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Abstract

The first examples are described of catalyzed y-additions of nitrogen nucleophiles to y-substituted
alkynoates or allenoates that proceed with good efficiency, specifically, intra- and intermolecular
processes that employ distinct and useful families of nitrogen nucleophiles (anilines and 2,2,2-
trifluoroacetamide), catalyzed by spirophosphine 1. Furthermore, the first demonstrations are
reported of asymmetric reactions, affording interesting classes of target molecules such as
enantioenriched pyrrolidines, indolines, and y-amino-a,B-unsaturated carbonyl compounds.
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The use of chiral phosphines as nucleophilic catalysts represents an important second
dimension to their utility in catalytic asymmetric synthesis, [ in addition to their more
familiar role as ligands for transition metals.[2] Cognizant of the paucity of general methods
for the catalytic enantioselective a-functionalization of carbonyl compounds, 3] we have
recently pursued the development of phosphine-catalyzed processes that couple nucleophiles
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with allenoates and related compounds in the y-position (Figure 1).[4-6] Given the ready
availability of the starting allenes, along with the plethora of methods for stereoselective a-
and B-functionalization of a,B-unsaturated carbonyl compounds,[”-8] this approach should
provide straightforward access to highly functionalized, stereochemically rich, target
molecules (Figure 1).

To date, we have established the viability of this approach with oxygen (inframolecular
additions to alkynes), carbon (/nfermolecular/allenes), and sulfur (intermolecular/allenes)
nucleophiles.[4] In view of the biological significance of amines,[®1% including y-amino-
a,p-unsaturated carbonyl compounds,[11-13] achieving catalytic enantioselective y-additions
with nitrogen nucleophiles is a particularly important objective.[*4] However, attempts to
effect phosphine-catalyzed y-addition (even norn-enantioselective) of nitrogen nucleophiles
to y-substituted 2,3-allenoates and 2-alkynoates (and related compounds) have been
unsuccessful (30% yield),[15] due in part to the propensity of such electrophiles to
isomerize to 1,3-dienes.[6] In this report, we demonstrate that spirophosphine 1 not only can
achieve y C-N bond formation in good yield for the first time, but it can also provide good
enantioselectivity, both for intra- and for intermolecular processes [Eq. (1) and Eqg. (2);
CPME = cyclopentyl methyl ether; TBME = tbutyl methyl ether].
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From the outset of our investigation of phosphine-catalyzed y-additions of nitrogen
nucleophiles, we decided to address simultaneously the two key challenges: accomplishing
C-N bond formation and controlling the stereochemistry of the y-carbon. Upon examining
an array of conditions for the enantioselective cyclization of the amino-alkyne illustrated in
entry 1 of Table 1, we developed a method whereby spirophosphine 1[17-191 catalyzes the
desired intramolecular y-addition to generate the target pyrrolidine[20.21] with very good
enantioselectivity (91% ee) and acceptable yield (68%).

Spirophosphine 1 serves as an effective catalyst for the asymmetric cyclization of an array
of amino-alkynes (Table 1; >95:5 E:Z for all reactions).[22] The choice of ester attached to
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the alkyne has only a modest impact on the efficiency of the catalytic enantioselective y-
addition process (entries 1-3). Furthermore, substitution on the alkyl chain between the
nucleophilic aniline and the electrophilic alkyne is tolerated (entry 4).

If the aromatic ring of the aniline lies between the amine and the alkyne, then
spirophosphine-catalyzed asymmetric intramolecular y-addition of the amine furnishes
enantioenriched indolines23l (Table 1, entries 5-8). Relative to the parent substrate (entry
5), incorporation of an electron-donating or an electron-withdrawing group on the aromatic
ring leads to cyclization with similar enantioselectivity, but somewhat lower yield (entries 6
and 7). On the other hand, the presence of a methyl substituent ortho to nitrogen results in
more efficient cyclization (entry 8).

Next, we turned our attention to the challenge of also achieving the first effective phosphine-
catalyzed /intermolecular y-additions of nitrogen nucleophiles to alkynes/allenes.
Unfortunately, our standard conditions for /ntramolecular reactions of anilines (Table 1)
were not useful for intermolecular additions of anilines to alkynes/allenes (<10% yield).

2,2,2-Trifluoroacetamide is a particularly attractive nitrogen nucleophile, since it can be
hydrolyzed under mild conditions to liberate a free amine. Employing our published
methods for enantioselective phosphine-catalyzed y-additions of other families of
nucleophiles,[4l we obtained either poor ee (<35%) or poor yield (<10%) for the catalytic
asymmetric y-addition of 2,2,2-trifluoroacetamide to ethyl 2,3-heptadienoate.

Nevertheless, upon surveying a range of parameters, we developed a new method wherein
spirophosphine 1 catalyzes the desired y-amination process with good enantioselectivity and
yield, as well as excellent E/Z selectivity (=95:5) (Table 2, entry 1); interestingly, although
we have found this spirophosphine to be the catalyst of choice for /ntramolecular catalytic
asymmetric y-additions, it had not previously emerged as the optimal phosphine for
intermolecular reactions.[4l An array of other chiral phosphine catalysts that we have found
useful in other contexts furnish significantly lower ee, yield, or E/Z selectivity in this
enantioselective y-amination (entries 2-6). The amount of y-addition product diminishes
when a smaller quantity of allene (entry 7) or catalyst (entry 8) is employed, and a small
erosion in ee is observed when the catalytic asymmetric y-addition is conducted at room
temperature, rather than at 10 °C (entry 9).

