

NIH Public Access

Author Manuscript

Published in final edited form as: J Med Chem. 2013 July 11; 56(13): . doi:10.1021/jm400575x.

Design, Synthesis and Biological Evaluation of (E)-N-Aryl-2arylethene-sulfonamide Analogues as Potent and Orally **Bioavailable Microtubule-targeted Anticancer Agents**

M. V. Ramana Reddy^{1,*}, Muralidhar R. Mallireddigari^{2,#}, Venkat R. Pallela^{2,#}, Stephen C. Cosenza^{1,#}, Vinay K. Billa¹, Balaiah Akula², D. R. C. Venkata Subbaiah¹, E. Vijaya Bharathi¹, Amol Padgaonkar¹, Hua Lv³, James M. Gallo³, and E. Premkumar Reddy^{1,*} ¹Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave., New York, NY 10029-6514, United States

²Department of Medicinal Chemistry, Onconova Therapeutics Inc., 375 Pheasant Run, Newtown, PA 18940-3423, United States

³Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029-6514, United States

Abstract

A series of novel (E)-N-aryl-2-arylethenesulfonamides (6) were synthesized and evaluated for their anticancer activity. Some of the compounds in this series showed potent cytotoxicity against a wide spectrum of cancer cell-lines (IC_{50} values ranging from 5 to 10 nM) including all drug resistant cell-lines. Nude mice xenograft assays with compound (E)-N-(3-Amino-4methoxyphenyl)-2-(2',4',6'-trimethoxyphenyl)ethenesulfonamide (6t) showed dramatic reduction in tumor size indicating their in vivo potential as anticancer agents. A preliminary drug development study with compound **6t** is predicted to have increased blood-brain barrier permeability relative to many clinically used anti-mitotic agents. Mechanistic studies indicate that 6t and some other analogs disrupted microtubule formation, formation of mitotic spindles and arrest of cells in mitotic phase. Compound 6t inhibited purified tubulin polymerization in vitro and in vivo and circumvented drug resistance mediated by P-glycoprotein. Compound 6t specifically competed with colchicine binding to tubulin and with similar avidity as podophylltoxin indicating its binding site on tubulin.

INTRODUCTION

Microtubules, formed by α - and β -tubulin heterodimers, are essential constituents of the cytoskeleton in eukaryotic cells and are involved in a number of important structural and regulatory functions, including the maintenance of cell shape, intracellular transport machinery, as well as cell growth and mitosis.¹ Their highly ordered structures, rigidity, and their ability to grow and shrink via polymerization/depolymerization mechanisms are critical to their function in several cellular processes. Perhaps the most important role of microtubules is during mitosis, where they serve to organize and segregate chromosomes.

^{*}Corresponding Author: For M. V. R. R.: Phone, (212) 659-6875; fax; (215) 893-6989; r.reddy@mssm.edu. For E. P. R.: phone, (212) 659-5571; ep.reddy@mssm.edu. #Author Contributions: These authors contributed equally.

The authors declare the following competing financial interest(s): Dr. E. P. Reddy is a stockholder, Board member, grant recipient and paid consultant of Onconova Therapeutics Inc. Dr. M. V. R. Reddy is a stock holder and paid consultant of Onconova Inc. Dr. S. Cosenza is a paid consultant of Onconova Therapeutics Inc.

Tubulin is the major structural component of the microtubules and a well verified target for a variety of highly successful anticancer drugs.² Thus, vinca alkaloids 1 (vincristine and vinblastine)³ have been successfully used for the therapy of hematological disorders for the past three decades and the seminal discovery of paclitaxel (Taxol) by Wani and Wall⁴ in 1971 had a profound impact on the treatment of breast and ovarian cancers. The success of these agents has also led to the identification of several new tubulin interactive agents that have found application in cancer chemotherapy.⁵ Based on the mechanism of action of alternation of microtubule dynamics, drugs can be classified into two categories. Amongst the compounds (Chart 1) that inhibit tubulin polymerization and destabilize microtubules are the combretastatins (2), colchicine (3), Plinabulin (NPI-2358) (4), podophyllotoxin (5), curcumin and the vinca (1) alkaloids, and those that promote the polymerization of tubulins and stabilize the microtubules in their polymerized state include discodermolide, eleutherobins, the epothilones, laulimalide, the sarcodictyins, and the taxanes.⁶ Both microtubule stabilizers and destabilizers alter the tubulin-microtubule equilibrium causing mitotic arrest at G2/M phase⁷ and ultimately apoptotic cell death. Because of the clinical success of microtubule-affecting compounds such as paclitaxel, the vinca alkaloids, and epothilone derivatives in the treatment of a wide variety of cancers, it has been argued that microtubules represent the single most important protein target for anticancer therapy.⁸

These antimitotic drugs, however, are not without limitations. Many, including paclitaxel and the vinca alkaloids, are large (MW>700Da) natural products that display ADME-Tox shortcomings (including poor water solubility, bioavailability, and significant dose-limiting toxicity). In addition, a common problem observed with this class of compounds is that these large natural products are substrates for efflux pumps of the ABC transporter family, such as P-glycoprotein (P-gp) and multidrug resistance (MDR) proteins that can alter their pharmacokinetic characteristics.⁹ Furthermore, drugs such as taxanes are typically poor chemotherapeutics for the treatment of many brain cancers, as high levels of P-gp in the blood-brain barrier (BBB) and the chemical properties of the molecules themselves prevent significant accumulation of drug in the brain. Because of these factors, there has been an intense search for more effective antimitotics.¹⁰

A variety of synthetic small molecules have also been reported¹¹ as inhibitors of polymerization, which compete with the colchicine-binding site of tubulin.¹² While no colchicine-site binders are currently approved for cancer chemotherapy, compounds like combretastatin A-4P (CA4P) (**2b**),¹³ AVE-8062 (**2c**),¹⁴ ZD6126 (**6**),¹⁵ ABT-751(**7**),¹⁶ T-138067 (**8**),¹⁷ N-(3-Hydroxy-4-methoxyphenyl)-3,4,5-trimethoxybenzenesulfonamide (**9**) ¹⁸ and 1-Methyl-1H-indole-5-sulfonic acid (3,4,5-trimethoxyphenyl)amide (**10**) ¹⁹ are now under clinical investigation as potential new chemotherapeutic agents (Chart 1).²⁰ However, a report of the activity and SAR information for these compounds, especially in vivo efficacy, is limited.

Hence herein we report the synthesis, in vitro evaluations, cell cycle progression and structure activity relationship (SAR) of (*E*)-*N*-aryl-2-arylethenesulfonamides, which cause cell death through destabilization of microtubules. In this study, we also report the caspase activation and tubulin depolymerization study along with blood-brain barrier (BBB) permeability of the active compound (E)-N-(3-Amino-4-methoxyphenyl)-2-(2',4',6'-trimethoxyphenyl)ethenesulfonamide (**6t**).

CHEMISTRY

The syntheses of (E)-N-aryl-2-arylethenesulfonamides (6) were achieved by multiple synthetic routes as illustrated in Schemes 1, 5 & 6. The initial method involved for the synthesis of 6 by the condensation of chlorosulfonylacetic acid ethyl ester (2) with various

anilines 1 in the presence of triethylamine in DCM to obtain the arylsulfamoylacetic acid ethyl esters (3) in high yields. Hydrolysis of 3 with 10% NaOH in water afforded the corresponding arylsulfamoylacetic acids (4) in good yields. Knovenagel condensation of 4 with various aromatic aldehydes 5 either in benzylamine/acetic acid²¹ or piperidine/benzoic acid²² in toluene afforded 6 in good yields (Scheme 1). All 3-nitro and 3,5-dinitro substituted arylethenesulfonamides were reduced to their corresponding amino analogs either with sodium hydrosulfite in acetone/water or with iron powder in methanol/acetic acid as shown in the Scheme 2^{23} . The substituted anilines **1g** and **1j** which are not available commercially were synthesized as shown in the Scheme 3. 1g was prepared by the treatment of 4-fluoro-3-nitro-aniline (7) with 6% methanolic KOH in absolute methanol at room temperature to afford the required 1g in moderate yields. The dinitro aniline 1j was synthesized starting from 4-fluorobenzoic acid (8) by nitration with fuming nitric acid and 30% sulfuric acid to get 3,5-dinitro-4-fluorobenzoic acid (9) which on treatment with 20% oleum and ethylene dichloride in presence of sodium azide afforded 3,5-dinitro-4-fluoro aniline (10). Treatment of 10 with 6% methanolic KOH in absolute methanol gave the required 3,5-dinitro-4-methoxy aniline (1j) in moderate yields (Scheme 3).²⁴ Commercially not available chlorosulfonylacetic acid ethyl ester (2) was in turn made as shown in Scheme 4. Treatment of ethyl bromoacetate (11) with sodium sulfite gave sodium ethoxycarbonylmethanesulfonate (12) which on reaction with PCl₅ at 100 $^{\circ}$ C resulted in 2 in moderate yields.²⁵ The 2 was also prepared directly by the esterification of chlorosulfonyl acetyl chloride (13) with absolute ethanol in diethyl ether in 55% yield.²⁶

