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Abstract
Soft-tissue image-guided interventions often require the digitization of organ surfaces for
providing correspondence from medical images to the physical patient in the operating room. In
this paper, the effect of several inexpensive surface acquisition techniques on target registration
error and surface registration error (SRE) for soft tissue is investigated. A systematic approach is
provided to compare image-to-physical registrations using three different methods of organ spatial
digitization: 1) a tracked laser-range scanner (LRS), 2) a tracked pointer, and 3) a tracked
conoscopic holography sensor (called a conoprobe). For each digitization method, surfaces of
phantoms and biological tissues were acquired and registered to CT image volume counterparts. A
comparison among these alignments demonstrated that registration errors were statistically smaller
with the conoprobe than the tracked pointer and LRS (p < 0.01). In all acquisitions, the conoprobe
outperformed the LRS and tracked pointer: for example, the arithmetic means of the SRE over all
data acquisitions with a porcine liver were 1.73 ± 0.77 mm, 3.25 ± 0.78 mm, and 4.44 ± 1.19 mm
for the conoprobe, LRS, and tracked pointer, respectively. In a cadaveric kidney specimen, the
arithmetic means of the SRE over all trials of the conoprobe and tracked pointer were 1.50 ± 0.50
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mm and 3.51 ± 0.82 mm, respectively. Our results suggest that tissue displacements due to contact
force and attempts to maintain contact with tissue, compromise registrations that are dependent on
data acquired from a tracked surgical instrument and we provide an alternative method (tracked
conoscopic holography) of digitizing surfaces for clinical usage. The tracked conoscopic
holography device outperforms LRS acquisitions with respect to registration accuracy.

Index Terms
Image-guided surgery; registration; surface data acquisition; target registration error

I. Introduction
The acquisition of dense point measurements of anatomic surfaces is a fundamental task in
image-guided surgical procedures that require registration of the anatomy to medical images
or models derived from medical images. Our interest in using surface measurements for
registration purposes is to initialize an automated deformation correction pipeline for soft-
tissue interventions [5], [8]–[10].

One simple method of collecting intraoperative surface data is to use a tracked pointer. Such
devices are readily available in commercial image-guided surgery systems and clinicians are
familiar with their use. Acquiring surface data in this way is particularly useful for
orthopedic applications, where surgical access is limited and registrations can be refined
from points taken percutaneously [18]. In commercial neurosurgical systems, a tracked
pointer is used for providing the initial rigid transformation by matching points acquired
from naso-orbital landmarks in the preoperative volume. Fig. 1 demonstrates the
intraoperative acquisition of points from the surface of the naso-orbital regions of a patient
undergoing tumor resection therapy at Vanderbilt University Medical Center (Nashville,
TN), where this method of acquisition has become standard of care. An optically tracked
tool is pictured in Fig. 2(a).

Measuring surface data with a tracked pointer is appropriate for rigid structures that do not
deform; however, in soft-tissue applications, registration accuracy can be compromised if
the pointer loses contact with the surface or displacements of the tissue occur due to contact
forces [6], [20]. Furthermore, surgeons are apprehensive with regard to touching delicate
anatomical structures such as the surface of the brain, with an inflexible instrument due to
the possibility of tissue damage.

Alternatively, intraoperative registration can be achieved by acquiring a laser-range scan
(LRS) of the exposed organ surface. Briefly described, an LRS passes a stripe of laser light
over a surface and uses the principle of triangulation to determine 3-D points in space. When
the reflected light is received by the charge-coupled device (CCD) camera, the reflected
light and the known trigonometric relationship between the camera and the laser are used to
compute the 3-D location [1]. The CCD also records color information which can be applied
to the point cloud and used for identification of landmarks on the surface and segmentation
of structures of interest [28]. The LRS is usually fitted with optical tracking targets so that
the position and orientation of the device can be determined relative to the patient so that
subsequent scans of the patient are in alignment [5], [28]. An optically tracked LRS is
pictured in Fig. 2(b). The LRS is designed as a multiface passive tool with three passive
targets affixed to it. For each pose of the LRS, a single face of the LRS is tracked. We
evaluated the accuracy of LRS tracking in other work [22].

