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Abstract
Animals comprise dynamic three-dimensional arrays of cells that express gene products in
intricate spatial and temporal patterns that determine cellular differentiation and morphogenesis. A
rigorous understanding of these developmental processes requires automated methods that
quantitatively record and analyze complex morphologies and their associated patterns of gene
expression at cellular resolution. Here we summarize light microscopy based approaches to
establish permanent, quantitative datasets—atlases—that record this information. We focus on
experiments that capture data for whole embryos or large areas of tissue in three dimensions, often
at multiple time points. We compare and contrast the advantages and limitations of different
methods and highlight some of the discoveries made. We emphasize the need for interdisciplinary
collaborations and integrated experimental pipelines that link sample preparation, image
acquisition, image analysis, database design, visualization and quantitative analysis.

Introduction
Although quantitative measurements of morphology and gene expression have long been a
component of developmental research1, 2, qualitative descriptions have predominated,
especially in molecular studies. Qualitative statements describe in a yes/no manner for
example, which tissues a gene is expressed in or if two groups of cells move relative to one
another. This basic information is insufficient, though, to address many fundamental
questions in developmental biology.

Advances in labeling, imaging and computational image analysis, especially over the last 12
years, are allowing quantitative measurements to be made more readily and in much greater
detail than in the past in a range of organisms including Arabidopsis, Ciona, Drosophila, C.
elegans, mice, Platynereis, and zebra fish3–16. For example, a cellular resolution, three
dimensional atlas has been constructed that records cell type, time of developmental origin,
and connections for each of tens of thousands of neurons8 (Fig. 1A). The movements of
thousands of cells have been tracked in real time relative to one another3–7 (Fig 1B).
Quantitative maps of gene expression in each cell of an embryo have been produced9–13

(Fig. 1C)). Changes in the shapes of cells over time have been measured14, 15.

These large scale, quantitative data provide new insights that could not have been gained
through qualitative analyses. For instance, sets of individual neurons that form local
processing units were discovered that form a basic substructure of the brain8; a subset of
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gastrulation movements in Drosophila were shown not to require Fibroblast growth factor
(FGF), whereas previous qualitative analyses had suggested that FGF was an essential
signal3; and regulators of dorsal/ventral cell fates were found to weakly affect the expression
of anterior/posterior regulators in Drosophila, which previous non-quantitative studies had
failed to detect17.

Just as comprehensive datasets of genomic sequence have revolutionalized biological
discovery, large scale quantitative measurements of gene expression and morphology will
certainly be of great assistance in enabling computational embryology in the future. Such
datasets will form the essential basis for systems level, computational models of molecular
pathways and how gene expression concentrations and interactions alter to drive changes in
cell shape, movement, connection and differentiation. In this review, we discuss the
strategies and methods used to generate such datasets.

The initial inputs for deriving quantitative information of gene expression and embryonic
morphology are raw image data, either of fluorescent proteins expressed in live embryos or
of stained fluorescent markers in fixed material. These raw images are then analyzed by
computational algorithms that extract features such as cell location, cell shape, and gene
product concentration. Ideally, the extracted features are then recorded in a searchable
database, an atlas, that researchers from many groups can access. Building a database with
quantitative graphical and visualization tools has the advantage of allowing developmental
biologists who lack specialized skills in imaging and image analysis to use their knowledge
to interrogate and explore the information it contains.

We focus on approaches that capture information with cellular resolution in three
dimensions because the cell is the basic building block for all animals and morphology is
almost invariably three dimensional. Lower resolution studies or two dimensional image
analyses have proven useful for addressing some important questions18–26, but space does
not permit discussion of these approaches here.

Creating three dimensional atlases: overview
Creating an atlas is more encompassing than image acquisition and analysis. It requires a
clear understanding of the biological questions to be addressed. Then appropriate labeling,
sample preparation, imaging, image analysis, visualization, and data management methods
must be selected (Fig. 2). An interdisciplinary team is required that collectively possess the
needed expertise. Generating useful atlases is still in its infancy. Which methods to use at
each step along the pipeline will depend greatly on what analysis is required. There is
currently no "magic toolbox" that scientists can use to apply to their specific task. Each step
has to be tailored to suit the experiment.