Alternatively, the sulfonamides **6** were also prepared by acylation of the acids **4d**, **4g or 4k** by thionyl chloride in DCM to get the corresponding acid chlorides **14a-c** which on Friedel-Crafts acylation with 1,3,5-trimethoxy benzene (**15**) afforded 2-aryl-2-oxoethanesulfonic acid aryl amides (**16a-c**). Sequential reduction of **16** with sodium borohydride and subsequent dehydration with p-toluenesulfonic acid (p-TSA) afforded the desired product **6** in moderate yields (Scheme 5).²⁷ To explore for the simple reaction conditions, less number of steps to obtain the targeted compounds and better overall yields, sulfonamides **6** were also prepared by the condensation of anilines (**1a-c**) with 2-arylethenesulfonyl chlorides (**19a-c**) in the presence of triethylamine in DCM in good yields. The sulfonyl chlorides **19** were in turn made by the addition of sulfuryl chloride to styrenes (**18a-c**)^{27c} in DMF at 0 °C to room temperature to get the desired product in quantitative yields (Scheme 6). The method described in Scheme 6 is superior to the other two methods as it involves less steps, cheaper chemicals and relatively higher yields.

To enhance the bioavailability of the active sulfonamide (*E*)-2-(2,4,6-trimethoxyphenyl)-2-(3-hydroxy-4-methoxyphenyl)ethanesulfonamide (**6p**), we explored to make its ester analog **6q.** Condensation of 3-(2,5-dimethyl-3,6-dioxocyclohexa-1,4-dienyl)-3-methylbutanoic acid (**20**) with **6p** in the presence of EDAC and DMAP in dichloromethane resulted in ester (E)-2-methoxy-5-(2-(2,4,6-trimethoxyphenyl)vinylsulfonamido)phenyl 2-(2,5-dimethyl-3,6dioxo-cyclohexa-1,4-dienyl)-2-methylpropanoate (**6q**) in moderate yields (Scheme 7). The benzoquinone ester **20** in turn was synthesized from 2,5-Dimethyl[1,4]benzoquinone (**21**) in presence of 3,3-dimethylacrylic acid, aqueous sodiumhydrosulfite and methane sulfonic acid in diethyl ether at 85 °C to yield 6-Hydroxy-4,4,5,8-tetramethylchroman-2-one (**22**) in 59% yield. N-Bromosuccinimide ring opening reaction of **22** afforded the target compound **20** in moderate yields (Scheme 8).²⁸

To further enhance the bioavailability and water solubility of the active sulfonamide (*E*)-2-(2,4,6-trimethoxyphenyl)-2-(3-hydroxy-4-methoxyphenyl)ethenesulfonamide **6p**, its disodium phosphate prodrug was synthesized in two steps as shown in the Scheme 9. Phosphorylation of the phenolic group in **6p** employing phosphorous oxychloride under

basic conditions gave 3-*O*-phosphate **23**. Treatment of the phosphate **23** with 25% aq. sodium hydroxide in ethylene glycol dimethyl ether yielded disodium *O*-phosphate **6r** (Scheme 9).²⁹

To further enhance the bioavailability and water solubility of the active sulfonamide **6t**, several 3- amino substituted esters and acids were made by the reaction of α -bromo esters in the presence of mild base sodium acetate in ethanol to give amine esters (**24**) which on subsequent hydrolysis with sodium hydroxide in ethanol afforded the corresponding acids **25** (Scheme 10).³⁰

Structure-Activity Relationships (SAR)

The newly synthesized compounds were tested for their in vitro cytotoxicity activity against two different human cell lines derived from human prostate (DU145) and leukemic (K562) cancers. The study results are presented in Table 1. These studies reveal that the cytotoxicity of the N-aryl-2-arylethenesulfonamide (6) is totally dependent on the nature and position of the substituents present on the two aromatic rings. For the purpose of structure-activity relationship, we have selected few compounds from a library of more than 500 arylethenesulfonamides synthesized in our laboratory. The cytotoxicity data (Table 1) clearly shows that the molecules are less active when the aromatic rings are without any substitution or mono substituted with halogens or with a combination of a methoxy and a halogen atom (6a-6d). The improvement in the cytotoxicity profile was observed when each aromatic ring has a methoxy group on it (6e, 6f). Based on this observation, additional methoxy groups were added on the styryl aromatic ring keeping a methoxy group constantly at the 4th position of the aryl sulfamyl ring to evaluate the influence of these groups on the cytotoxicity of the molecules (6g-6i). From the cytotoxicity data (Table 1) it is clear that 2,4 and 2,6-dimethoxy substitutions (6g, 6h) moderately enhanced the potency of the molecules while 2,4,6-trimethoxy substitution (6i) enhanced the cytotoxicity potency to several folds higher in the molecule. Altering the positions of the methoxy groups from 2,4,6 to 3,4,5 (6j) resulted in the loss of the cytotoxicity indicating that the optimum activity could be achieved only when the substitution pattern is 2,4,6 on the styryl aromatic ring. Also to evaluate the importance of the location of 2,4,6-trimethoxy groups on styryl aromatic ring, we switched these methoxy groups on to sulfamyl aromatic ring and tested the resulting molecule (6k)for the cytotoxicity. The loss of cytotoxicity activity in **6k** clearly shows that the trimethoxy groups not only should be on the styryl aromatic ring but also at 2,4,6- positions. Further to make **6i** more water soluble we replaced the methoxy group with a hydroxyl group at the 4th position of the 2,4,6-trimethoxy styryl ring and the resulted molecule (61) lost the activity indicating that hydrophobic group at that position is required for the activity of the molecule. When fluorine atoms are introduced in place of 2,4,6-trimethoxy groups on **6i**, the resulting molecules (**6m**, **6n**) lost their cytotoxic potential on cancer cells showing that the methoxy groups at those positions are critical for the activity of the molecule. After fixing the styryl aromatic ring with 2.4.6-trimethoxy groups to attain the best activity, we then focused our attention on to aryl sulfamyl ring of the molecule. Addition of a fluorine atom at the third position of the sulfamyl ring in **6i** retained the activity of the molecule (**60**) indicating that the meta position in the ring is vulnerable and can be used for introducing groups that enhance water solubility and bioavailability without affecting the potency of the molecule. Replacing the fluorine in **60** with a hydroxyl group resulted in a potent molecule (**6p**) that has 5–7 folds higher cytotoxicity than **60**. Conversion of **6p** into dimethyl quinone prodrug (6q) enhanced the cytotoxicity of the molecule compared to 6p probably due to better cell permeability compared to 6p. But the solubility of 6q in aqueous buffers has not much improved compared to **6p**. Also introduction of the hydroxyl group on the sulfamyl ring created the possibility of producing a highly water-soluble disodium phosphate salt (6r) having more or less same potency as that of **6p**. Further attempts to enhance the cytotoxicity

with an electron withdrawing nitro group at 3rd position of the sulfamyl ring resulted in a molecule (**6s**) that is several folds less active than **6p**, **6q** and **6r**. Surprisingly reduction of the nitro group (**6s**) to an electron releasing amino group resulted in the formation of the most active molecule (**6t**) of this series. Any other alterations and modifications on **6t** resulted in molecules (**6u-6z** and **6aa-6aj**) with reduced or total loss of cytotoxicity indicating that the best activity in N-aryl-2-arylethenesulfonamide series could be obtained only when a molecule bears 3-amino, 4-methoxy on the arylsulfamyl ring and 2,4,6-trimethoxy groups on the styryl ring.

After identifying the most potent molecule (**6t**) in the series, we made several modifications on the amino group of **6t** to make it more water-soluble and bioavailable. Alkylation of the *meta*-amino group in **6t** with methyl bromoacetate and 2-alkyl, aryl substituted bromoacetates produced 3-glycine esters (**24a-g**) which on hydrolysis resulted in acids (**25a-g**). All the glycine analogs (**25a-g**) showed enhanced water solubility (10–20 mg/mL) and excellent cytotoxicity (Table 2) compared to the glycine esters (**24a-g**).