Methods of rigidly aligning preoperative images with the physical patient have been
investigated for LRS. In [4]–[6], a traditional iterative closest point (ICP) algorithm [2] was
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used for alignment of preoperative CT and intraoperative LRS. The accuracy was
compromised by sensitivity to errors in the initial alignment and organ deformation resulting
from mobilizing and preparing the liver for resection. A weighted ICP [19] variant was
proposed that weighs anatomical features for registration in other work [7]. The algorithm
performed better than traditional ICP in all phantom and clinical trials. Explorer Liver
(Pathfinder Therapeutics Inc., Nashville, TN) is a commercial surgical navigation system
that has an LRS (as an optional component) and uses the weighted ICP scheme. In related
work, a novel registration using both surface geometry and intensity data for cortical brain
surfaces was proposed [21]. This work was expanded upon in a comprehensive comparison
of registration study using skin markers and an LRS of the patient’s face for initial
alignment in neurosurgical applications yielding similar results [3]. Others have conducted
similar studies with similar results [26].

Central to the above rigid/nonrigid registration approaches is the acquisition of
intraoperative geometric organ data. While we have previously reported on the use of LRSs
and tracked pointers, conoscopic holography has been a recent endeavor. As such, we have
not reported our experiences with the use of conoscopic holography. Briefly, conoscopic
holography is a noncontact distance measurement method based on polarized light
interference originally reported by Sirat and Psaltis [30] for industrial quality control
applications. Constructive and destructive interference patterns between emitted and
reflected laser light are analyzed. The send and receive paths are collinear, and distances
measurements are derived from a solid angle (cone of light) [30] rather than the single ray
approach used by triangulation-based technologies resulting in a more precise and robust
measurement than triangulation systems [29]. Recently, techniques have been developed
which apply the principles of conoscopic holography to image-guided surgery [16]. In that
preliminary study, the ConoProbe Mark 3 (Optimet Metrology Ltd., Jerusalem, Israel) was
used. The conoprobe reports a distance of the laser source to a surface, and once it is fitted
with an optical tracking rigid body, a calibration procedure establishes the conoprobe
measurements in optical tracking coordinates such that a tracked 3-D surface of an object
could be generated. In this preliminary study reported, the tracked conoprobe was shown to
be a promising surface acquisition device in the operating room [16]. An optically tracked
conoprobe is pictured in Fig. 2(c).

The z-touch (BrainLab Inc., Feldkirchen, Germany) is a commercially available noncontact
digitizer that emits a single laser light that is visible to the optical tracking cameras [23]. The
optical tracking camera determines the position of the 3-D point. Direct line-of-sight of the
tracking system to the laser point is required. In a study of surface scanning using the z-
touch, the mean accuracy (mean measured deviation) was reported as 2.4 ± 1.7 mm [15],
[23]. In another study, registration error with the z-touch was higher than fiducial-based
registration; 2.77 ± 1.64 mm with z-touch and 1.31 ± 0.87 mm with markers [25]. The Fazer
(Medtronic Inc., Minneapolis, MN) is an optically noncontact digitizer. In a similar study to
the z-touch study, the root mean square error ranged from 1.3 to 3.2 mm with the Fazer and
0.3 to 1.8 mm with markers [24].

Given this backdrop, we present two contributions in this paper. The primary contribution is
the comparison of registrations obtained with three different surface acquisition modalities
of phantom and cadaver specimens. We study the effect of acquiring data with a tracked
pointer, LRS, and conoprobe on registration accuracy. The subject of our study is not the
best theoretically achievable registration accuracy but rather the accuracy attainable in a
clinical setting. The secondary contribution is the systematic investigation of conoscopic
holography for surface characterization for image-guided surgery. This paper demonstrates
the detrimental effect of surface acquisition using a tracked pointer (as used in commercial
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systems) on accuracy and provides an alternative approach that is noncontact and handheld
for use clinically.

