5-epi-substituted-4′-hydroxy derivative is
likely due to its evasion of modification by ANT(4′). Additional 4″-epi- and 5-epi-
derivatives of ARB also demonstrated activity against MRSA and Pseudomonas strains in
which AMEs are expressed [69].

Self-regenerating AGs—By phosphorylating AGs at their 3′-hydroxyl, APH(3′)s
decrease the binding aff inity of these AGs for the bacterial ribosome. A ‘self-regenerating’
K AN A derivative that avoids inactivation by APH(3′) enzymes was cleverly designed
(Figure 8) [70]. This self-regenerating AG is inherently unstable and is hydrolyzed to the 3′-
geminal diol, which was found to be a viable substrate for both APH(3′)-Ia and APH(3′)-IIa.
After enzymatic modification, the phosphorylated product undergoes non-enzymatic
elimination, regenerating the initial KAN A analog. This self-regenerating AG exemplifies
the creativity that will be needed to evade the action of AMEs and overcome bacterial
resistance.

Other AGs with antimicrobial potential—Some additional promising AG derivatives,
but by no means an exhaustive list, are presented in this section. The effect of guanidinyl
additions to various AG scaffolds was recently explored [71]. Using a fluorescence
resonance energy transfer binding assay for the rRNA A-site, many of the guanidinylated
AGs demonstrated increased affinities and lower MIC values against resistant strains when
compared with the parent compound. AGs coupled to peptides and lipids were prepared with
the intention of increasing bacterial uptake [72,73]. When examining TOB–lipid and –
peptide conjugates, it was observed that the length of the lipid tail has a large effect on
antibacterial activity, while the number of positive charges plays a lesser role [72]. NEO-C16
and -C20 lipid conjugates demonstrated strong activity against Gram-positive bacteria and
antibacterial activity towards MRSA [74]. Guanidinylated NEO and KAN A lipid
conjugates with C16 and C20 tails were found to restore anti-MRSA activity and overcome
KAN A resistance [75]. Cationic AG polycarbamates and polyethers were synthesized and
polyol-modified NEO exhibited enhanced antibacterial activity against resistant strains [76].
NEO– and KAN A–peptide triazole conjugates demonstrated better activity when compared
with parent compounds against NEO- and KAN A-resistant bacterial strains, respectively
[77].

Many AG derivatives were recently synthesized for purposes other than improving
antibacterial activities. Some of these have undergone antimicrobial studies, but have not yet
been evaluated for their ability to resist AMEs. AG conjugates have also been prepared as
telomerase inhibitors [78]. Recently, AG derivatives were explored as potential therapeutics
for genetic diseases caused by premature stop codons brought on by random mutations
[10,79–81]. Though optimized to aid in read-through of premature termination codons at the
eukaryotic ribosome, this armory of multiple generations of AGs can also be investigated for
their alternative potential as antibacterial agents. Preliminary studies have demonstrated the
promise of some of these compounds to evade the action of APH(3′)-IIIa. Overall, it will be
interesting to observe how these new-generation AGs will fair against AMEs.

Plazomicin, the newest AG in clinical trials—Currently, the only neoglyoside that
has advanced to clinical trials is plazomicin (PLZ), formerly known as ACHN-490 (Figure
9) [82,83]. PLZ is a synthetic derivative of SIS with an AHB substituent at position 1 and a
hydroxyethyl substituent at the 6′ position [44]. While maintaining high binding affinity for
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the bacterial ribosome, PLZ is resistant to the action of most AMEs (A AC(3), APH(3′),
ANT(4′), A AC(6′), ANT(2″) and APH(2″)), with the exception of A AC(2′) enzymes to
which it remains susceptible. PLZ displays broad-spectrum activity and is effective against
both Gram-positive and -negative bacteria, including several AG-resistant strains expressing
AMEs. PLZ has been found to be effective against many drug-resistant clinical isolates from
the USA including: Klebsiella pneumoniae [84]; E. coli and K. pneumoniae [85]; MRSA
[86]; as well as Acinetobacter baumannii and P. aeruginosa [87]. PLZ was also found to be
effective against carbapenem-resistent Enterobacteriaceae from the UK [88] as well as AG-
resistant strains of K. pneumoniae, E. coli and Enterobacter spp. from Greece [89].
Furthermore PLZ was effective against resistant E. coli, Enterbacteriaceae and MRSA
infections in mouse models [90]. Against P. aeruginosa, PLZ was found to be synergistic
when used in combination with other drugs including cefepime, doripenem, imipenem and
piperacillin/tazobactam [91]. In another study, PLZ in combination with daptomycin, both at
sub-inhibitory concentrations, were found to act synergistically against over 40 MRSA
bacterial strains [92]. Phase I clinical trials performed by Achaogen Inc. have been
successful and revealed no evidence of ototoxicity or nephrotoxicity for PLZ [93]. Phase II
clinical trials for patients with complicated urinary tract infections were successfully
completed in April 2012. Additional trials are planned for 2013.