BIOLOGICAL RESULTS AND DISCUSSION

In vitro Anti-tumor Effects of 6i, 6p, 6t, and 25c Compounds

Screening of the novel arylethenesulfonamide compound library of molecules for anti-tumor activity using cell biological assays yielded several candidate molecules that induced dose-dependent growth inhibition and death of tumor cells (Tables 1 & 2). To identify the arylethenesulfonamides with the broadest range of activity in a wider selection of cancer cell types we chose four of the most potent compounds from the series shown in Chart 2 and found high potency with similar GI₅₀ values (selected data shown in Table 3). The appreciable cell killing across multiple tumor types suggests that these compounds are inhibiting an intrinsically important process of tumor cell division. **6t** was found to be the most active of the four compounds exhibiting IC₅₀ values of between $0.003 - 0.01 \,\mu$ M (Table 3), and on that basis, we further investigated the mechanism of action of this compound.

Effects of 6t on Cell Cycle Progression of Tumor Cells

The effect of **6t** on cell cycle progression in DU145 human prostate cancer cells using fluorescence-activated cell sorting (FACS) analysis indicated that the addition of **6t** to tumor cells resulted in gradual accumulation of cells in the G2/M phase of the cell cycle in a concentration-dependent manner. Figure 1 shows that tumor cells accumulated in the G2/M phase of the cell cycle at 0.005 μ M concentration of **6t**, and a majority of cells showed G2/M arrest at a 0.02 μ M concentration, whereas a normal cell cycle distribution was seen in the vehicle treated cells. In addition, treatment of the tumor cells with **6t** resulted in an accumulation of cells containing subG1 content of DNA which is an indication of mitotic arrest.³¹

Compound 6t Treatment Induces Abnormal Mitotic Spindle Development

We tested if **6t** was able to depolymerize cellular microtubules in the same way as other depolymerizing agents. Exposure of DU145 cells to different concentrations of **6t** for 24 h led to a complete depolymerization of the microtubule cytoskeleton. Confocal laser microscopy showed that while DMSO-treated cells (vehicle) went through various phases of mitosis without any abnormality, **6t** treated cells exhibited profound abnormalities in spindle-formation, resulting in the appearance of abnormal spindles, misalignment of chromosomes and complete loss of co-ordination in mitotic spindle assembly (Figure 2). Some cells were micro-nucleated, and others were arrested in pro-metaphase with a ball or rosette of condensed DNA without a mitotic spindle (type IV spindle).³² The mitotic arrest

caused by **6t** was accompanied by net microtubule depolymerization. These data suggested that **6t** acts as a mitotic inhibitor by blocking cell cycle progression at a time between prometaphase and metaphase by its ability to disrupt spindle assembly that led to the caspase activation and apoptosis as evidenced by PARP [Poly(ADP-ribose) polymerase-1] cleavage ³³ (Figure 3). Treatment of **6t** selectively induced PARP cleavage in the tumor cell line while there was no PARP cleavage in the treated normal cell line (data not shown). These results correlate quite well with those obtained in tubulin assembly experiments.

Compound 6t Destabilizes Tubulin Polymerization by Binding to the Colchicine Binding Site on Tubulin

Since chromosomal architecture showed abnormalities in spindle formation, we examined whether 6t effected polymerization of tubulin *in vitro*. For these assays, the spontaneous polymerization of purified bovine brain tubulin was measured to determine if the antimitotic properties of **6t** were due to either stabilization or destabilization of microtubule polymerization. The extent of tubulin polymerization was determined spectrophotometrically by the increasing absorbance at 340 nM. DMSO vehicle is known to slightly stabilize microtubules and produces an intermediate polymerization phenotype.³⁴ As expected, the microtubule stabilizer paclitaxel induced a strong increase in turbidity, whereas nocodazole destabilized growing microtubules such that depolymerization at the (-)-end is faster than polymerization at the (+)-end, giving rise to a net "depolymerization" phenotype and no rise in turbidity (Figure 4A). Attempted polymerization of tubulin in the presence of 6t produced a depolymerization phenotype, suggesting that 6t and related arylethenesulfonamides, 25a and 25c, caused cytotoxicity through destabilization of microtubule polymerization (see Figure 4B). The ability of 6t compounds to compete for known binding sites on tubulin was determined using a mass spectrophotometric (MS) competitive binding assay.³⁵ Three tubulin ligands, corresponding to the 3 binding sites on tubulin, colchicine, vinblastine, and paclitaxel were used for these competitive binding studies. 6t (IC₅₀ = 3.68μ M) specifically competed with colchicine binding to tubulin and with similar avidity as podophylltoxin, (IC₅₀ = $3.71 \,\mu$ M), but it did not compete with either vinblastine or paclitaxel binding to tubulin (Figure 5). Known tubulin binding ligands, podophylltoxin, vincristine and docetaxel effectively competed for the colchicine-, vinblastine- and paclitaxel-tubulin binding sites, respectively, indicating the validity of the MS binding assay.

In Vivo Tubulin Polymerization of 6t

To determine whether this compound also inhibits tubulin polymerization *in vivo*, we treated human prostate cancer cells (DU145) with increasing concentrations of **6t** for 24 h and determined the extent of polymerized tubulin present in cell lysates. This assay, based on differential precipitation of depolymerized (soluble) and polymerized (precipitated) tubulin, detects the abundance of polymerized tubulin (spindle formation) present in normal mitotic cells. Paclitaxel and colchicine were used as controls since paclitaxel promotes tubulin polymerization while colchicine induces de-polymerization of tubulin. Figure 6A shows that **6t** caused a concentration-dependent depolymerization of tubulin in treated cells, similar to colchicine. Furthermore, **6t** caused tubulin depolymerization even in cells pre-treated with paclitaxel for 24 h that had high levels of polymerized tubulin; colchicine had a similar effect (Figure 6B). These studies clearly indicate that **6t** acts as a tubulin-depolymerizing agent and this property explains its ability to induce mitotic arrest of human tumor cells which results in their apoptotic death.

In vivo Anti-tumor Effects of 6t

6t was next tested for its anti-tumor activity in soft agar and nude mouse assays. For soft agar assays, we used a well-known pancreatic cancer cell line, MIA-Pa-Ca2. Treatment of these cells line with 6t resulted in inhibition of anchorage-independent growth of tumor cells in a dose dependent manner (Figure 7A). In these assays, paclitaxel was used as a positive control, which showed similar potency (data not shown). To examine the anticancer efficacy, we used ER-negative human breast tumor cells (BT-20) grown as xenografts in nude mice. Female athymic (NCr-nu/nu) mice were injected subcutaneously with 0.5-1×10⁷ tumor cells in 0.2 mL of PBS and the tumors allowed to grow for 7-10 days to a size of 100–150 mm prior to treatment. The mice were then paired such that the pairs harbored equal sized tumors which were used to test the therapeutic effects of 6t. Of the pairs, one mouse received the vehicle alone while the second mouse received the compound by intraperitoneal (IP) injection. The tumor size was measured on alternate days for a total of 14 days. Figure 7B shows that 6t readily inhibited tumor growth in this xenograft model system. Of the 8 mice included in each group, 100% of the control mice (placebo administered) showed a doubling of the total tumor volume. On the other hand, most of the mice administered with 6t showed growth arrest or a gradual reduction in their tumor volume, suggesting that this compound could be valuable anti-cancer therapeutic. Measurement of the body weights during the experimental period showed no reduction in body weight indicated the safety profile of the drug.

Compounds 6t and 25c are Highly Active Against Drug Resistant Tumor Cell Lines

One major limitation of anticancer drug therapy is intrinsic and acquired multidrug resistance. Tumor expression of the ATP-dependent drug efflux pump, P-glycoprotein (Pgp), is associated with anticancer treatment failure.³⁶ Many microtubulin poisons such as paclitaxel, vincristine, and vinblastine are substrates for the multidrug resistant family members. Drugs that are not substrates for the drug efflux pumps can overcome these mechanisms of resistance and be more efficacious. The ability of the arylethenesulfonamides, specifically 6t and 25c, to overcome drug-induced mechanisms of resistance was tested in pairs of isogenic cell line pairs (see Table 4). In all three pairs of sensitive and drug-resistant cancer cells, 6t and 25c exhibit greatly improved activity with resistance factors < 2. The uterine sarcoma cell line MES-SA and its multidrug resistant subline MES-SA/DX537 has been shown to express high levels of P-glycoprotein and is resistant to a number of drugs including doxorubicin, paclitaxel, vincristine, vinblastine, etoposide, mitoxantrone, dactinomycin, and daunorubucin; in our studies paclitaxel was 190-fold resistant based on GI₅₀ values, whereas both 6t and 25c were nearly equally active. Similar phenomenon was seen in the parental leukemic cell line CEM and its MDR subline CEM/C2³⁸ that was selected for resistance to camptothecin and has cross-resistance to etoposide, dactinimycin, bleomycin, mitoxantrone, doxorubicin, and daunorubicin. Finally 6t was equally active in the ovarian carcinoma cell line 2008 and its paclitaxel-resistant clone 2008/17/4, which supports our contention that 6t, based on its activity in multiple drug-resistance cell lines, may be more effective in tumors that exhibit the MDR phenotype.