II. Methods
A. Surface Acquisition

A Polaris Spectra passive optical tracking system (Northern Digital Inc., Waterloo, ON,
Canada) tracked the position and orientation (pose) of all rigid bodies in this study. In all
data collections, a rigid body was securely fixed relative to the specimen such that all
acquisitions were measured relative to this rigid body and all successive datasets were in the
same coordinate frame (analogous to the intraoperative image-guided surgical environment).
Great care was taken to ensure that a specimen did not move relative to its rigid body during
the experiments (see Sections II-D–II-F for details). The rigid body was attached in close
proximity to the object under evaluation to reduce the influence of rotational errors on TRE
as much as reasonably possible. Horn’s method [14] was used for all fiducial registrations
and for registrations where corresponding points were assumed (e.g., when finding an initial
estimate for ground truth registrations). The surfaces of all specimens were acquired using
the three optically tracked devices: pointer, LRS, and conoprobe (see Fig. 2). We attempted
to cover as much of the visible surface as possible during collections. When using the
tracked pointer and the conoprobe, we varied the pattern of collection. The LRS was moved
between LRS acquisitions. We collected all tracked pointer datasets after the LRS and
conoprobe collections to prevent damage to the specimen due to contact. The tracked pointer
(Northern Digital Inc., Waterloo, ON, Canada) was calibrated with a standard sphere-fit
procedure provided by the manufacturer such that the tip of the tool was known with respect
to the tool’s rigid body (which is measured in the tracking camera frame). The LRS
(Pathfinder Therapeutics Inc., Nashville, TN) was calibrated by the manufacturer using a
method described in previous work [6] such that the LRS surface could be obtained in the
coordinate frame of the camera. The LRS has a reported 3-D root mean square error of 0.47
mm [22]. Finally, a rigid body was fixed to a ConoProbe Mark 3 (Optimet Metrology Ltd.,
Jerusalem, Israel) and calibrated such that the location of the measured laser point was
known in the camera frame. The conoprobe has a reported distance measurement error of ≤
100 μm. The tracked conoprobe is shown in use in Fig. 3.

B. Calculating Registration Error
Let Ttrue be an estimate of the ground truth registration transformation, and let Tother be an
experimentally obtained registration transformation, where both transformations are
represented using 4 × 4 homogeneous matrices that map points from the CT frame to points
in the reference rigid body frame.

Given a 3-D model having n points on an anatomic surface computed from a medical image,
we define the surface registration error (SRE) of a point, pi, as the magnitude of the vector
difference

(1)

We also computed target registration errors (TRE) for sub-surface target points ri defined in
the CT images. Fitzpatrick et al. [11] defined TRE as being the error in position of a target
point after registration has been performed; we computed TRE for a target ri as

(2)
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We should note that in the traditional formulation of TRE [11], corresponding points are
localized in two different modalities (in image space and physical space, for example), the
registration is applied, and the displacement is measured. In the formulation used here, we
have a ground truth transformation; hence, there is no measurement error (in measuring in
CT and in physical space) so the measured TREs are not directly comparable to results
computed with traditional TRE. We make the distinction between SRE and TRE because
TRE is defined as the error in points not used in the registration, and there is no way to
guarantee that a surface point pi is not used in the registration.

C. Significance Testing With TRE Values
To establish that one acquisition modality is statistically better (with respect to TRE) than
another, significance testing was employed. The data were analyzed using the Wilcoxon
signed-rank test which is a nonparametric test that ranks difference scores and assumes the
distribution of the differences are symmetric about the mean with no normality assumption
[27] (a t-test assumes a normal distribution which is not an appropriate assumption for TRE
values). The data were also analyzed using a sign test which is a nonparametric test that
makes no assumption with regard to the distribution of differences, but carries less statistical
power than the Wilcoxon test [12]. If both tests are in agreement, then our conclusion is very
credible.

With a sufficiently large data collection, it may be the case that the tests for significance
indicate differences in populations that are very small, yet statistically significant though not
clinically relevant. To address this, we chose a clinically relevant difference for our
application of 0.2 mm and added this value to the TREs produced by the method that we
want to show is better. These data were analyzed with the Wilcoxon signed-rank test and
sign test.