Biosynthesis & chemoenzymatic formation of new AG derivatives
To circumvent the problems associated with the complexity of traditional chemical
approaches for the development of AGs, biosynthetic and chemoenzymatic methodologies
have been developed. Rhodostreptomycin A and B were biosynthetically produced by
horizontal gene transfer from Streptomyces padanus to Rhodoccoccus fascians (Figure 10A)
[94]. Rhodostreptomycin was tested against several bacterial strains, but has yet to be
evaluated in regards to resistant strains and AMEs. However, it sets precedence for
exploiting bacterial gene transfer [95,96], an advantageous method that alleviate the
synthetic challenges presented by complex AG scaffolds, for the production of new AG
derivatives.

By using biosynthetic enzymes from Bacillus circulans, BtrH and BtrG, to install an AHB
moiety at position 1 of NEO and K AN A, the AGs neokacin and AMK were generated,
respectively (Figure 10B) [97]. This method is valuable as it can be applied to milligram-
scale chemoenzymatic synthesis of unnatural AHB-substituted AGs. By taking advantage
of the cosubstrate promiscuity of AACs, the resistance enzymes themselves, novel mono- as
well as homo- and hetero-di-N-acylated AGs were prepared (Figure 10C) [98]. While only
small amounts of AG derivatives can be produced from these chemoenzymatic reactions,
this method presents an excellent initial screen to determine which compounds warrant
further investigation and the pursuit of a larger-scale synthesis.

AME inhibitors
Since the majority of antibiotic resistance arises from the action of AMEs, the design of
AME inhibitors is another promising strategy to evade resistance. This approach has been
effectively applied to β-lactams: the combination of β-lactams antibiotics and inhibitors of β-
lactam resistance enzymes (β-lactamases) has been clinically and commercially successful
for over 30 years [99]. Similarly, AME inhibitors could become adjuvant antibiotics; their
co-delivery along with an AG would prevent inactivation of the AG by the resistance
enzymes. AGs are already often dosed in combination with other antibiotics; AME
inhibitors would be one more compound to add to the cocktail of drugs.

The first efforts towards developing AME inhibitors began over three decades ago. Shortly
after the identification of AcCoA as the cosubstrate of AACs, a derivative of GEN with
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AcCoA attached at the 3-NH2, termed a ‘multi-substrate’, was prepared
chemoenzymatically and evaluated as an AAC(3′) inhibitor [100]. In this section, recent
highlights on progress towards developing AME inhibitors will be summarized.

Bisubstrate (AG-AcCoA) inhibitors targeting AAC(6′)
AG–AcCoA bisubstrate inhibitors of AAC(6′) were designed as potential drug candidates
and for mechanistic studies (Figure 11A) [43]. NEA-AcCoA with linkers of varying length
(1–5C) proved to be good inhibitors of A AC(6′)-Ii, A AC(6′)-Iy, and A AC(6′)-Ie/APH(2″)-
Ia, with nanomolar to micromolar potencies [101]. These molecules were crystallized with
A AC(6′)-Ii, providing valuable structural information regarding the active site of the
enzyme [102]. Bisubstrate inhibitors with sulfonamide- and phosphonate-containing linkers
to mimic the proposed tetrahedral transition-state geometry were synthesized, but were
found to not increase in potency [103]. Two similar compounds made with sulfone linkers
had nanomolar potency for AAC(6′)-Ii, suggesting that the S=O was correctly positioned to
hydrogen bond to nearby Tyr111 or Tyr147 hydroxyls [103,104]. Bisubstrate analogs with
K AN A or RIB in place of NEA displayed similar potencies to the NEA derivatives,
suggesting that the AG rings III and IV are not necessary for inhibition [101]. An analog
with only ring I loses potency, indicating the importance of ring II in binding [105].