Pharmacological and Toxicological data of 6t

A study was conducted to assess the solubility, cytotoxicity, permeability, metabolic stability and protein binding of compound **6t** (Table 5). **6t** had moderate solubility in aqueous buffer with a limit of complete solubility (as measured by a statistical increase of light scattering over blank) of 62.5 μ M measured by nephelometry. **6t** was non-toxic to the human adenocarcinoma cell line, Caco-2 with an LD₅₀ of >1000 μ M (one hour incubation) in comparison to the negative control compounds, tamoxifen and 2-thiouracil that yielded LD₅₀ values of 343 and >1000 μ M, respectively. **6t** Was also non-toxic to HepG2 cells, a

human hepatocyte cell line, with an $LD_{50} > 1000 \,\mu\text{M}$ following a 4 h exposure. Membrane permeability of 6t was determined using MDCK-MDR1 cells, a model for blood-brain barrier (BBB) permeability, as previously reported.^{39,40} Briefly, confluent MDCK-MDR1 monolayers expressing Pgp were obtained 3-4 days post-seeding and their integrity assessed by measurement of the transepithelial electrical resistance (TEER, $\Omega \cdot cm2$) with a Volt-Ohm Meter (Millicell-ERS, Millipore Corpration, Billerica, MA). After subtraction of the background TEER (i.e. the resistance exhibited by the filter alone) only MDCK-MDR1 cell monolayers that exhibited a TEER > 1000 $\Omega \cdot cm^2$ throughout [measured before and after the study] the experiments were used. Drug transport across the cell monolayers was measured in both apical to basolateral (A-B) and basolateral to apical (B-A) directions based on 6t concentrations measured by LC/MS/MS. The starting concentration of 6t was 10 μ M and the duration of the studies were 90 min. Apparent permeability values and the efflux ratio (ER) (see Table 5) indicated that 6t underwent passive transcellular diffusion with no appreciable active efflux that is normally indicated by ER values > 30. Metabolic stability of 6t in human, rat and dog S9 liver fractions showed that 6t was most extensively metabolized by human liver S9 followed by rat and dog with 20%, 33% and 57% of parent remaining following 1 h incubations, respectively. Binding of 6t to rat, dog and human plasma was measured by equilibrium dialysis at concentrations of 10 and 50 μ M at 37 °C. 6t is extensively bound (>98%) to rat, dog and human plasma proteins.

In vivo PK profile of 6t

Male ICR mice (N=3 per group) 6-8 weeks of age were used to examine the pharmacokinetics (PK) of 6t. The compound was formulated in NMP:PEG300: water at a volume ratio of 1:4:5 for both administrations at 5 mg/kg by intravenous bolus (IV, $20 \,\mu L$ total volume) and oral gavage (PO, 200 µL total volume). One day prior to drug administrations, a vascular cannula (vinyl tubing of I.D $0.28 \text{ mm} \times \text{O.D} 0.61 \text{ mm}$, Scientific Commodities Inc., Lake Havasu City, AZ) was surgically implanted in the right common carotid artery to allow for serial collection of blood (20 µL of blood per time point). For both 6t administrations, blood samples were collected at 2, 5, 15, 30, 60, 120, 240 and 360 min after administration. Plasma sample were prepared by centrifuging the blood samples at 8,000g for 5 min. All plasma samples were stored immediately at -80 °C until analyzed by LC/MS/MS. A protein precipitation method was used for sample preparation. An 80 μ L aliquot of acetonitrile containing the internal standard was added to $20 \,\mu\text{L}$ of plasma and then thoroughly vortexed for 15 s. After centrifugation, the supernatant was analyzed by LC/ MS/MS. The pharmacokinetic parameters were determined using noncompartmental analysis (WinNonlin 6.0, Pharsight Corporation, Mountain View, CA). Evan at this relatively low dose effective concentrations (> than GI_{50} concentrations) were achieved following single doses.

CONCLUSION

In summary, we have described the synthesis of a new series of tubulin polymerization inhibitors, which induce G2/M-phase cell cycle arrest leading to apoptotic cell death in a wide variety of human tumor cell lines at nanomolar concentrations by disrupting tubulin assembly. Our studies show that the cytotoxic activities of these compounds are completely dependent on the nature and position of the substituents on the two aromatic rings along with a substituted or unsubstituted sulfonamide group. SAR studies revealed that a molecule with an aryl sulfonamide moiety either with 3-hydroxy, 4-methoxy groups or 3-amino, 4-methoxy groups and a styryl ring with methoxy groups at 2, 4 and 6-positions, **6p** and **6t**, respectively, showed optimum biological activity. The dimethyl quinone ester (**6q**) and water soluble disodium phosphate (**6r**) of **6p** showed very good activity in both the cell lines

Preliminary mode of action studies demonstrated that the lead compound **6t** arrests tumor cell cycle at G2/M-phase and induces apoptotic cell death by microtubule depolymerization and caspase activation. *In vivo* anti-tumor effect of **6t** in soft agar and nude mouse assays showed that this compound demonstrated considerable regression in tumor growth in a xenograft model. The fact that **6t** does not appear to be a substrate of P-glycoprotein and other MDR-mediated efflux pumps based on cytotoxicity and cell permeability assays suggests **6t** may penetrate the BBB sufficiently to be active in brain tumors, tumors not amenable to therapy by other natural product anti-mitotics. In conclusion, the lead compound **6t** possessed oral bioavailability, pharmacological and toxicological characteristics that warrant further development as an exciting new class of anticancer agents.

EXPERIMENTAL SECTION

Chemistry

General Experimental Procedures—Melting points were determined on Electrothermal MEL-Temp 3.0 apparatus and were uncorrected. The proton nuclear resonance (¹H NMR) spectra were performed on a Bruker AVANCE 300, 600 (¹H, 300, 600 MHz; 13 C, 75 MHz), Varian INOVA (400 MHz), and GE (500 MHz). Chemical shifts δ are given in ppm, and the following abbreviations are used: singlet (s), doublet (d), triplet (t), multiplet (m) and broad singlet (br s). Coupling constants (J) were measured in hertz (Hz). All LC/MS data were gathered on an Agilent 1200 LC with Agilent 6410 triple quadrupole mass spectrometer detectors. The compound solution was infused into the electrospray ionization source operating positive and negative modes in methanol/water/trifluoroacetic acid (50:50:0.1% v/v) at 0.4 mL/min. The sample cone (declustering) voltage was set at 100 V. The instrument was externally calibrated for the mass range m/z 100 to m/z 1000. The reactions were followed by TLC (Silica gel,) using chloroform: methanol (9.5:0.5 v/v). The purity of the newly synthesized compounds was determined by LC/MS analysis and was confirmed to be higher than 95% for all compounds. All reagents and solvents were purchased from commercial suppliers and used without further purification unless otherwise stated. Solvents were dried using standard procedures and reactions requiring anhydrous conditions were performed under N2 atmosphere. Reactions were monitored by Thin Layer Chromatography (TLC) on pre-coated silica gel F254 plates (Sigma-Aldrich) with a UV indicator. Yields were of purified product and were not optimized.

General Procedure for the Preparation of 3-Nitro-4-methoxyaniline (1g)

(Scheme 3)—To a mixture of 4-fluoro-3-nitroaniline **7** (15.61 g, 100 mmol) in absolute methanol (364 mL) was added 6% methanolic potassium hydroxide (182 mL) at room temperature and stirred for 30 min. After completion of the reaction, the reaction mixture was acidified with concentrated hydrochloric acid and evaporated the methanol under vacuum to dryness. The crude residue on crystallization with aqueous methanol resulted pure 1g. Yield: 50%; pale yellow solid, mp 51–53 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.83 (s, 3H, OCH₃), 6.28 (br s, 1H, NH₂), 7.24 (d, J = 9.0 Hz, 1H, Ar-H), 7.32 (dd, J = 2.7, 9.0 Hz, 1H, Ar-H), 7.55 (d, J = 2.7 Hz, 1H, Ar-H). HRMS found [M+H]⁺ (m/z): 169.0568. Calcd for C₇H₈N₂O₃ m/z: 168.0535.

Ramana Reddy et al.