D. Phantom Experiments
Two anthropomorphic phantoms were cast for use in the study: a liver phantom of silicon
rubber (Dragon Skin, Smooth-On Inc., Easton, PA) and a brain phantom of stiff silicon
rubber. Even though the optical characteristics and tissue properties are different from
human organs, we chose to use plastic phantoms as an idealized baseline comparison with
our other experiments. The phantoms were fixated to a pegboard having an array of holes,
and then CT scanned [see Fig. 4(a)]. The board was chosen such that the holes would be
visible in both LRS and CT data for gold standard calculations. The phantoms were
segmented from the CT scan using a standard thresholding method, and 3-D models were
constructed using the marching cubes algorithm [17]. The LRS of the board and the 3-D
model of the board is shown in Fig. 5 before and after registration.

Surface acquisitions of both phantoms were acquired using the pointer, LRS, and conoprobe
five times each, for a total of 15 datasets for each phantom. The optical camera was moved
between each acquisition, and the conoprobe and pointer datasets were collected by different
individuals. In order to establish correspondence from physical space to CT space, an initial
registration estimate was computed from corresponding points picked on the LRS and CT
model. This estimate was used to initialize all registrations for all datasets. The final
registration transformation was computed using an iteratively reweighted least-squares
modification of ICP that is insensitive to spurious points [18] that we call robust ICP.

To establish a gold standard registration for accuracy analysis, the board was segmented
from CT, a 3-D model was generated of the board, an LRS of the board was acquired, and
the board was segmented from the LRS scan. The gold standard registration estimate was
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produced by seeding robust ICP with a transformation obtained by manually aligning the
LRS with the 3-D model.

We investigated the sensitivity of the SRE to variations in the number of points collected by
each acquisition method by downsampling the points and performing a registration with
these points. For each of the original 15 datasets, 10–100% of the points were randomly
sampled at 10% increments. We registered the points to the model with the same initial
estimate used in our other phantom trials and computed the SRE as in (1) for each point in
the surface model.

We tested the sensitivity of the SRE to the initial registration estimate by perturbing the
initial estimate and rerunning the registration algorithm with the new initial estimate.
Specifically, we generated 500 estimates perturbed by up to 5° and 5 mm (selected at
random) and repeated the pointer, LRS, and conoprobe registrations.

E. Ex Vivo Porcine Liver Experiments
A fresh porcine liver was provided by the Section of Surgical Sciences at Vanderbilt
University Medical Center for the study in accordance with the Institutional Animal Care
and Use Committee. The excised organ was placed on a board, similar to the one used in the
phantom experiment, and six adhesive radiographic markers (Izi Medical Products Inc.,
Baltimore, MD) were adhered to the surface of the organ [see Fig. 4(b)]. The liver was
imaged in a CT scanner. The pointer, LRS, and conoprobe were used to acquire five surface
scans each for a total of 15 datasets. An initial physical-to-CT space registration was
obtained by touching the center of the radiographic markers with the pointer, localizing the
center of the markers in CT, and finding correspondence. The gold standard registration
estimate was established in the same way as the phantom data collections, by aligning an
LRS of the board with a CT of the board using robust ICP.

The accuracy of points acquired by a device that uses conoscopic holography technology
depend on the absorption properties of the tissue being scanned. The conoprobe software
reports the signal-to-noise ratio (SNR) as a percentage for each conoprobe point collected.
We tested the effect of the points with a low SNR percentage on TRE. For all five porcine
liver data collections with the conoprobe, we performed the registration using 1) only points
with SNR < 30%, 2) all points, 3) all points with SNR > 30% (the threshold suggested by
the manufacturer), and 4) all points with SNR > 60%. Since the robust ICP registration
algorithm used in the study is resistant to spurious points, we repeated our SNR analysis
with traditional ICP.