Although they are potent inhibitors that have revealed much regarding the active site and the
mechanism of AAC(6′), bisubstrate compounds were not effective in cellular assays,
probably due to poor membrane permeability because of their large size and negative
charge. To address this, the anionic adenosine diphosphate moiety, was modified. SAR
studies revealed that the adenosine is not essential, but potency drops dramatically if more
than one phosphate is removed [105]. Crystal structures demonstrate several hydrogen bond
donors positioned to interact with the negatively charged phosphates, supporting their
importance in potent inhibitor binding [43]. Recently, another attempt to overcome poor cell
membrane permeability includes the design of bisubstrate prodrugs consisting of only an
AG with a pantetheine linker (Figure 11B) [106]. This linker was chosen to take advantage
of bacterial enzymes PanK, PPAT and DPCK, which, once inside the cell, transform the
AG–pantetheine into the desired AG–pantetheine–CoA compounds. These compounds were
also tested against an AG-resistant strain of Enterococcus faecium that expresses AAC(6′)-Ii
and were found to be effective inhibitors of bacterial growth when co-delivered with KAN
A.

A bisubstrate scaffold has inspired other efforts towards AME inhibitors. Using NMR-
guided fragment-based design, bisubstrate-like inhibitors in which the AG is replaced with a
mimicking fragment were designed and had nanomolar inhibition of AAC(6′)-Ib (Figure
11C) [107].

APH inhibitors
Diverging from the conventional small-molecule chemotherapeutic approach, in vitro and in
vivo inhibition of APH(3′)-IIIa was achieved by a designed ankyrin repeat (AR) protein
[108]. The 33-amino acid peptide was selected from a library of designed AR proteins. The
larger surface area of a small protein enables it to bind its target with higher specificity than
small molecules, however, therapeutic delivery of proteins is often more complicated than
small molecules. Crystal structures of APH(3′)-IIIa in complex with the AR inhibitor
revealed the allosteric binding mode of the AR inhibitor, which is responsible for rendering
the APH inactive [109].

Because the APHs possess kinase activity, previously discovered eukaryotic protein kinase
inhibitors have been investigated as APH inhibitors. Early work identified the known kinase

Labby and Garneau-Tsodikova Page 7

Future Med Chem. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



inhibitors quercetin and CKI-7 (Figure 12A), among others, to be inhibitors of APH(3′)-IIIa
and A AC(6′)-Ie/A PH(2″)-Ia [110]. More recently, CKI-7, an ATP-competitive inhibitor for
casein kinase 1, was further studied as an inhibitor of APH(3′)-IIIa and APH(9)-Ia [111].
Co-crystal structures of both of these APHs with CKI-7 were solved, revealing that the
binding mode of the inhibitor in the nucleotide-binding pocket of these bacterial enzymes is
indeed different from that of CKI-7 with eukaryotic kinases. This allows for potential
development of bacterial kinase inhibitors selectively targeting APHs.

Fourteen APHs were recently screened against a commercially available library of 80
chemically diverse kinase inhibitors to map the resistance kinase chemical space [112]. The
screens identified molecules with both broad and narrow inhibition profiles, suggesting that
several protein kinase inhibitors warrant further studies as effective AME inhibitors. One hit
was the aforementioned natural product kinase inhibitor quercetin (Figure 12A), which
inhibited several of the APHs in vitro and in vivo. The co-crystal structures of APH(2″)-IVa
in complex with quercetin, as well as with KAN A, were solved, providing important
structural information to further the design of APH inhibitors.

Relevant to future APH inhibitor design, it was discovered that while APH(3′)-IIIa
exclusively uses ATP as a cosubstrate, APH(2″)-Ib is capable of using both ATP and GTP
[28]. GTP use among human kinases rarely occurs, hence these differences may be exploited
for kinase inhibitors that selectively target APHs without disrupting human kinases.