Under the standard conditions, spirophosphine 1 catalyzes the intermolecular y-amination of
an array of allenoates by 2,2,2-trifluoroacetamide in generally excellent yield, thereby
furnishing ready access to y-amino-a,-unsaturated esters; at the same time, good ee’s are
obtained (Table 3).[24] As might be anticipated on the basis of the simplicity of the method
and the mild reaction temperature, a variety of functional groups are compatible with the
asymmetric y-addition process, including a terminal alkyne, a Z alkene, an ester, and a sulfur
heterocycle. The method is not particularly air- or moisture-sensitive: for example, the
addition of 0.5 equiv of water did not erode enantioselectivity or yield, and running the
reaction in a capped vial under air had no effect on ee and only a modest impact on yield.
On a gram-scale, the y-amination illustrated in entry 4 of Table 3 proceeds with comparable
results (87% ee, 95% yield, >95:5 E:Z). The 2,2,2-trifluoroacetyl group can be removed by
hydrolysis under mild conditions.[2%]

This catalytic asymmetric a-amination process is not limited to additions of 2,2,2-
trifluoroacetamide to carbethoxy-substituted allenoates. Thus, the method can be applied to
reactions with a methyl and a dbutyl ester, as well as with a Weinreb amide, in ~90% ee [Eq.
(3) and Eq. (4)].
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A preliminary mechanistic investigation revealed that product ee correlates linearly with
catalyst ee and that the rate law is positive order in allene and catalyst, but negative order in
nucleophile. Although 3P NMR spectroscopy studies did not provide clear evidence for a
catalyst-nucleophile adduct, several phosphorus-containing species (potentially,
phosphonium intermediates) in addition to free spirophosphine 1 were observed during the
course of the y-addition process.

In this report, we have provided the first examples of catalyzed y-additions of nitrogen
nucleophiles to y-substituted alkynoates or allenoates that proceed with good efficiency,
specifically, intra- and infermolecular processes that employ distinct and useful families of
nitrogen nucleophiles (anilines and 2,2,2-trifluoroacetamide), catalyzed by spirophosphine
1. Furthermore, we have furnished the first demonstration of asymmetric reactions,
affording interesting classes of target molecules such as enantioenriched pyrrolidines,
indolines, and y-amino-a,B-unsaturated carbonyl compounds. This investigation thus adds
an important new family of nucleophiles (nitrogen) to those (carbon, oxygen, and sulfur)
that have previously been shown to engage in phosphine-catalyzed asymmetric y-additions.
Ongoing studies are directed at further expanding this strategy for the rapid generation of
functionalized carbonyl compounds.
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(or alkyne) T

catalytic enantioselective
y-addition
(Nu? = carbon, nitrogen, oxygen,
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Figurel.
Catalytic enantioselective y-additions to allenes: Efficient access to highly functionalized,
stereochemically rich, carbonyl compounds.
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Table 1

Catalytic enantioselective synthesis of pyrrolidines and indolines via intramolecular y-additions of nitrogen
nucleophiles to alkynoates.

SR R\
- 10% (S)-1 ,_A\/\
k'\llH ==—CO,R? L. kN CO,R?

1 cat. ArOHE! | H
R CPME, 60 °C R
entry substrate ee (%) yied (%)P
1 F\\ 91 68
2 NH —=—CO,R? R?= :;U 95 70
3 PMP Me 94 78
4 Me 94 60

Me

;

NH ——CO,Bu
I
PMP

COtBu 90 55

W

NH;
6 CO,tBu 89 44
MeOU\/
NH
7 CO,tBu 88 44
FiC \EI\_/ /
NH:
8 COxtBu 88 67

NH,
Me

All data are the average of two experiments. PMP = p-methoxyphenyl.

a . . .
[]For entries 1-4, cat. ArOH = 50% 2,4-dimethoxyphenol. For entries 5-8, cat. ArOH = 20% 2-fluoro-6-methoxyphenol.

[b]YieId of purified product.
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Table 2

Catalytic enantioselective /ntermolecular y-addition of a nitrogen nucleophile to an allene: Effect of reaction
param eters.

o
o N i
3 2 10% (R)-1
OEt  TBME e
Z ,10°C OEt
nPr ~ /\f( n Prw
(e} "standard conditions" 0

2.0 equiv
racemic

entry changefrom the " standard conditions’  ee (%) yield(%)[a]

1 none 87 90 [=>95:5]
2 2 instead of 1 80  88[65:35]
3 3instead of 1 9  52[295:5]
4 4 instead of 1 64 89 [90:10]
5 5instead of 1 84 64 [60:40]
6 6 instead of 1 27 96 [85:15]
7 1.0, instead of 2.0, equiv of allene 88 52 [=>95:5]
8 5%, instead of 10%, 1 88  39[295:5]
9 room temperature instead of 10 °C 82 90 [>95:5]

All data are the average of two experiments.

a . . - . . . .
[]The yield was determined through 14 NMR analysis with the aid of an internal standard. The E:Z ratio, also determined through 14 NMR

analysis, is provided in brackets.
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Table 3

Catalytic enantioselective /nfermolecular y-addition of 2,2,2-trifluoroacetamide to allenoates: Scope.

(0]
J i
F3C” “NH, 10% (S)-1
oF — F3C” "NH
P> t  TBME, 10 °C OEt
R~ /\ﬂ/ R =
0 o)

2.0 equiv

racemic

entry R ee (%) yield (%)[a]
1 Me 86 89
2 nPr 87 90
3 /Bu 88 92
4 (CHy),Ph 88 94
5 (CH,),0Bn 89 87
6 (CHp)s—= 89 86
CH
7 (CHaz)s Y 87 88
Octn
8 (CH,),CO,Me 82 68

9 S 86 87
(CH—_]

All data are the average of two experiments.

[a]YieId of purified product (E:Z >95:5).
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