General Procedure for the Preparation of 4-Methoxy-3,5-dinitroaniline (1j) (Scheme 3)

Step 1: Synthesis of 4-Fluoro-3,5-dinitrobenzoic acid (9).²⁴: 4-Fluorobenzoic acid **8** (14.0 g, 10 mmol) was added in small portions to a mixture of 30 % oleum (121 g, 121 mmol) and 90% nitric acid (83.4 g, 132 mmol), under stirring at below 25 °C. The resulting clear yellow solution was heated initially to 85 °C and once the initial exothermic subsided, the reaction mixture was heated to 95 °C and maintained at same temperature for 3 h. After completion of the reaction, the mixture was cooled to room temperature and poured onto ice. The solid formed filtered, and washed with cold water, gave pure **9**. Yield: 70%; mp 238–240 °C. ¹H NMR (DMSO-d₆, 300 MHz): δ 8.06 (s, 2H, Ar-H). HRMS found [M-H]⁻ (m/z): 228.9968. Calcd for C₇H₃FN₂O₆ m/z: 229.9975.

Step 2: Synthesis of 4-Fluoro-3,5-Dinitroaniline (10): To a solution of 4-fluoro-3,5dinitrobenzoic acid, **9** (11.4 g, 49.5 mmol) in 20 % oleum (30 mL) was added ethylene dichloride (40 mL) and continued stirring at below 25 °C. To this sodium azide (3.7 g, 56.9 mmol) was added in small portions and the reaction mixture then heated to reflux and refluxed for 1 h. Once the reaction was completed, cool the reaction mixture to room temperature and separate the ethylene dichloride layer. The acidic solution was poured over ice, the solid formed filtered and washed with water, gave crude **10**. Recrystallization from ethylene dichloride gave pure **10**. Yield: 70.3%; yellow-orange crystals, mp 149–150 °C. ¹H NMR (CDCl₃, 500 MHz): δ 6.17 (s, 2H, NH₂), 7.52 (d, J = 5.5 Hz, 2H, Ar-H). HRMS found [M+H]⁺ (m/z): 202.0156. Calcd for C₆H₄FN₃O₄ m/z: 201.0186.

Step 3: Synthesis of 4-Methoxy-3,5-Dinitroaniline (1j): The title compound was obtained from 4-fluoro-3,5-dinitroaniline **10** following the procedure as described in compound **1g**. Yield: 50.3%; mp 200–205 °C. ¹H NMR (DMSO-d₆, 500 MHz): δ 3.77 (s, 3H, OCH₃), 6.09 (s, 2H, NH₂), 7.34 (s, 2H, Ar-H). HRMS found [M+H]⁺ (m/z): 214.0409. Calcd for C₇H₇N₃O₅ m/z: 213.0386.

General Procedure for the Preparation of Ethyl 2-(Chlorosulfonyl)acetate (2) (Scheme 4)

Method A

Step 1: Synthesis of Sodium 2-Ethoxy-2-oxoethanesulfonate(12).²⁵: To a solution of sodium sulfite (12.6 g, 100 mmol) in water (400 mL) at 18–20 °C was added a mixture of ethyl bromoacetate **11** (16.7 g, 100 mmol) in ethanol (200 mL) drop wise under stirring. After the addition was complete, the reaction mixture was heated to 50 °C and maintained for 30 min. Once the reaction completed, concentrated the reaction mass to dryness with the help of ethanol/benzene mixture (2 X 200 mL, 1:1 v/v) and make sure the water was removed completely. The resulted crude solid was extracted with boiling 2:1 acetic acid/ ethyl acetate (900 mL) and the hot solution was filtered through celite. The filtrate left overnight at room temperature, the solid separated was filtered, washed with cold ethyl acetate, dried under vacuum resulted pure **12** was used without characterization. Yield: 70% as white solid.

Step 2: Synthesis of Ethyl 2-(Chlorosulfonyl)acetate (2): The mixture of sodium 2ethoxy-2-oxoethanesulfonate, **12** (17.6 g, 100 mmol) and phosphorus (V) chloride (23.0 g, 110 mmol) was stirred until the reaction mass no longer exothermic. Then the reaction mixture was warmed on a steam bath for 45 min and distills off excess phosphorus (V) chloride under vacuum. To the residue, benzene was added (100 mL), stirred for 10 min and filtered through celite, washed with benzene and removal of solvent under vacuum gave pure **2**, as clear oil. Yield: 85%. ¹H NMR (CDCl₃, 300 MHz): δ 1.29 (t, J = 6.9 Hz, 3H,

Ramana Reddy et al.

CH₃), 3.94 (s, 2H, CH₂), 4.12 (q, J = 7.2 Hz, 2H, OCH₂). HRMS found $[M+H]^+$ (m/z): 186.9734. Calcd for C₄H₇ClO₄S m/z: 185.9754.

Method B: Preparation of Ethyl 2-(Chlorosulfonyl)acetate (2).²⁶: To a cooled solution of chlorosulfonylacetyl chloride, 13 (22.2 g, 125 mmol) in anhydrous diethyl ether (115 mL) was added absolute ethanol (5.78 g, 125 mmol) and maintained for 3 h at 0 °C. Removal of diethyl ether under vacuum resulted crude 2. Distillation of the crude resulted pure 2 as an oil. Yield: 55%; bp 123–126 °C (15 mm Hg). The analytical data are in accord with above method A product.

General Procedure for the Preparation of Ethyl Phenylsulfamoyl acetate (3). (Scheme 1)—To a solution of aniline, 1 (10.0 g, 107 mmol) in dichloromethane (150 mL) at 10 °C, was added triethylamine (16.3 g, 161 mmol) dropwise and stirred for 15 min at same temperature. To this ethyl 2-(chlorosulfonyl)acetate, 2 (22.0 g, 118 mmol) dissolved in dichloromethane (25 mL) was added slowly at same temperature. Once the addition is over, the reaction mixture was allowed to warm to room temperature and stirred for 3 h. After completion of reaction, water was added, stirred for 15 min and separated the organic layer, dried over anhydrous sodium sulfate and evaporated under reduced pressure resulted crude 3, as an oil. The crude on silica gel column purification (1:1, ethyl acetate: hexane) resulted pure 3. The following ethyl phenylsulfamoyl acetates 3 were prepared using the above procedure.

Ethyl 2-(N-Phenylsulfamoyl)acetate (3a): Addition of ethyl 2-(chlorosulfonyl)acetate, **2** to aniline, **1a** yielded the corresponding ethyl 2-(N-phenylsulfamoyl)acetate. Yield: 80%, as oil. ¹H NMR (CDCl₃, 300 MHz): δ 1.31 (t, J = 6.9 Hz, 3H, CH₃), 3.96 (s, 2H, CH₂), 4.31 (q, J = 7.2 Hz, 2H, OCH₂), 6.85 (br s, 1H, NH), 7.38–7.46 (m, 5H, Ar-H). HRMS found [M +H]⁺ (m/z): 244.0589. Calcd for C₁₀H₁₃NO₄S m/z: 243.0565.

Ethyl 2-(N-(4-Chlorophenyl)sulfamoyl)acetate (3b): Addition of ethyl 2-(chlorosulfonyl)acetate, **2** to 4-chloroaniline, **1b** yielded the corresponding ethyl 2-(N-(4chlorophenyl)sulfamoyl)acetate. Yield: 81%; light yellow solid, mp 78–79 °C. ¹H NMR (CDCl₃, 300 MHz): δ 1.34 (t, J = 6.9 Hz, 3H, CH₃), 3.94 (s, 2H, CH₂), 4.29 (q, J = 7.2 Hz, 2H, OCH₂), 7.05 (br s, 1H, NH), 7.27–7.38 (m, 4H, Ar-H). HRMS found [M+H]⁺ (m/z): 278.0201. Calcd for C₁₀H₁₂ClNO₄S m/z: 277.0176.

Ethyl 2-(N-(4-Fluorophenyl)sulfamoyl)acetate (3c): Addition of ethyl 2-(chlorosulfonyl)acetate, **2** to 4-fluoroaniline, **1c** yielded the corresponding ethyl 2-(N-(4-fluorophenyl)sulfamoyl)acetate. Yield: 79%; light brown solid, mp 65–66 °C. ¹H NMR (CDCl₃, 300 MHz): δ 1.33 (t, J = 7.2 Hz, 3H, CH₃), 3.93 (s, 2H, CH₂), 4.29 (q, J = 7.2 Hz, 2H, OCH₂), 7.03–7.13 (m, 2H, Ar-H), 7.18 (br s, 1H, NH), 7.32–7.40 (m, 2H, Ar-H). HRMS found [M +H]⁺ (m/z): 262.0500. Calcd for C₁₀H₁₂FNO₄S m/z: 261.0471.