Inhibitors that target multiple AMEs
Even though APH inhibitors are useful, compounds that inhibit multiple AMEs would be
desirable. A library of 45 non-carbohydrate AME inhibitors were designed based on the 1,3-
diamine pharmacophore found in AG structures and were observed to be competitive
inhibitors of ANT(2″)-Ia and APH(3′)-IIIa (Figure 12B) [113]. A structure–activity
relationship of this small group revealed that the 3-(dimethylamino)propylamine moiety was
common in the most potent inhibitors.

The previously described set of 2″-ether PAR analogs (Figure 7F) [66] were later
investigated as inhibitors of APH(3′)-IIIa and AAC(6′)-Ii [114]. Of the 25 compounds
reported, all were poorer substrates for AAC(3′)-IIIa than PAR and four had no detectable
turnover with this AME. The 2″-substituted PAR analogs had low mircomolar Ki values for
the two AMEs examined. This study is a great example of the collaboration and
resourcefulness (evaluating existing compounds for multiple purposes) needed to tackle the
problem of bacterial resistance.

Natural products
Aranorosin (Figure 12C), a natural product isolated from Gymnascella aurantiaca, inhibited
the growth of a MRSA strain only in the presence of ARB, and was confirmed to be acting
by inhibiting the bifunctional AME AAC(6′)-Ie/APH(2″)-Ia [115]. Four biverlactone natural
products isolated from Penicillium sp. FKI-4429 that circumvent ARB resistance in MRSA
cultures have also been identified, however, their mechanisms of action have not yet been
characterized [116]. Hopefully more of the thousands of natural products already isolated
and characterized by scientists will be screened as AME inhibitors in the future.

Cationic peptide inhibitors of AMEs
Several cationic peptides that mimic the binding of AGs to the negatively charged active site
of AMEs have been examined. These peptides have good affinity for AAC(6′)-Ie, AAC(6′)-
Ii, APH(3′)-IIIa and A AC(6′)-Ie/APH(2″)-Ia, and are the first compounds discovered to
demonstrate broad-spectrum inhibition of AMEs. However, these peptide inhibitors did not
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demonstrate any antimicrobial effects against resistant bacterial strains, probably due to poor
membrane permeability [117].

High-throughput screens for AME inhibitors
Well-established enzyme assays that can be adapted to high-throughput screening (HTS)
exist for all three classes of AMEs, making HTS a realistic approach to finding AME
inhibitors. Surprisingly, HTS has so far only been applied to the identification of inhibitors
of Eis, the multi-acetylating A AC from M. tuberculosis [118]. From a library of
approximately 23,000 compounds, 25 compounds were identified with activities in the high
nanomolar to low micromolar range. While they vary in structure, these 25 compounds all
feature at least one aromatic ring and one amine functional group. Some compounds
demonstrated mixed inhibition, while others were found to be competitive inhibitors against
AGs. It will be interesting to see how these compounds fair in restoring the activity of KAN
A in extensively drug-resistant TB clinical isolates known to resist this AG. Crystal
structures of Eis–AcCoA–inhibitor complexes could also provide valuable information for
further development of inhibitors of this AME. HTS appears to be a promising strategy to
discover new compounds for drug combinations with currently approved AGs for TB
treatment. As several AMEs exist, this strategy could be potentially applied to discover
inhibitors of other AMEs for the treatment of resistant bacterial pathogens besides TB. Even
though no screens for inhibitors of APHs have been reported, thus far, as the many HTS for
other kinases have already been successful [119,120], there is high hope that novel APH
inhibitors could be identified this way. While the co-delivery of existing AGs with new
AME inhibitors is a seemingly straightforward approach because AMEs are ‘drug gable’
enzymes, it is important to note that this solution would not eliminate the toxicity of the
currently used AGs.

High-throughput methods to evaluate new AGs & new AME inhibitors
As the number of AG derivatives and potential AME inhibitors keeps growing, it is
becoming pertinent to develop efficient high-throughput methods to assess the potential of
these compounds to meet the various criteria required of them to become successful
antibacterials. To be good antibiotics, new AGs must: bind to the prokaryotic (but not the
eukaryotic) ribosome; not be a substrate for AMEs; and demonstrate bacterial growth
inhibition. AME inhibitors must inhibit one or ideally many AMEs without disrupting
binding of AGs to the ribosome.