F. Ex Vivo Cadaver Kidney Experiments
One fresh cadaveric kidney was used in this study. The specimen was obtained from an
individual that voluntarily provided their organs to the School of Medicine at Vanderbilt
University Medical Center [see Fig. 4(c)]. The LRS was not available for this data
collection; hence, only pointer and conoprobe data were acquired. Instead of CT, the kidney
was imaged using an Allura Xper FD20/20 biplane fluoroscope (Philips Healthcare Inc.,
Best, The Netherlands) capable of 3-D image reconstruction. The pointer and conoprobe
were used to collect five datasets each. Since this experiment was performed inside of the
imaging unit, a gold standard registration from physical-to-image space was computed based
on the presence of the tracked rigid body in the reconstructed 3-D image. The passive
tracking target, attached to the apparatus containing the kidney, is shown in Fig. 4(c). The
centers of the passive tracking retroreflective spheres were manually localized from the
image. CT slices containing the spheres are shown in Fig. 6. The positions of the individual
spheres were extracted from the specifications of the rigid body provided by the
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manufacturer. Point-based registration was used to establish correspondence between
physical and image space.

III. Results
A. Phantom Experiments

1) SRE Results—Figs. 7 and 8 show the SRE computed using (1) for each point in the
surface model. Interestingly, the datasets acquired using the tracked pointer contain mostly
translational error, evident in the solid red color of the liver in the top row of Fig. 8. To
investigate this, we computed the vector TRE, Δri − ri, for ten targets scattered throughout
the phantom liver. The directional component of the TRE for each of the five tracked pointer
(blue) and five conoprobe (red) trials is shown in Fig. 9. The narrow spread of the arrows
(i.e., arrows pointing in one direction) represents small rotational error and (in this case)
large translational error. Arrows pointing in diverging directions indicate the presence of
rotational errors. In our data collections, it appears that the data collected with the conoprobe
contain both translational and rotational errors, whereas the data collected with the pointer
contain mostly translational error.

For the brain phantom, the mean SRE and standard deviation over all five datasets for the
tracked pointer, LRS, and conoprobe were 3.69 ± 0.10 mm, 2.14 ± 0.08 mm, and 1.88 ±
0.11 mm, respectively, as summarized in Table I.

The mean SRE and standard deviation for the liver phantom over all five datasets for the
tracked pointer, LRS, and conoprobe were 5.15 ± 0.29 mm, 3.22 ± 0.33 mm, and 2.49 ±
0.14 mm, respectively, as summarized in Table II.

2) Subsurface TRE Results—Ten virtual targets were evenly placed in the subsurface of
the brain and liver phantom surface models in locations characteristic of tumors. TRE results
computed using (2) for each of the five tracked pointer, five LRS, and five conoprobe data
collections are shown in Fig. 10(a) and (b). A Wilcoxon signed-rank test and sign test
(described in Section II-C) checked for significant differences in TRE across all data
collection methods for both phantoms. The test found significant differences between the
tracked pointer, LRS, and conoprobe datasets (p < 0.0001): the conoprobe collections were
statistically better than the tracked pointer and LRS collections, and the LRS collections
were statistically better than the tracked pointer collections for the brain and liver phantoms.
Further application of the Wilcoxon and sign tests established that statistical significance
was achieved for a clinically important difference of 0.2 mm (p < 0.01).

3) Sensitivity to the Number of Points Collected—The number of points in each
point set is listed in the first column of Table II. In results not presented here, the percentage
of points that were randomly sampled did not have a significant effect on SRE.

4) Sensitivity to Initial Registration Estimate—In results not reported here, we found
that variations in the initial registration estimate did not significantly affect SRE.

B. Ex Vivo Porcine Liver Experiments
1) SRE Results—Fig. 11 shows the SRE computed using (1) for each point in the surface
model. The mean and standard deviations of SRE for all five trials of each of the pointer,
LRS, and conoscope acquisitions were 4.44 ± 1.19 mm, 3.25 ± 0.78 mm, and 1.73 ± 0.77
mm, respectively, as summarized in Table III.
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2) Subsurface TRE Results—Ten virtual targets were evenly placed in the surface
model of the porcine liver. The TRE results computed using (2) for the ten targets for the
registrations using the pointer, LRS, and pointer datasets are shown in Fig. 10(c). Wilcoxon
signed-rank test and sign test found significant differences between the tracked pointer,
LRS, and conoprobe datasets (p < 0.01): the conoprobe collections were statistically better
than the tracked pointer and LRS collections, and the LRS collections were statistically
better than the tracked pointer collections for the porcine liver. Further application of the
Wilcoxon and sign tests established that statistical significance was achieved for a clinically
important difference of 0.2 mm (p < 0.01) with the porcine data.