Ethyl 2-(N-(4-Methoxyphenyl)sulfamoyl)acetate (3d): Addition of ethyl 2-

(chlorosulfonyl)-acetate, **2** to 4-methoxyaniline, **1d** yielded the corresponding ethyl 2-(N-(4-methoxyphenyl)-sulfamoyl)acetate. Yield: 79%; pale yellow sold, mp 74–76 °C. ¹H NMR (CDCl₃, 300 MHz): δ 1.34 (t, J = 6.9 Hz, 3H, CH₃), 3.83 (s, 2H, CH₂), 3.86 (s, 3H, OCH₃), 4.30 (q, J = 7.2 Hz, 2H, OCH₂), 6.82 (br s, 1H, NH), 6.88 (d, J = 9.0 Hz, 2H, Ar-H), 7.14 (d, J = 9.0 Hz, 2H, Ar-H). HRMS found [M+H]⁺ (m/z): 274.0694. Calcd for C₁₁H₁₅NO₅S m/z: 273.0671.

Ethyl 2-(N-(3-Fluoro-4-methoxyphenyl)sulfamoyl)acetate (3e): Addition of ethyl 2-(chlorosulfonyl)acetate, 2 to 3-fluoro-4-methoxyaniline, 1e yielded the corresponding ethyl

2-(N-(3-fluoro-4-methoxyphenyl)sulfamoyl)acetate. Yield: 79%; light yellow solid, mp 81–83 °C. ¹H NMR (CDCl₃, 300 MHz): δ 1.33 (t, J = 7.2 Hz, 3H, CH₃), 3.82 (s, 2H, CH₂), 3.87 (s, 3H, OCH₃), 4.28 (q, J = 7.2 Hz, 2H, OCH₂), 6.84 (br s, 1H, NH), 6.92 (d, J = 9.0 Hz, 1H, Ar-H), 7.08 (dd, J = 2.4, 8.4 Hz, 1H, Ar-H), 7.19 (d, J = 2.4 Hz, 1H, Ar-H). HRMS found [M+H]⁺ (m/z): 292.0600. Calcd for C₁₁H₁₄FNO₅S m/z: 291.0577.

Ethyl 2-(N-(2,4,6-Trimethoxyphenyl)sulfamoyl)acetate (3f): Addition of ethyl 2-(chlorosulfonyl)acetate, **2** to 2,4,6-trimethoxyaniline, **1f** yielded the corresponding ethyl 2-(N-(2,4,6-trimethoxyphenyl)sulfamoyl)acetate. Yield: 78%; light yellow solid, mp 76–78 °C. ¹H NMR (CDCl₃, 300 MHz): δ 1.33 (t, J = 7.2 Hz, 3H, CH₃), 3.81 (s, 9H, 3 X OCH₃), 3.90 (s, 2H, CH₂), 4.29 (q, J = 7.2 Hz, 2H, OCH₂), 6.04 (s, 2H, Ar-H), 6.79 (br s, 1H, NH). HRMS found [M+H]⁺ (m/z): 334.0906. Calcd for C₁₃H₁₉NO₇S m/z: 333.0882.

Ethyl 2-(N-(4-Methoxy-3-nitrophenyl)sulfamoyl)acetate (3g): Addition of ethyl 2-(chlorosulfonyl)acetate, **2** to 3-nitro-4-methoxyaniline, **1g** yielded the corresponding ethyl 2-(N-(4-methoxy-3-nitrophenyl)sulfamoyl)acetate. Yield: 80%; white crystalline solid, mp 100–102 °C. ¹H NMR (CDCl₃, 300 MHz): δ 1.36 (t, J = 7.2 Hz, 3H, CH₃), 3.94 (s, 2H, CH₂), 3.99 (s, 3H, OCH₃), 4.32 (q, J = 7.2 Hz, 2H, OCH₂), 7.07 (br s, 1H, NH), 7.13 (d, J = 9.0 Hz, 1H, Ar-H), 7.62 (dd, J = 2.7, 9.0 Hz, 1H, Ar-H), 7.86 (d, J = 2.7 Hz, 1H, Ar-H). HRMS found [M+H]⁺ (m/z): 319.0535. Calcd for C₁₁H₁₄N₂O₇S m/z: 318.0522.

Ethyl 2-(N-(Perfluorophenyl)sulfamoyl)acetate (3h): Addition of ethyl 2-(chlorosulfonyl)acetate, **2** to 2,3,4,5,6-pentafluoroaniline, **1h** yielded the corresponding ethyl 2-(N-(perfluorophenyl)sulfamoyl)acetate. Yield: 78%; brown liquid. ¹H NMR (CDCl₃, 300 MHz): δ 1.35 (t, J = 7.2 Hz, 3H, CH₃), 3.94 (s, 2H, CH₂), 4.32 (q, J = 7.2 Hz, 2H, OCH₂), 7.07 (br s, 1H, NH). HRMS found [M+H]⁺ (m/z): 334.0118. Calcd for C₁₀H₈F₅NO₄S m/z: 333.0094.

Ethyl 2-(N-(4-Fluoro-3-nitrophenyl)sulfamoyl)acetate (3i): Addition of ethyl 2-(chlorosulfonyl)acetate, **2** to 4-fluoro-3-nitroaniline, **1i** yielded the corresponding ethyl 2-(N-(4-fluoro-3-nitrophenyl)sulfamoyl)acetate. Yield: 78%; light yellow solid, mp 98–100 °C. ¹H NMR (CDCl₃, 300 MHz): δ 1.35 (t, J = 7.2 Hz, 3H, CH₃), 3.92 (s, 2H, CH₂), 4.30 (q, J = 7.2 Hz, 2H, OCH₂), 7.05 (br s, 1H, NH), 7.32 (d, J = 9.0 Hz, 1H, Ar-H), 7.69 (dd, J = 2.7, 9.0 Hz, 1H, Ar-H), 7.80 (d, J = 2.7 Hz, 1H, Ar-H). HRMS found [M+H]⁺ (m/z): 307.0345. Calcd for C₁₀H₁₁FN₂O₆S m/z: 306.0322.

Ethyl 2-(N-(4-Methoxy-3,5-dinitrophenyl)sulfamoyl)acetate (3j): Addition of ethyl 2-(chlorosulfonyl)acetate, **2** to 4-methoxy-3,5-dinitroaniline, **1j** yielded the corresponding ethyl 2-(N-(4-methoxy-3,5-dinitrophenyl)sulfamoyl)acetate. Yield: 79%; light yellow solid, mp 126–128 °C. ¹H NMR (DMSO-d₆, 300 MHz): δ 1.31 (t, J = 7.2 Hz, 3H, CH₃), 3.92 (s, 3H, OCH₃), 4.13 (q, J = 7.2 Hz, 2H, OCH₂), 4.43 (s, 2H, CH₂), 8.04 (s, 2H, Ar-H), 10.90 (br s, 1H, NH). HRMS found [M+H]⁺ (m/z): 364.0400. Calcd for C₁₁H₁₃N₃O₉S m/z: 363.0372.

Ethyl 2-(N-(3-Hydroxy-4-methoxyphenyl)sulfamoyl)acetate (3k): Addition of ethyl 2-(chlorosulfonyl)acetate, **2** to 3-hydroxy-4-methoxyaniline, **1k** yielded the corresponding ethyl 2-(N-(3-hydroxy-4-methoxyphenyl)sulfamoyl)acetate. Yield: 79%; light brown solid, mp 116–118 °C. ¹H NMR (CDCl₃, 300 MHz): δ 1.35 (t, J = 7.2 Hz, 3H, CH₃), 3.91 (s, 3H, OCH₃), 3.93 (s, 2H, CH₂), 4.31 (q, J = 7.2 Hz, 2H, OCH₂), 5.63 (br s, 1H, OH), 6.76 (br s, 1H, NH), 6.83 (d, J = 8.4 Hz, 1H, Ar-H), 6.88 (dd, J = 2.4, 8.4 Hz, 1H, Ar-H), 6.96 (d, J = 2.4 Hz, 1H, Ar-H). HRMS found [M+H]⁺ (m/z): 290.0644. Calcd for C₁₁H₁₅NO₆S m/z: 289.0620.

Ramana Reddy et al.

General Procedure for the Preparation of Phenylsulfamoyl acetic acid (4). (Scheme 1)—A cooled solution of sodium hydroxide (4.88 g, 122 mmol) in water (122 mL) was added to ethyl 2-(N-phenylsulfamoyl)acetate, **3a** (4.15 g, 18.1 mmol) slowly and continued stirring for 3 h at room temperature. After completion of the reaction, the reaction mixture was cooled to 0 °C; concentrated hydrochloric acid was added slowly at 0 °C until the pH of the reaction mixture is in between 3.0–4.0 and stir for 30 min. The solid formed was filtered, washed with cold water and dried under vacuum. The dried product was used without further purification. The following phenylsulfamoyl acetic acids **4** were prepared using the above procedure.