Screens for ribosome binding
While AG binding affinity to the ribosome is not directly proportional to MIC, it is often a
useful means of identifying potential AGs [121]. An early HTS employed a competitive
fluorescent (pyrene-labeled) AG probe (PAR or TOB) and a prokaryotic ribosomal RNA A-
site construct known to bind AGs [122]. Monitoring fluorescence quenching measured
antagonist binding to the rRNA fragment. This study served as a launching pad for the
development of other AG-fluorescent probes and future HTS for RNA-binding compounds.
These ribosomal binding affinity screens are additionally useful as they may be adapted to
use a eukaryotic RNA A-site fragment to identify compounds with predictably fewer toxic
side effects [123]. Earlier this year, a related high-throughput assay that uses a robust and
reproducible fluorescein-conjugated NEO compound as a competitive binding probe was
developed to measure binding affinity of a compound to an E. coli RNA A-site fragment
[124]. This proof-of-principle study screened existing parent AGs (NEO, GEN, PAR, NEA,
RIB and STR) and proved to be a promising tool to identify new high-affinity ribosome-
binding compounds.
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HTS using methods other than fluorescence-based probes, namely MS [125,126], NMR
[127] and surface plasmon resonance [128] have also been developed to measure binding
affinity for the RNA A-site. Isis Pharmaceuticals has developed a MS assay, which, in
addition to determining binding affinities of AGs for RNAs, also identified binding
specificity based on the fragmentation pattern of AG/RNA complexes [126]. This assay has
been used to assess the binding affinities of a library of heterocyclic PAR analogs,
identifying a derivative with good RNA-binding affinity, more potent than TOB and APR,
but not quite as potent as PAR itself [129]. In 2003, Abbott reported a NMR-based screen to
identify compounds that bind to the E. coli ribosomal A-site [127]. This screen of
approximately 10,000 compounds resulted in initial hits (hit rate 3%) with binding affinities
from 70 μM to 3 mM. HTS, such as those described above, should help in identifying novel
AGs that efficiently bind to their target.

High-throughput microarrays
A high-throughput microarray platform for directly assaying the activity of resistance
enzymes on AGs and the effect of immobilization on RNA binding has been developed
(Figure 13) [130,131]. This method relies on arrays of AGs immobilized by an azido
attachment at their 6″ position and monitors the reactivity of AGs with AMEs by
radioactivity and their binding to the A-site of rRNA by fluorescence. Thus far, this method
has been tested with KAN A and TOB derivatives against ANT(2″) and APH(3′). It has also
served as a basis for a 2D combinatorial screen of small RNA internal loops to determine
their binding affinities for the immobilized AGs [132]. Even though the method is optimized
and relatively straightforward, it does require the use of specialty equipment and
radioactivity as well as challenging synthesis of 6″-azido-AGs.

Regulating AME expression
An alternative approach to overcome the action of AMEs consists of blocking the expression
of genes encoding for these resistance enzymes. Antisense oligodeoxynucleotides were first
designed to block expression of the aac(6′)-Ib [133]. Although successful, this method was
limited by the fact that it required electroporation to introduce the oligonucleotide into the
bacterial cells. Subsequently, short antisense oligonucleotides that induce cleavage of
mRNA, termed external guide sequences, were designed to induce inhibition of AMK
resistance caused by A AC(6′)-Ib [134]. While successful, the external guide sequences
olignonucleotides were rapidly degraded by nucleases in vivo. To circumvent this problem,
locked nucleic acid (LNA)/DNA co-oligomers resistant to nucleases were next investigated
[135]. The most successful, ‘LNA9’, inhibited growth of E. coli AS19 expressing AAC(6′)-
Ib at a concentration of 50 nM when co-delivered with AMK and was stable to nucleases for
over 24 h. Synthetic RNA silencing has been successfully applied to a variety of other
bacterial resistance genes, but not to other AMEs yet [136].