Imaging three dimensional specimens is particularly challenging. Optical lenses with high
magnificiations and resolving powers produce high quality images from thin, two
dimensional samples. However, because of their short depth-of-fields such lenses project
blurry, mostly out-of-focus images from thick, three dimensional samples. Also, three
dimensional samples like embryos, tissues and other multicellular systems, are partially
opaque. This limits the depth into a three dimensional sample that can be imaged. These
hurdles are continuously being addressed by the development of new fluorescent probes,
contrast agents, and image acquisition and image analysis techniques.

Three dimensional atlas projects such as those in Figure 1 generate large amounts of raw
data, involving many embryos or tissue samples. Assembly of these data into an atlas, from
which desired biological information can be extracted, requires a fully automated analysis
pipeline. Fortunately, advances in computer hardware, data storage, image analysis and
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computer vision have kept pace with improvements in biolabeling and three dimensional
bioimaging methods.

Labeling and mounting
The first step in building an atlas is deciding, based on the biological questions to be
addressed, what macromolecules need to be labeled in the system being studied, and if live
cell or fixed material should be used. It is not practical to build a universal atlas that contains
all the information needed by a wide range of developmental biologists. Instead, different
atlases will be required to address each question. It is currently not possible to label a single
embryo with tens of probes for different biomarkers. Typically, only two to four different
labels can be efficiently incorporated and distinguished in a single image, certainly in high
throughput studies where sample preparation must be robust. Consequently, atlases require
the amalgamation of data from many images.

If cell shape measurements are required, a cell membrane stain would be useful14. Nuclear
stains, such as DNA binding dyes or a histone-Green Fluorescent Protein fusion, are ideal
for identifying the locations of cells17, 27. If cell migration is to be studied, a live cell
approach is called for3, 11, 14, 27. If gene expression measurements must be made in opaque
tissue, then fixed material that has been made translucent by soaking it in an optically clear
mountant is the practical approach17. If the expression levels of many mRNAs is to be
measured, then it is more practical to use nucleic acid in situ hybridization to label fixed
material17 than it is to fluorescently tag mRNAs in live embryos, as the latter requires the
construction of complex transgenic lines28.

Where data for many specific biomolecules are to be incorporated into the atlas, images
from multiple differently labeled embryos or tissue samples must be registered into a
common coordinate system. This requires that in addition to each sample being labeled for
one of the specific biomolecules, they must also bear a common reference label. The
reference could be a spatially patterned protein or mRNA10. Alternatively, if the
morphology and number of cells is sufficiently constant between samples, as it is between
nematode embryos of the same developmental stage, then a general stain for nuclei or other
biomarker of cell location can be used27. In some cases, the overall morphology of the
sample has been used successfully for registration8. Since the reference label is to be used
throughout the atlas building project, particular care should be taken in its selection.

For three dimensional datasets, especially ones that make quantitative measurements of gene
expression, the labels used are almost always fluorescent. In live embryo experiments,
transgenic lines expressing fluorescent proteins with different emission spectra are
employed29, 30. Here the difficulty of creating transgenic animals that target the specific
genes of interest is commonly the rate limiting step. With fixed material, a wider range of
fluorophores can be deployed, including DNA binding dyes and antibody conjugated Alexa
dyes or quantum dots17, 31. When several different fluorescent probes are used to stain the
same sample, the emission spectrum of the probes must be optimized to give the greatest
spectral separation. It should also be borne in mind that many probes are bulky and can
potentially interfere with ligand-receptor interactions.

Proper mounting of labeled samples prior to image acquisition is paramount. Proper
mounting maximizes the optical clarity of the sample, reduces the damaging effects of free-
radicals and minimizes the blurring created by optical aberrations. The overall goal of
mounting is to minimize changes in the refractive index between the lens, the mountant and
through the tissue sample. Fixed material can be cleared, but care must be taken that the
solvents used do not disrupt the biology of interest, the fluorophores or the morphology.
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Live biology has to be mounted so that it can freely exchange oxygen and carbon dioxide
and has room to grow, again so its morphology is not disrupted.