3) SNR Sensitivity—The TRE for registrations with robust ICP was stable across all trials
at all SNR levels. The TRE for registration with traditional ICP were stable across 1) all
SNR values, 2) SNR values greater than 30%, and 3) all combined SNR values greater than
60%. For SNR < 30%, TRE was significantly higher using traditional ICP than the robust
ICP scheme. For example, for mean TRE for the five collections ranged from 1.74 to 13.25
mm with ICP and 1.08 to 2.92 mm with robust ICP.

C. Ex Vivo Cadaver Kidney Experiment
1) SRE Results—In this experiment with the cadaver kidney, SRE was computed in
keeping with the phantom and porcine tissue experiments described earlier. Fig. 12 shows
the SRE rendered for each point in the surface model, where the top row represents the
pointer datasets and the bottom row represents the conoprobe datasets. In these collections,
the mean and standard deviations of the pointer and conoprobe datasets were 3.51 ± 0.82
mm and 1.50 ± 0.50 mm, respectively. The results are summarized in Table IV. Note that
the cadaver kidney was covered in perirenal fat so the surface of the kidney was not smooth.

2) Subsurface TRE Results—Ten virtual targets were placed in the subsurface of the
cadaver surface model. The targets were placed in locations where tumors are typically
found. TRE computed using (2) for each of the five tracked pointer and five conoprobe data
collections is shown in Fig. 10(d). Wilcoxon signed-rank test and sign test found significant
differences between the tracked pointer and conoprobe datasets (p < 0.0001): the conoprobe
collections were statistically better than the tracked pointer collections with the cadaver
kidney. Further application of the Wilcoxon and sign tests established that statistical
significance was achieved for a clinically important difference of 0.2 mm (p < 0.0001).

IV. Discussion
In all experiments, the mean SREs and subsurface TREs computed based on registrations
achieved with the conoprobe were smaller than those using the tracked pointer and LRS; the
tracked pointer registrations were the least accurate of all (see Tables I–IV and Fig. 10). For
example, in porcine tissue, the surface TRE of the five tracked pointer, five LRS, and five
conoprobe collections ranged from 2.87 to 6.38 mm, 2.40 to 4.57 mm, and 2.02 to 2.81 mm,
respectively. As discussed in Section II-B, our formulation of TRE is not the traditional one
by Fitzpatrick et al. [11]; hence, it is difficult to compare our specific numbers with other
authors. However, our LRS results are in line with those reported by Shamir et al. for face
registration using an LRS [26].

The Wilcoxon signed-rank test and sign test established that (with respect to TRE) in all
trials for all phantoms and biological tissue, 1) the registrations with the LRS were
significantly better than those achieved with the tracked pointer, and 2) registrations with the
conoprobe were significantly better than those with the LRS and tracked pointer (p < 0.01).
The accuracy differences between LRS and the conoprobe are likely due to the reliance of
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the LRS on triangulation, rather than the more accurate solid-angle approach of conoscopic
holography. Triangulation measures the angle of a single ray, whereas in conoscopic
holography, the reflected beam disperses light in all directions (a solid angle). For a typical
conoprobe, a single measurement consists of 1400 angles [29].