Drug combinations & repurposing
Many antibiotics are already commonly used in combination therapies to broaden their
antimicrobial spectrum and generate synergistic effects by hitting more than one target.
Drug combinations may also help to combat antibiotic resistance arising from the expression
of AMEs. Furthermore, the repurposing of drugs is advantageous because molecules
developed to the point of clinical trials will have well-characterized pharmacology and
toxicology. Redeployment of existing molecules is also economical with regards to both the
time and cost required by the early stages of the drug-discovery process. As previously
mentioned, the repurposing of chemical libraries of kinase inhibitors, developed for
campaigns in cancer and other diseases involving protein kinases, can identify molecules
with orthogonal ability to inhibit antibiotic resistance kinases. Such compounds could be
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formulated as co-drugs to overcome antibiotic resistance. Both repurposing and drug
combinations should be part of the solution to the relentless problem that is antibiotic
resistance.

Many examples of drug combinations have been explored to fight bacterial infections [137].
A recent highlight includes the use of two β-lactams to effectively treat extensively drug-
resistant TB [138]. Also, TOB and the macrolide antibiotic clarithromycin have
demonstrated promising synergistic effects in M. tuberculosis clinical isolates [139]. Recent
work demonstrates that, in general, combinations of antibiotics and non-antibiotic drugs
could result in enhancement of antimicrobial activity [140]. Initially, a library of over 1000
previously approved drugs were screened to identify compounds that augment the activity of
minocycline, a tetracycline antibiotic that inhibits protein synthesis. The combinations were
assayed against strains of P. aeruginosa, E. coli, and S. aureus. A total of 69 non-antibiotic
compounds exhibited synergistic activity against these pathogens when combined with
minocycline. These compounds were then tested, again in combination, against a panel of
clinical MDR strains. Some compounds were selective, inhibiting the growth of only a few
of the strains, while a few, including loperamide, an opioid receptor agonist used to treat
diarrhea, were synergistic with multiple antibiotics, including AGs.

An emerging branch of combination therapies is dual-acting (or hybrid) antibiotic molecules
[141]. These heterodimeric molecules contain two individual antibiotic moieties, which
maintain different targets, covalently linked together. The covalent linker may be a
cleavable, in which case the hybrid molecule is a prodrug, or the linker may be stable, in
which case the hybrid molecule is a dual-acting drug. A recent series of dual-acting
antibiotics contained ciprofloxacin, a fluoroquinolone antibiotic, covalently linked to NEO
[79]. Many of these compounds were more potent than NEO alone against several NEO-
resistant bacterial strains, and were inert to modification by APH(3′)-Ia, APH(3′)-IIIa, and
AAC(6′)-Ie/ APH(2″)-Ia. Notably, in multi-passage experiments the dual-acting
ciprofloxacin–NEO compounds demonstrated a significant delay in the development of
resistance in both Gram-negative and -positive bacterial strains.

Future perspective
This article summarizes the many various efforts underway to counteract bacterial resistance
caused by AMEs. A combination of many of these highlighted strategies, as well as new,
creative methods will likely be necessary to suppress resistance. It will take a combination
of efforts from the health-care sector, academic and private research, as well as the
community at large to recognize the global need for new antibiotics and take responsible
actions when using antibiotics.

The tried and true method of designing new AG derivatives has been fruitful in the past,
resulting in successes, such as ARB and AMK. Although still challenging, recent
improvements in synthetic, biosynthetic, and chemoenzymatic methodologies render the
discovery and study of neoglycosides more feasible. As new AGs are pursued, it should be
taken into account that many existing AGs are ototoxic, therefore, scaffolds that have
demonstrated less toxicity, such as APR, should probably be investigated as parent
compounds. New technologies should be utilized including innovative synthetic approaches
and HTS for activity checks with AMEs and for measuring rRNA A-site binding. As natural
products, AG biosynthetic pathways could be exploited to produce new AGs [4]. However,
as history demonstrates, resistance to new AGs is inevitable. As with all next-generation
antibiotics, it will be a never-ending struggle to stay one step ahead of resistance.

In the future, scientists will likely move away from traditional medicinal chemistry and
towards more modern methods, such as drug repurposing. Currently, there are many drugs
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that are already in use that have been well studied in terms of their dosing, metabolism and
toxicology. Repurposing these existing compounds, already evaluated to be safe, as AME
inhibitors will require many fewer man-hours than de novo designs. Of course, resistance to
these inhibitors will almost certainly arise in the future and, therefore, it is not to be
forgotten that we may never overcome antibiotic resistance.