Imaging in Three Dimensions
The next step is to select the appropriate imaging method and the associated image
acquisition parameters. A number of technologies are available for capturing three
dimensional images. These use different ways to remove the out-of-focus information that is
collected when a three dimensional image is projected onto a two dimensional image capture
device32, 33. Some basic measures can be used to compare different imaging systems.
Optical efficiency is the ratio of the number of photons that are collected to create the image
to the number of photons used to excite the fluorescence. High optical efficiency lowers the
amount of damaging excitation light required and increases the potential acquisition speed.
Signal to noise ratio is the fraction of image signal intensity divided by the noise intensity.
Image noise results from ubiquitous fluorescence from the sample, such as autofluorescence,
and from random thermal noise generated by the detector. It is important to maintain the
signal to noise ratio above a critical minimum otherwise the image noise dominates, making
subsquent image analysis challenging. Signal to noise is an important consideration when
fast acquisition speeds are required or when imaging low numbers of fluorophores.

Choosing the imaging method depends on many factors. For live cell experiments it is
critical that the total light exposure be kept to the minimum because excited fluorescent
molecules in the presence of oxygen create charged free-radicals that disrupt biochemical
pathways and cross-link macromolecular cellular components. Speed of image acquisition is
also important in live cell imaging to properly capture living dynamics. The choice of
objective lens is important. Objective lenses are defined by many properties but essentially
by their magnification, numerical aperture, and working distance. Magnification is the ratio
of lengths in the image to corresponding lengths in the sample. Numerical aperture (NA) is a
measure of the ability of a lens to collect light. It is defined by the largest angle that light
emitted from a point on the sample will be captured by the lens and in practice by the
refractive index of the fluid that couples the objective to the sample. The NA of objective
lenses vary from low values between 0.3 and 0.5, through medium values between 0.5 and
1.0, to high values between 1.0 and 1.5. NA is a measure of and increases with the resolving
power of the imaging system. In choosing the NA for the objective lens, it should be borne
in mind that its axial (z-axis) resolving power will be generally less than its lateral (x-y axis)
resolving power. Working distance is the distance between the front of the lens and the point
or plane in the sample being imaged. Working distance is important in three dimensional
imaging because it is the maximum depth into the sample that can be imaged by that lens.
Objective lenses with low and medium NAs are usually air-coupled to the sample, have low
to medium magnifications and allow the greatest working distances. Objective lenses with
high NA have the shortest working distances and are coupled to the sample with fluids that
are more dense than air, like water, glycerol or oil. While these criteria complicate image
acquisition, high NA lenses have the highest magnifications and resolving powers,
producing images of exceptional quality. Still, high NA lenses may not be practical for some
applications, like imaging live embryo that have been mounted in configurations requiring
longer working distances. Each imaging method has its strengths and weakness and
ultimately the choice depends on the scientific question driving the atlas construction.
Choosing the imaging method that is most appropriate for a given application requires an
understanding of key technical details.

Wilson-grating structured illumination microscopy34 capitalizes on the shallow depth-of-
field of objective lenses by using an opaque grating in the illumination path. An image of the
grating is projected and illuminates part of the sample in a striped pattern. Multiple images
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are acquired with the grating shifted into different positions until the entire sample is
illuminated. The resulting images are combined in such a way that the out-of-focus
component, common to them all, is removed. What remains is a single optical slice of the
sample at the focal plane of the objective. Three dimensional images are constructed by
repeatedly imaging the sample at different optical planes along the optical axis. The
technique is moderately optically efficient in that a large percent of fluorescently emitted
photons are captured. In this method high NA lenses give the thinest optical slices and thus
the best axial resolution. It uses two dimensional image capture, so the image acquisition is
fast, and as a result this method is useful for imaging live as well has fixed cell biology.
More recently, other forms of structured "standing-wave" illumination have been used to
double the resolving power of wide-field fluorescence microscopy35 and create super
resolution optical microscopes, with resolving powers an order of magnitude beyond the
theoretical diffraction limit36–39. These will be ideally suited for building atlases of
subcellular structures within single cells, rather than cellular resolution atlases of entire
embryos.

Deconvolution microscopy40 records a series of images at different planes of focus through
a biological sample. Each image can be thought of as the sum of an in-focus optical section
and many out-of-focus sections. With knowledge of the sample, which is gained from the
image, and the optical response of the imaging system, termed the point spread function, a
three dimensional in-focus image can be reconstructed mathematically. Various
computational methods have been developed to remove the out-of-focus components from
the individual images, which are then combined to create a single three dimensional image.
This method is optically efficient because light is not thrown away - it is deconvolved and
reassigned. The technique uses a two dimensional image capture device, so image
acquisition is fast and thus well suited to live and fixed cell biology. Axial resolving power
is highest with high NA lenses. The technique works well in fluorescence but can also be
applied to other types of microscopy.