It is possible to collect reasonable surfaces with the tracked pointer (see trial 1 in Table III);
however, the consistency of these acquisitions is subject to operator error. The obvious
difference between the pointer and the other noncontact methods of acquiring surface
measurements of soft tissue is that the pointer will cause some inwards deformation of the
tissue surface (as evident in the high-translational component in Fig. 9), leading to a bias in
the measurement errors (i.e., measurement errors will not be zero-mean in magnitude).
Furthermore, the measurement errors will likely differ in magnitude and direction depending
on the orientation of the surface being swabbed and variations in the force applied to the
pointer (i.e., measurement errors will be heteroscedastic). Bias and heteroscedasticity in
measurement errors both violate the usual noise assumptions inherent to least-squares
registration algorithms such as ICP, thus leading to reduced accuracy of the pointer
registrations. Compromised registration accuracy caused by displacements due to contact
force and attempts to maintain contact with the tissue has been reported by other researchers
[6], [20].

Registration accuracy was found to be insensitive to the number of points acquired
(evaluated in Section III-A3), likely because of the large number of points collected by each
of the acquisition methods. The conoprobe can collect points at a frequency of up to 3 kHz
(700 Hz was used in our collections). The measurement frequency of the Polaris Spectra is
30 Hz; hence, the rate of tracked pointer and conoprobe collections is determined by the
Polaris Spectra. As in any registration, the accuracy of the registration is contingent on the
quality of points as well as the quantity [18]. The speed at which the user characterizes the
surface with the pointer and conoprobe can effect accuracy and is dependent on the ability of
the tracking system to localize these devices; care must be taken so that acquisitions are not
faster than the tracking system allows.

Each registration was compared to a gold standard transformation due to the absence of
ground truth. The TRE and SRE presented do not reflect measures of absolute accuracy (i.e.,
absolute spatial positions). In a study of absolute accuracy, one would acquire surface data
from regularly shaped objects, and SRE and TRE would be established from a coordinate
measurement machine, Cartesian robot, or from the precision of the object. In our
experiments, obtaining absolute accuracy is challenging because the objects are not
regularly shaped. In this sense, our method for establishing ground truth is a gold standard.
However, as each measurement is made under the same conditions and the standard is a
good approximation to ground truth, the findings is this study represent a best comparison
within the context of soft-tissue registration under a realistic guidance environment.

Several research groups have compared fiducial-based neurosurgical registration methods
using skin fiducials or skull-implanted fiducials with the Fazer and z-touch, commercial
noncontact acquisition devices [13], [24], [25]. In a previous study from our research group,
face LRS and skin markers localized with a contact pointer were found to perform the same
with respect to TRE [3], which is contrary to our current results comparing noncontact and
contact surface acquisition. This can be explained by the fact that the displacement of a skin
marker on the face caused by contact with the pointer is typically small because there is little
soft tissue between the skin and skull, whereas in our current experiments, there was no rigid
tissue to physically limit the amount of displacement. Also, point correspondences are
known in marker-based registration and must be estimated in surface-based registration. A
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potential avenue of research is the use of the conoprobe for acquisition of points from the
face for establishing image-to-physical space registration in neurosurgical systems.

It would be interesting to compare the conoprobe to other non-contact surface measurement
devices such as the commercially available Fazer or z-touch. In terms of being able to
localize a surface point, we expect such devices would be less accurate due to their reliance
on triangulation, rather than the more accurate solid angle approach of conoscopic
holography. However, the z-touch device is itself untracked, as the tracking system is able to
directly localize the surface point intersected by the emitted laser beam; this means that such
devices do not require a calibration procedure. The conoscope produces distance
measurements in its own frame of reference; thus, it requires instrumentation with a rigid
tracking body and a calibration procedure to produce 3-D measurements in the tracking
system coordinate frame. Conoscope calibration methods and understanding calibration
error and calibration drift are all potential directions for further investigation.

The quality of conoprobe points is largely dependent on the absorption of the laser into the
target tissue. Tissue absorption is a function of the components of the tissue: hemoglobin,
water, melanin, and fat [31]. These quantities will change depending on whether the tissue
is, for example, living or dead, or prepared in a solution. The manufacturer suggests that
points with an SNR of greater than 30% can be used reliably, which was supported in our
study of the effect of SNR on registration accuracy (see Section III-B3). Understanding the
effect of tissue absorption on LRS, Fazer, and z-touch surface acquisitions is a potential
avenue of research.