Key Terms

Chemoenzymatic
synthesis

Use of enzymes to aid in the synthesis of organic compounds

Adjuvant Secondary compound that modifies, usually positively, the
effect of the primary compound in a combination therapy
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Executive summary

Background

• Many methods are being explored to address the crucial and urgent need to
overcome bacterial resistance to aminoglycoside (AG) antibiotics caused by
aminoglycoside-modifying enzymes (AMEs).

Summary of strategies of overcome the action of AMEs

• Existing AG scaffolds can be modified to create new AGs capable of evading
AME modification. Future focus should be put on those associated with the least
resistance and toxicity.

• AME inhibitors can be designed to be co-delivered along with current AGs.

• Innovative chemoenzymatic and biosynthetic approaches will expand the
repertoire of accessible scaffolds and facilitate synthesis of novel AGs and AME
inhibitors, which often contain multiple stereocenters.

• Repurposing existing drugs offers an economically advantageous drug-
discovery approach that should be applied to overcome AME resistance. For
example, previously identified protein kinase inhibitors offer chemical scaffolds
that can block antibiotic resistance caused by AG phosphotransferases,
providing leads for drug combination.

Future perspective

• Resistance results from a natural evolutionary phenomenon that, in all
probability, will never end. Appropriate use of existing AGs and the continual
development of new AGs as well as novel antibiotic adjuvants using a variety of
the strategies described in this review will hopefully sustain minimal levels of
resistance.
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Figure 1. Aminoglycosides
(A) Aminoglycoside antibiotics with summary of positions modified by aminoglycoside-
modifying enzymes (indicated by solid line arrows on representative structures of
kanamycin B, streptomycin, hygromycin and spectinomycin). The dashed arrows indicate
potential sites of modifications by the multi-acetylating aminoglycoside-modifying enzyme
enhanced intracellular survival protein. (B) 16S rRNA in complex with paromomycin (PDB
code: 1PBR [142]).
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Figure 2. Representative aminoglycoside acetyltransferases (AACs)
(A) AAC(3)-Ia with CoA (sticks) (PDB code: 1BO4) [143]. (B) AAC(2′)-Ic with RIB
(ribostamycin; red sticks) and CoA (yellow sticks) (PDB code: 1M4G) [145]. (C) AAC(6′)-
Ib with RIB (red sticks) and CoA (yellow sticks) (PDB code: 2BUE) [146]. (D) AAC(6′)-Iy
with RIB (red sticks) and CoA (yellow sticks) (PDB code: 1S3Z) [150]. (E) Enhanced
intracellular survival protein with CoA (sticks (PDB code: 3R1K) [22].
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Figure 3. Representative aminoglycoside phosphotransferases (APHs)
(A) APH(3′)-IIa with KAN A (kanamycin A; sticks) and Mg2+ ions (spheres) (PDB code:
1ND4) [151]. (B) APH(3′)-IIIa with KAN A (sticks) and Mg2+ ions (spheres) (PDB code:
1L8T) [153]. (C) APH(2″)-IVa with KAN A (sticks) (PDB code: 3SG9) [157]. (D)
APH(2″)-Id/APH(2″)-IVa with KAN A (sticks) (PDB code: 4DFB) [112]. (E) APH(9)-Ia
with SPT (red sticks), ADP (blue sticks), and Mg2+ ions (spheres) (PDB code: 3I0O) [159].
(F) APH(4)-Ia with hygromycin (sticks) (PDB code: 3TYK) [158].
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Figure 4. Representative aminoglycoside nucleotidyltransferases (ANTs)
(A) ANT(4′) with kanamycin A (red sticks), adenosine 5′-(β,γ-imido)triphosphate (blue
sticks), and Mg2+ ions (spheres; PDB code: 1KNY) [160]. (B) ANT(4′)-IIb with tobramycin
(sticks; PDB code: 4EBK).
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Figure 5. Overview of strategies to overcome resistance to aminoglycoside-modifying enzymes
discussed in this review
AG: Aminoglycoside; AME: Aminoglycoside-modifying enzyme.
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Figure 6. Aminoglycoside dimers and conformationally constrained aminoglycoside analogs
(A) NEA–NEA dimers discussed. (B) Summary of aminoglycoside dimers synthesized and
studied. (C) Hybrids of NEO or paromomycin with sisomicin. (D) Rigid NEO analogs with
a 2′-5″ connections. (E) Rigid NEO analogs with a 6-OH to 6‴-NH tethers.
KAN: Kanamycin; NEA: Neamine; NEB: Nebramine; NEO: Neomycin B; TOB:
Tobramycin.
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Figure 7. Aminoglycoside derivatives that evade the action of aminoglycoside-modifying enzymes
(A) Neamine derivatives modified by addition of an 4-amino-2-hydroxybutyryl group at
position 1 and aliphatic amines at position 6. (B) 6,3′,4′-tri(2-naphthylmethylene)-neamine.
(C) 4′-modified kanamycin B derivatives. (D) 6′-N-glycinyl-tobramycin. (E) 6″-thioether
tobramycin analogs. (F) 2″-O-substituted paromomycin analogs. (G) 5-epi-substituted-4′-
hydroxy-, 4″-epi- and 5-epi-derivatives of ARB.
ARB: Arbekacin.
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Figure 8.
‘Self-regenerating’ kanamycin A analogs that evade modification by aminoglycoside
phosphotransferase (3′) enzymes.
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Figure 9. Plazomicin with potential sites of modifications by aminoglycoside-modifying enzymes
indicated by arrows
The solid line arrows represent positions shown to be resistant to aminoglycoside-modifying
enzyme modifications. The dotted arrow indicates the position still susceptible to
modification by the aminoglycoside-modifying enzyme AAC(2′). Highlighted are the
substitutions that differentiate plazomicin from sisomicin: the AHB at position 1 and the
hydroxyethyl at position 6′.
AAC: Aminoglycoside acetyltransferase; AHB: 4-amino-2-hydroxybutyryl; ANT:
Aminoglycoside nucleotidyltransferase; APH: Aminoglycoside phosphotransferase.