Confocal laser scanning microscopy uses galvanometer mirrors to raster-scan a focused laser
beam across the sample41. Because the beam illuminates one point on the sample at a time, a
three dimensional image is built sequentially, point by point. However, although objective
lenses focus a laser to pinpoint accuracy in the focal plane at the sample, the focused point is
still too large along the optical-axis and illuminates many out-of-focus planes. To remove
the light collected from the out-of-focus planes, the image is filtered through a pinhole at the
image plane. This allows light to pass from the conjugate sample point, blocking the light
collected from the out-of-focus planes. The method is optically inefficient because most of
the excited photons are excluded from the image by the pinhole. Further, because the image
is collected one point at a time, the image acquisition times are long, and this limits the
usefulness of this method for live cell imaging. Never-the-less, confocal laser scanning
microscopy has become very popular because of its simplicity of implementation.

Spinning disk technology42 is an adaptation of confocal laser scanning microscopy. A
mechanical circular array of pinholes, a Nipkow disk, allows thousands of focused laser
beams to scan the object at the same time. In the implementation by Yokogawa Electric
Corporation, two disks are used - one an array of microlenses which focus the laser beams
onto the sample and the other an array of pinholes that confocalize the image. The advantage
of this approach is that it is fast, uses two dimensional image capture, and thus it has been
widely used in live cell imaging. However, it has low optical sensitivity because of the use
of pinholes and because of its rapid acquisition speed, care must be taken that the signal to
noise ratio of the images is maintained.
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Two-photon laser scanning microscopy is another adaptation of laser scanning
microscopy43, 44. Instead of exciting fluorescence by the absorption of single photons at a
fluorophore's absorption energy, fluorescence is excited by simultaneous absorption of two
half-energy photons. This non-linear absorption significantly reduces the volume within the
biological sample in which fluorescence occurs. The density of photons is only high enough
for simultaneous absorption of photons within a tiny volume of the focused laser beam. As a
result, out-of-focus planes are not fluorescently excited, and this eliminates the need for a
confocal pinhole. Two-photon microscopy has higher optical efficiency than confocal
microscopy. In addition, because half-energy photons have longer wavelengths, they scatter
less and penetrate further into biological samples (Fig 2B). Because fluorophores outside of
the excitation volume are not excited, phototoxicity and photobleaching during scanning are
also significantly reduced.

Light-sheet, selective plane microscopy38, 45, does away with the traditional Köhler light
source that illuminates the out-of-focus planes in the first place. Rather than illuminating
along the optical axis, selective plane microscopy creates a transverse sheet of light that
excites a single optical plane through the sample. No scanning in the X-Y direction is
involved, and the illuminated optical section is imaged onto a two dimensional capture
device. In the latest versions of selective plane microscopy, multiple objective lenses can be
used to image the sample from different angles, and the sample stage is designed to allow
rotational symmetry about the light sheet45–48. Depending on the orientation of the objective
lenses, the optical penetration through the sample can be doubled (objectives at 180°
orientation), or the axial resolving power of one lens can be increased by the second lens
(objectives at 90° orientation). Further, by rotating the stage the sample can be imaged at
multiple orientations. Selective plane microscopy is optically efficient, image acquisition is
fast and it allows both single-photon and two-photon excitation49. This techniques is
versatile and ideally suited to live cell dynamics. Some tricks are needed to correct images
for the transverse shadowing effects created by illuminating with a light sheet. This can be
done computationally after the images are acquired or by oscilating the angle of the light
sheet. Multiple lens imaging also requires post acquisition analysis to construct the final
image50. Mounting the biological samples is complicated by the rotational symmetry
required about the light sheet. Although iSPIM51 uses a cleaver optical adaptation which
allows selective plane microscopy on a regular inverted microscope. Longer working-
distance objective lenses with medium NA are needed, and this reduces the resolving power
of the imaging from what is possible. Thus for example, the quality of images acquired from
live cell biology will never be as high as that possible from fixed-cell methods which allow
the sample to be optically cleared and imaged with the highest optical resolving powers
currently possible (Fig. 3, compare panels A and B.).