<u>2-(N-Phenylsulfamoyl)acetic acid (4a):</u> Hydrolysis followed by neutralization of ethyl 2-(N-phenylsulfamoyl) acetate **3a** resulted the corresponding 2-(N-phenylsulfamoyl)acetic acid. Yield: 81%: light yellow solid, mp 110–111 °C. ¹H NMR (DMSO-d₆, 300 MHz): δ 3.98 (s, 2H, CH₂), 7.38–7.46 (m, 5H, Ar-H), 9.85 (br s, 1H, NH), 12.70 (br s, 1H, COOH). HRMS found [M-H]⁻(m/z): 214.0276. Calcd for C₈H₉NO₄S m/z: 215.0252.

2-(N-(4-Chlorophenyl)sulfamoyl)acetic acid (4b): Hydrolysis followed by neutralization of ethyl 2-(N-(4-chlorophenyl)sulfamoyl)acetate, **3b** resulted the corresponding 2-(N-(4-chlorophenyl)sulfamoyl)acetic acid. Yield: 84%; white solid, mp 126–128 °C. ¹H NMR (DMSO-d₆, 300 MHz): δ 3.84 (s, 2H, CH₂), 7.23 (d, J = 9.0 Hz, 2H, Ar-H), 7.37 (d, J = 9.0 Hz, 2H, Ar-H), 10.32 (br s, 1H, NH). HRMS found [M-H]⁻ (m/z): 247.9833. Calcd for C₈H₈ClNO₄S m/z: 248.9863.

2-(N-(4-Fluorophenyl)sulfamoyl)acetic acid (4c): Hydrolysis followed by neutralization of ethyl 2-(N-(4-fluorophenyl)sulfamoyl)acetate, **3c** resulted the corresponding 2-(N-(4-fluorophenyl)sulfamoyl)acetic acid. Yield; 81%; light brown solid, mp 114–116 °C. ¹H NMR (DMSO-d₆, 300 MHz): δ 4.06 (s, 2H, CH₂), 7.17–7.28 (m, 4H, Ar-H), 10.04 (br s, 1H, NH), 12.70 (br s, 1H, COOH). HRMS found [M-H]⁻ (m/z): 234.0182. Calcd for C₈H₈FNO₄S m/z: 233.0158.

2-(N-(4-Methoxyphenyl)sulfamoyl)acetic acid (4d): Hydrolysis followed by neutralization of ethyl 2-(N-(4-methoxyphenyl)sulfamoyl)acetate, **3d** resulted the corresponding 2-(N-(4-methoxyphenyl)sulfamoyl)acetic acid. Yield: 82%; white solid, mp 166–168 °C. ¹H NMR (DMSO-d₆, 300 MHz): δ 3.70 (s, 2H, CH₂), 3.73 (s, 3H, OCH₃), 6.90 (d, J = 9.0 Hz, 2H, Ar-H), 7.17 (d, J = 9.0 Hz, 2H, Ar-H), 9.76 (br s, 1H, NH). HRMS found [M-H]⁻ (m/z): 246.0381. Calcd for C₉H₁₁NO₅S m/z: 245.0358.

2-(N-(3-Fluoro-4-methoxyphenyl)sulfamoyl)acetic acid (4e): Hydrolysis followed by neutralization of ethyl 2-(N-(3-fluoro-4-methoxyphenyl)sulfamoyl)acetate, **3e** resulted the corresponding 2-(N-(3-fluoro-4-methoxyphenyl)sulfamoyl)acetic acid. Yield: 82%; light brown sold, mp 176–178 °C. ¹H NMR (DMSO-d₆, 300 MHz): δ 3.77 (s, 2H, CH₂), 3.81 (s, 3H, OCH₃), 6.98–7.02 (m, 1H, Ar-H), 7.05–7.13 (m, 1H, Ar-H), 7.18 (d, J = 9.0 Hz, 1H, Ar-H), 9.72 (br s, 1H, NH). HRMS found [M-H]⁻ (m/z): 262.0285. Calcd for C₉H₁₀FNO₅S m/z: 263.0264.

2-(N-(2,4,6-Trimethoxyphenyl)sulfamoyl)acetic acid (4f): Hydrolysis followed by neutralization of ethyl 2-(N-(2,4,6-trimethoxyphenyl)sulfamoyl)acetate, **3f** resulted the corresponding 2-(N-(2,4,6-trimethoxyphenyl)sulfamoyl)acetic acid. Yield: 80%; white solid, mp 150–152 °C. ¹H NMR (DMSO-d₆, 300 MHz): δ 3.81 (s, 9H, 3 X OCH₃), 3.90 (s, 2H, CH₂), 6.04 (s, 2H, Ar-H), 9.89 (br s, 1H, NH). HRMS found [M-H]⁻ (m/z): 304.0545. Calcd for C₁₁H₁₅NO₇S m/z: 305.0569.

2-(N-(4-methoxy-3-nitrophenyl)sulfamoyl)acetic acid (4g): Hydrolysis followed by neutralization of ethyl 2-(N-(4-methoxy-3-nitrophenyl)sulfamoyl)acetate, **3g** resulted the corresponding 2-(N-(4-methoxy-3-nitrophenyl)sulfamoyl)acetic acid. Yield: 84%; light yellow solid, mp 154–156 °C. ¹H NMR (DMSO-d₆, 300 MHz): δ 3.91 (s, 3H, OCH₃), 4.14 (s, 2H, CH₂), 7.39 (d, J = 9.0 Hz, 1H, Ar-H), 7.50 (dd, J = 2.7, 9.0 Hz, 1H, Ar-H), 7.73 (d, J = 2.7 Hz, 1H, Ar-H), 10.22 (br s, 1H, NH), 12.71 (br s, 1H, COOH). HRMS found [M-H]⁻ (m/z): 289.0232. Calcd for C₉H₁₀N₂O₇S m/z: 290.0209.

2-(N-(Perfluorophenyl)sulfamoyl)acetic acid (4h): Hydrolysis followed by neutralization of ethyl 2-(N-(perfluorophenyl)sulfamoyl)acetate, **3h** resulted the corresponding 2-(N-(perfluorophenyl)sulfamoyl)acetic acid. Yield: 79%; white crystalline solid, mp 142–144 °C. ¹H NMR (DMSO-d₆, 300 MHz): δ 4.35 (s, 2H, CH₂), 10.07 (br s, 1H, NH), 12.71 (br s, 1H, COOH). HRMS found [M-H]⁻ (m/z): 303.9802. Calcd for C₈H₄F₅NO₄S m/z: 304.9781.

2-(N-(4-Fluoro-3-nitrophenyl)sulfamoyl)acetic acid (4i): Hydrolysis followed by neutralization of ethyl 2-(N-(4-fluoro-3-nitrophenyl)sulfamoyl)acetate, **3i** resulted the corresponding 2-(N-(4-fluoro-3-nitrophenyl)sulfamoyl)acetic acid. Yield: 78%; light yellow solid, mp 132–134 °C. ¹H NMR (DMSO-d₆, 500 MHz): δ 4.35 (s, 2H, CH₂), 7.47 (dd, J = 2.7, 9.0 Hz, 1H, Ar-H), 7.75 (d, J = 9.0 Hz, 1H, Ar-H), 7.85 (d, J = 2.7 Hz, 1H, Ar-H), 10.78 (br s, 1H, NH), 13.26 (br s, 1H, COOH). HRMS found [M-H]⁻ (m/z): 277.0026. Calcd for C₈H₇FN₂O₆S m/z: 278.0009.

2-(N-(4-Methoxy-3,5-dinitrophenyl)sulfamoyl)acetic acid (4j): Hydrolysis followed by neutralization of ethyl 2-(N-(4-methoxy-3,5-dinitrophenyl)sulfamoyl)acetate, **3j** resulted the corresponding 2-(N-(4-methoxy-3,5-dinitrophenyl)sulfamoyl)acetic acid. Yield: 79%; brown solid, mp 150–152 °C. ¹H NMR (DMSO-d₆, 300 MHz): δ 3.92 (s, 3H, OCH₃), 4.43 (s, 2H, CH₂), 8.04 (s, 2H, Ar-H), 10.90 (br s, 1H, NH), 12.98 (br s, 1H, COOH). HRMS found [M-H]⁻ (m/z): 334.0081. Calcd for C₉H₉N₃O₉S m/z: 335.0059.