We addressed sources of error specific to acquisition devices used in the study; however, in
general, tracking and registration error are contingent on other factors not addressed here.
For example, tracking accuracy varies based on the geometry of the rigid body. A full
evaluation of conoscopic holography for surface registration is needed with analysis of the
specific effects of tracking error and distance measurements on registration accuracy using
both clinical data and objects of known size. In this type of experiment, initial registration
estimates could be established using the conoprobe. For example, for the neurosurgery
application, the conoprobe could be used to acquire points on the face for initializing image-
to-physical space registrations and compared to traditional skin fiducial registrations.

V. Conclusion
We found in our experiments that the conoprobe consistently produced registrations
statistically better (p < 0.0001) than those produced by either a tracked surgical tool or LRS
for both phantom models and biological tissue. While the conoprobe does not provide color
texture information like an LRS, it is a reliable tool for collecting surface points from soft
tissue for the purposes of image-to-physical space registration. The accuracy of registrations
based on data acquired from a tracked surgical instrument are substantially less accurate
than registration achieved from noncontact acquisition techniques; as such, their use should
be limited. The tracked pointer used in commercial surgical navigation systems
compromises registration accuracy and could lead to surgical error.
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Fig. 1.
Standard display from the StealthStation (Medtronic Inc., Minneapolis, MN) neurosurgical
guidance system. The green points represent the data acquired from a tracked pointer,
superimposed on the patient’s skull generated from preoperative images. The red points
demonstrate point selection for the user.
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Fig. 2.
Surface acquisition devices in experiments: (a) sharp-tipped tracked pointer, (b) LRS, and
(c) conoprobe. The tracked pointer and conoprobe are hand-held devices.
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Fig. 3.
Optically tracked ConoProbe Mark 3 used in our experiments.
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Fig. 4.
Tissues and phantoms used in experiments: (a) silicon rubber brain (white) and liver (red)
phantoms mounted on pegboard, (b) porcine liver with radiographic markers, and (c)
cadaver kidney covered in perirenal fat with rigid body in a bowl inside of biplane
fluoroscope (biplane not pictured).
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Fig. 5.
Data used in ground truth determination for brain phantom experiment: (a) 3-D model of
board, (b) LRS of board prior to registration, and (c) LRS superimposed on board, after
registration.
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Fig. 6.
Passive tracking retroreflective spheres visible in CT used to compute ground truth in
cadaver kidney experiment.
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Fig. 7.
SRE computed for each point in the surface model for the five tracked pointer (top row),
five LRS (middle row), and five conoprobe (bottom row) datasets of the brain phantom.
Registration error increases from blue to white to red.
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Fig. 8.
SRE computed for each point in the surface model for the five tracked pointer (top row),
five LRS (middle row), and five conoprobe (bottom row) datasets of the liver phantom.
Registration error increases from blue to white to red.
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Fig. 9.
Displacements of targets for five tracked pointer (blue) and tracked conoprobe (red) trials. If
the translational component of TRE is large, and the rotational component small, the arrows
point in largely the same direction. If the rotational component is large, the arrows diverge.
In our datasets, the conoprobe acquisitions contain rotational and translational error, while
the pointer acquisitions contain largely translational errors.
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Fig. 10.
TRE computed for ten subsurface targets for the brain phantom, liver phantom, porcine
liver, and cadaver kidney experiments. Each experiment consisted of five surface datasets
for each acquisition type. (a) Brain phantom. (b) Liver phantom. (c) Porcine liver. (d)
Cadaver kidney.
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Fig. 11.
SRE computed for each point in the surface model for the five tracked pointer (top row),
five LRS (middle row), and five conoprobe (bottom row) datasets of the porcine liver.
Registration error increases from blue to white to red.
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Fig. 12.
SRE computed for each point in the surface model for the five tracked pointer (top row) and
five conoprobe (bottom row) datasets of the cadaver kidney. The LRS was unavailable for
this experiment. Registration error increases from blue to white to red. The kidney was
covered in perirenal fat, so it was not smooth.
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