Segmentation, Feature Extraction and Registration
Once a set of high quality images have been obtained, the next step is to use these data to
build a quantitative atlas. Three dimensional atlas projects such as those in Figure 1 generate
large amounts of raw image data that needs to be combined into a computationally
analyzeable atlas. As we define it, an atlas is essentially a large spread sheet, a table with
rows and columns of numbers and other descriptions. These may give the x,y,z coordinates
in space of cells at successive time points, the concentrations and locations of gene products
in each cell, the histological cell type of each cell, and/or the indices of neighboring or
connecting cells. Building an atlas from raw image data involves broadly three types of
image analysis: segmentation, feature extraction and registration52–55 and these need to be
done in an automated way.
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Segmentation
Segmentation is the subdivision of an image into regions belonging to—and not belonging
to—objects of interest, such as nuclei, cell membranes, and tissues. Each voxel is assigned
in a yes/no manner into one the categories being defined. Many segmentation techniques are
available and rely on different properties of an image, such as brightness, color or texture.
Examples of segmentation techniques include Thresholding, Template Matching,
Watershed, Region Growing, Laplacian of Gaussian, Difference of Gaussians, Level Set and
Fast Marching methods56, 57. In the world of image analysis, the problem of segmentation
has been solved for many applications. However, and particularly for fluorescence-based
bioimaging, the complexity of the images means that existing methods do not work “out of
the box” and need specific tailoring for specific application. For example, total DNA-
staining combined with relatively simply segmentation algorithms can be used to detect the
position and number of cells. However, more sophisticated segmentation approaches will be
needed to delineate cells if their packing density is too high. If accurate determination of
cellular or subcellular volumes is required, then segmentation techniques that detect edges as
well as blobs in an image may be needed in combination with the staining of other cellular
components58. Often the segmentation analysis may need to be supplied with a priori
information, such as the number, size, shape, and packing density of the objects in the image
to be segmented..For multicellular systems, hierarchical segmentation maybe required so
that biological components can be segmented on a subcellular, cellular, tissue and organ
level.

The results of a segmentation analysis are labeled segmentation masks that delineate
individual objects in the image. However, before these can be used to direct subsequent
quantitative evaluation, their accuracy must be determined. The biggest difficulty is to
obtain an accurate ground truth to compare the segmentation to. One approach is to compare
the results of segmentation to the raw image data using a visualization tool59. In high
throughput studies, however, such labor intensive “by eye” scoring can only be performed
on a small sample, usually only small portions from a few images. Alternatively, automatic
approaches can be devised. For example, the correlation between the number of segmented
nuclei versus the overall volume of the embryo measures the relative accuracy of different
nuclear segmentation methods, though this approach cannot determine the absolute
accuracy10. Determining the accuracy of large scale segmentation analyses remains a
challenge for the field.

Feature Extraction
Once the accuracy of the segmentation has been confirmed, the segmentation masks can be
used to direct quantitative evaluation of the features required for the atlas. Many image
features can be measured. These are broadly divisible into hard-features, such as positions,
dimensions, rates of motion and the brightness of cells, and soft-features, like the statistical
analysis of texture, pattern recognition, context matching, clustering and
classification53, 60–62.

Registration
Image registration methods have been developed in the field of vision research and applied
to remote sensing and medical imaging for years63. Many of these techniques are applicable
to multicellular biological systems. To create an atlas, information from many images must
be placed onto a common morphological framework. This is essential because biological
samples, like embryos, are rarely identical. Biological variability means that samples of the
same biological system may have different numbers of cells or an equivalent number in
different relative positions, and this biological variability varies with developmental time.
Each image from a series of different samples or from the same sample at different times
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will have unique information, such as the expression pattern of a gene or the neighborhood
connections between cells. Information from multiple images must be combined in such a
way that the resulting comprehensive atlas accurately represents the biology. To do this,
registration methods first define sets of biologically equivalent locations in each image: for
example, corresponding cells. There are many ways of doing this that use the expression of
specific genes or the inherent morphological complexity within the sample to define such
equivalences3, 9–11, 16. Registration is performed either on the raw image data prior to
segmentation or on sets of segmented features. When raw image data are registered, a single
representative image can be chosen as the reference coordinate system onto which other
images are mapped8. When segmented features are registered, a statistical average model
can be created as the reference coordinate system onto which extracted data are placed10. In
either case, registration involves the determination of sets of equivalences in space and time
that allow points or segmented objects in one image to be registered with the equivalent
points or objects in another.