Labby and Garneau-Tsodikova Page 31

Future Med Chem. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 10. Biosynthesis and chemoenzymatic synthesis of novel aminoglycosides
(A) Biosynthetically produced rhodostreptomycin A and B. (B) Chemoenzymatic
installation of an AHB moiety on NEO to produce neokacin. The conversion of kanamycin
A to amikacin was similarly achieved using BtrH and BtrG. (C) Chemoenzymatic N-
acylation of aminoglycosides by AACs. AAC: Aminoglycoside acetyltransferase; AHB: 4-
amino-2-hydroxybutyryl; APH: Aminoglycoside phosphotransferase; NEO: Neomycin B.
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Figure 11. Aminoglycoside-AcCoA bisubstrates as aminoglycoside-modifying enzyme inhibitors
(A) A representative bisubstrate scaffold explored as an AG acetyltransferase (6′) inhibitor.
Representative examples of linkers investigated are shown. (B) Bisubstrate prodrugs with
increased bacterial membrane penetration generated biosynthetically in vivo. (C)
Bisubstrate-inspired AG acetyltransferase (6′) inhibitor designed from NMR-guided
fragment screens.
AG: Aminoglycoside.
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Figure 12. Aminoglycoside-modifying enzyme inhibitors
(A) Eukaryotic kinase inhibitors identified to also be APH inhibitors. (B) Non-carbohydrate
aminoglycoside-modifying enzyme inhibitor containing a 1,3-diamine moiety to mimic that
found in the scaffold of many aminoglycosides. (C) Aranorosin, a natural product reported
to circumvent arbekacin resistance by inhibiting aminoglycoside acetyltransferase (6′)-Ie/
aminoglycoside phosphotransferase (2″)-Ia.
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Figure 13. High-throughput microarrays
(A) 6″-azido–kanamycin A, an example of an aminoglycoside derivative with a chemical
handle for Huisgen 1,3-dipolar cycloaddition attachment to alkyne-functionalized slides. (B)
Microarray assay.
AG: Aminoglycoside; ANT: Aminoglycoside nucleotidyltransferase; APH: Aminoglycoside
phosphotransferase.
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