As with segmentation analysis, the accuracy of the registration must be determined. For
example, coarsely registering multiple embryo images may accurately align the principal
body axes of a sample, but it will blur information from non equivalent, neighboring cells,
due to the biological variability. The only way to create atlases that correctly represent the
biology is to register images at cellular resolution. In this way one will be able to
demonstrate that quantitative features derived from the atlas replicate results derived from
the analysis of multiple individual embryos10.

Image Analysis Packages
To support automated high-throughput image-based investigations of multicellular systems,
many groups are creating image analysis tool-boxes specifically for bioimaging
informatics64. These toolboxes bring the latest developments in segmentation, feature
extraction, and registration to a broad audience from fields that span biology to computer
vision. In doing so, these toolboxes are helping to form a new community with
multidisciplinary expertise.

Particularly useful are open source toolboxes that are compatible with multiple operating
systems. The National Institutes of Health’s NIH Image and ImageJ were some of the
earliest open source initiatives65, and have more recently undergone a further round of
development with the introduction of Fiji66. ICY is another bioinformatics and image
analysis platform. It leverages the open-source Visualization Toolkit (VTK, http://
www.vtk.org)67. BioImageXD68 is yet another collaborative effort providing image
analysis, processing and visualizing for multi-dimensional microscopy images. It is also
based on the Visualization Toolkit VTK, and the National Library of Medicine's Insight
Segmentation and Registration Toolkit (ITK, http://www.itk.org). DIPimage (http://
www.diplib.org) is a scientific image processing and analysis toolbox written specifically
for MATLAB (http://www.mathworks.com). DIPimage harnesses the power of MATLAB,
while allowing programmer flexibility in creating image analysis pipelines. Other groups
have created toolboxes for specific application. For example, CellProfiler allows
quantitative evaluation for cultured cell phenotype69. Considerable effort has also gone into
development of database and image analysis environments for bioimage informatics.
Examples of these are Bisque70 and Open Microscopy Environment (OME) and more
recently OME Remote Objects (OMERO)71.

Databases
Projects that produce large amounts of raw and processed data require a database. Many
atlases are based on images from hundreds or thousands of biological samples. For each
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image, sample preparation and imaging involves multiple steps, often with several
associated variables such as the biomolecule labeled, the developmental stage, image
quality, the date of experiment etc. Thus, in addition to data files, extensive metadata
describing the experiments associated with each file must also be recorded in the database.
This requires the construction of a relational database to allow rapid search and retrieval of
files based on a variety of criteria. In addition to allowing ready access to data for
subsequent analysis, such a database greatly aids quality control during atlas construction.
For example, it allows a user to work backwards along the pipeline to locate the cause of
any data analysis failures, determining what variables are associated with a given failure or
artifact. The database should have an associated web site for access by internal researchers
working on atlas construction and quite likely a separate web site for public access to
published datasets. For examples, see: (http://bdtnp.lbl.gov/Fly-Net/bioimaging.jsp?
w=summary); (http://www.flycircuit.tw); (http://caltech.wormbase.org/virtualworm/).

Discovery using atlases
Once a searchable atlas has been constructed there are fundamentally two approaches that
can be used to analyze the data: one visual, the other mathematical. The challenge is that
while biologists best understand the questions that can be addressed using the atlas, they
may not always possess the computational and mathematical skills needed to conduct
sophisticated analyses of such data files. For this reason, biologists generally collaborate
with computational scientists. It is not always clear, though, what is the best way to frame
the analysis. Here, visualization tools can provide important guidance. These tools provide a
point and click environment in which biologists can explore various features of the data on
their own, for example looking for interesting correlations. This exploration may itself lead
to novel discoveries, but will also help the biologist better understand the quality and nature
of the dataset, improving his or her ability to suggest analyses to computational colleagues.
The results of the subsequent mathematical analysis can often be exported as additional rows
and columns into an updated version of the atlas and then explored by the biologist using the
visualization tool.

Visualization tools
Developing visualization tools for an atlas of three dimensional morphology and expression
is challenging59, 72–74. The complexity of the data quickly become uninterpretable to the
human eye. Many thousands of cells are layered on top of one another, each with multiple
quantitative attributes assigned to them. The challenge is to find ways to view only defined
parts of the data to reduce the complexity and thus allow visualization of, say, correlations
between one attribute and another. It is important that the tool allow the user flexibility in
choosing which attributes to compare, ideally with different graphing and display options.

Figure 1 provides some examples. In A, defined subsets of neurons belonging to specific
tracts are displayed in each panel. In B, two ways to visualize how cells move during
gastrulation are shown, one showing continuous change over time, the other showing mean
vectors over a defined time interval. In C, the differences in mRNA expression between
cells are shown in two views, a physical three dimensional view (upper) and a cylindrical
projection (lower) in which height is used to better illustrate differences in expression levels.
Visualization tools, however, can go beyond these relatively straightforward ways of
displaying data. For example, only a relatively few gene expression patterns can be
visualized at once in a physical view such as that in Figure 1C. The expression of tens of
genes can be compared at once, however, if the levels of expressions each gene in all cells is
represented along one of a series of one dimensional, parallel coordinates (Fig. 4)75. At the
same time, results for a subset of genes can be projected back into a three dimensional
physical view, once they are identified as being of interest (Fig. 4).
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Mathematical analysis
Ultimately, though, the most powerful way to analyze a three dimensional atlas is by
sophisticated mathematical approaches. Only in this way can the combination of multiple
quantitative features within the data be rigorously compared. A wide array of analyses have
been made using three dimensional atlases. For instance, a model of mesodermal cell
movement during gastrulation showed, among other things, that neither ectodermal cell
movements or the orientations of cell divisions correlate with the direction of mesoderm cell
movement3. An analysis of the correlation between the relative concentrations of
transcription factor protein molecules and temporal changes in target gene mRNA
expression established putative regulatory relationships within a transcription network76.
Quantification of changes in plant stem cell volumes and divisions showed that both play
key roles in shaping specific morphologies14. Quantifying interspecies divergence showed
that even small changes in regulatory networks result in significient differences in the
placement and number of equivalent cells77.

There is every reason to believe that in future a wider array of developmental processes will
be studied by mathematical analysis of three dimensional atlases - created using optical
imaging and image analysis techniques. As other data classes—such as molecular
interaction data—are folded in, more complex systems models can be expected that seek to
link the biochemistry of regulatory networks to morphological dynamics. The creation and
exploitation of large scale quantitative atlases will lead to a more precise understanding of
development.
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Figure 1. Examples of three dimensional atlases
A. The FlyCircuit atlas of neuronal connectivity in Drosophila brains8. Each color groups
members of a neuronal tract. Each panel displays different subsets of tracts. B. Cell
migration during gastrulation in Drosophila embryos3. The two left panels show cell
movements over time. The two right panels show the net displacement vectors, with
mesoderm cells shown in orange and ectoderm cells show in grey. C. Patterns of mRNA
expression of transcription factors in Drosophila blastoderm embryos10. The upper view
shows a three dimensional representation of the embryo. The lower view shows a cylindrical
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projection in which height indicates the level of expression of each transcription factor in
each cell. Both views were generated using the visualization tool PointCloudXplore75, 78
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Figure 2. A pipeline for building and using a three dimensional atlas
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Figure 3. Comparing image quality of SPIM and laser scanning multi photon microscopy
Multiphoton optical sections are shown for stage-16 Drosophila embryos stained to label
nuclei. A) The top two images are of a live embryo expressing GFP-histone. The images
were taken using the two-photon SPIM technique of "simultaneous multiview imaging"
(SiMView) and were kindly provided by Philipp J. Keller48. B) The bottom two images are
of a fixed emrbyo stained with SYTOX Green and were acquired using standard two-photon
laser scanning microscopy. The embryo's dorsal / ventral direction is shown from top to
bottom in each image. Optical sections were selected through the midplane of each three
dimensional embryo image to show, from left to right, its anterior / posterior (left) and it's
left / right (right) directions.
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Figure 4. Visualizing 3D gene expression by parallel coordinates
Each vertical axis shows the mRNA expression levels for one gene in each of the 6,000 cells
in the Drosophila blastoderm embryo. The lines connect data for the same cells. Blue lines
connect cells expressing the anterior most stripe of hunchback (hb), yellow lines the central
hb stripe and pink lines the posterior stripe. The locations of these cells are shown in the
physical 3D view below. In the parallel coordinates, it can be readily seen that the anterior
stripe on hb coincides with high slp1 expression, the central hb stripe with high ftz
expression, and 50% of the posterior hb stripe with high eve expression. These views were
generated using PointCloudXplore, an interactive visualization tool (http://bdtnp.lbl.gov/
Fly-Net/bioimaging.jsp?w=pcx)75.
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