2-(N-(3-Hydroxy-4-methoxyphenyl)sulfamoyl)acetic acid (4k): Hydrolysis followed by neutralization of ethyl 2-(N-(3-hydroxy-4-methoxyphenyl)sulfamoyl)acetate, **3k** resulted the corresponding 2-(N-(3-hydroxy-4-methoxyphenyl)sulfamoyl)acetic acid. Yield: 78%; off-white solid, mp 150–152 °C. ¹H NMR (DMSO-d₆, 500 MHz): δ 3.78 (s, 2H, CH₂), 3.94 (s, 3H, OCH₃), 6.61 (dd, J = 2.4, 8.4 Hz, 1H, Ar-H), 6.76 (d, J = 2.7 Hz, 1H, Ar-H), 6.82 (d, J = 8.7 Hz, 1H, Ar-H), 9.28 (br s, 1H, NH), 9.52 (br s, 1H, COOH). HRMS found [M-H]⁻ (m/z): 260.0326. Calcd for C₉H₁₁NO₆S m/z: 261.0307.

General Procedure for the Preparation of (E)-N-Aryl-2-arylethenesulfonamide (6)

Method A (Scheme 1): A mixture of 2-(N-phenylsulfamoyl)acetic acid **4** (10 mmol), araldehyde **5** (10 mmol), glacial acetic acid (15 mL) was stirred at room temperature for 10 min. A catalytic amount of benzylamine (200 μ L) was added and refluxed for about 8 h. After completion of the reaction, the contents were cooled to room temperature and dilute with ethyl acetate. The precipitated solid was filtered and washed with ethyl acetate, the resulted crude **6** on silica gel column purification recrystallized resulted pure **6**. If solid was not formed, the diluted reaction mixture with ethyl acetate was washed successively with saturated sodium bicarbonate, dilute hydrochloric acid, and water. The organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated under vacuum to obtain the desired crude product **6**. The crude product on silica gel column purification yielded an analytically pure **6**. The following (E)-N-aryl-2-arylethenesulfonamide **6** were prepared using the above procedure.

(*E*)-*N*,2-*Diphenylethenesulfonamide (6a):* The title compound was obtained from 2-(N-phenylsulfamoyl) acetic acid **4a** and benzaldehyde following the procedure as described in method A. Yield, 50%; off white solid, mp 112–114 °C. ¹H NMR (CDCl₃, 300 MHz): δ 6.58 (br s, 1H, NH), 6.81 (d, J = 15.3 Hz, 1H, =CH), 7.14–7.24 (m, 3H, Ar-H), 7.30–7.37 (m, 2H, Ar-H), 7.38–7.46 (m, 5H, Ar-H), 7.53 (d, J = 15.6 Hz, 1H, CH=). HRMS found [M +H]⁺ (m/z): 260.0689. Calcd for C₁₄H₁₃NO₂S m/z: 259.0667.

(*E*)-*N*-(*4*-*Chlorophenyl*)-2-*phenylethenesulfonamide* (*6b*): The title compound was obtained from 2-(N-(4-chlorophenylsulfamoyl)acetic acid **4b** and benzaldehyde following the procedure as described in method A. Yield, 49%; white crystalline solid, mp 108–110 °C. ¹H NMR (CDCl₃, 300 MHz): δ 6.57 (br s, 1H, NH), 6.79 (d, J = 15.3 Hz, 1H, =CH), 7.17 (dd, J = 6.9, 2.4 Hz, 2H, Ar-H), 7.30 (dd, J = 6.6, 2.1 Hz, 2H, Ar-H), 7.37–7.48 (m, 5H, Ar-H), 7.52 (d, J = 15.6 Hz, 1H, CH=). HRMS found [M+H]⁺ (m/z): 294.0301. Calcd for C₁₄H₁₂ClNO₂S m/z: 293.0277.

(*E*)-2-(4'-Bromophenyl)-*N*-(4-fluorophenyl)ethenesulfonamide (6c): The title compound was obtained from 2-(N-(4-fluorophenylsulfamoyl)acetic acid 4c and 4-bromobenzaldehyde following the procedure as described in method A. Yield, 48%; white crystalline solid, mp 138–140 °C. ¹H NMR (CDCl₃, 300 MHz): δ 6.46 (br s, 1H, NH), 6.71 (d, J = 15.3 Hz, 1H, =CH), 7.05–7.13 (m, 4H, Ar-H), 7.43–7.46 (m, 4H, Ar-H), 7.49 (d, J = 15.6 Hz, 1H, CH=). HRMS found [M+H]⁺ (m/z): 355.9702. Calcd for C₁₄H₁₁BrFNO₂S m/z: 354.9678.

(*E*)-*N*-(*4*-*Fluorophenyl*)-2-(4[∠]*methoxyphenyl*)*ethenesulfonamide* (*6d*): The title compound was obtained from 2-(N-(4-fluorophenylsulfamoyl)acetic acid **4c** and 4- methoxybenzaldehyde following the procedure as described in method A. Yield, 49%; off white crystalline solid, mp 98–100 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.85 (s, 3H, OCH₃), 6.43 (br s, 1H, NH), 6.71 (d, J = 15.3 Hz, 1H, =CH), 6.88–6.92 (m, 2H, Ar-H), 6.98–7.06 (m, 2H, Ar-H), 7.17–7.24 (m, 2H, Ar-H), 7.36–7.40 (m, 2H, Ar-H), 7.41 (d, J = 15.6 Hz, 1H, CH=). HRMS found [M+H]⁺ (m/z): 308.0703. Calcd for C₁₅H₁₄FNO₃S m/z: 307.0678.

(E)-2-(2'-Methoxyphenyl)-N-(4-methoxyphenyl)ethenesulfonamide (6e)

Method B (Scheme 1): A mixture of 2-(N-(4-methoxyphenyl)sulfamoyl)acetic acid, 4d (5 mmol), 2-methoxy-benzaldehyde (5.5 mmol), benzoic acid (0.30 mmol), and piperidine (0.30 mmol) in toluene (50 mL) was refluxed for 4 h with continuous removal of water using a Dean-Stark water separator. After the reaction completion, the solvent was evaporated. To the residue added methanol and stirred for 10 min. The solid formed was filtered and washed with cold methanol and dried under vacuum yielded product 6e. If no formation of solid observed, concentrated and water was added to the residue and extracted with ethyl acetate. The organic phase was washed with saturated sodium bicarbonate solution, dilute hydrochloric acid, and water and dried over anhydrous sodium sulfate. The organic phase was filtered, and evaporation of the solvent under vacuum yielded a crude product 6. The pure compound 6 was obtained following purification by silica gel flash column chromatography. Yield, 65%; white solid, mp 112–114 °C. ¹H NMR (DMSO-d₆, 600 MHz): δ 3.61 (s, 3H, OCH₃), 3.76 (s, 3H, OCH₃), 6.79 (d, J = 7.9 Hz, 2H, Ar-H), 6.89 (t, J = 6.8 Hz, 1H, Ar-H), 7.03 (m, 4H, Ar-H), 7.34 (t, J = 6.8 Hz, 1H, Ar-H), 7.41 (d, J = 15.4 Hz, 1H, =CH), 7.55 (d, J = 6.9 Hz, 1H, Ar-H), 9.53 (br s, 1H, NH). HRMS found [M $+H]^+$ (m/z): 320.0849. Calcd for C₁₆H₁₇NO₄S m/z: 319.0878.

(*E*)-*N*,2-*Bis*(4-methoxyphenyl)ethenesulfonamide (6f): The title compound was obtained from 2-(N-(4-methoxyphenyl)sulfamoyl)acetic acid (4d) and 4-methoxybenzaldehyde following the procedure as described in 6e method B. Yield, 60%; semi solid. ¹H NMR (DMSO-d₆, 600 MHz): δ 3.61 (s, 3H, OCH₃), 3.70 (s, 3H, OCH₃), 6.78 (d, J = 9.0 Hz, 2H,

Ar-H), 6.87 (d, J = 8.9 Hz, 2H, Ar-H), 6.92 (d, J = 15.4 Hz, 1H, =CH), 7.03 (d, J = 8.9 Hz, 2H, Ar-H), 7.18 (d, J = 15.4 Hz, 1H, CH=), 7.54 (d, J = 8.7 Hz, 2H, Ar-H), 9.50 (br s, 1H, NH). HRMS found $[M+H]^+$ (m/z): 320.0846. Calcd for $C_{16}H_{17}NO_4S$ m/z: 319.0878.

(*E*)-2-(2',4'-Dimethoxyphenyl)-*N*-(4-methoxyphenyl)ethenesulfonamide (6g): The title compound was obtained from 2-(N-(4-methoxyphenyl)sulfamoyl)acetic acid (4d) and 2,4-dimethoxybenzaldehyde following the procedure as described in 6e method B. Yield, 60%; white solid, mp 162–164 °C. ¹H NMR (DMSO-d₆, 600 MHz): δ 3.61 (s, 3H, OCH₃), 3.72 (s, 3H, OCH₃), 3.76 (s, 3H, OCH₃), 6.48 (dd, J = 8.5, 1.5 Hz, 1H, Ar-H), 6.53 (d, J = 1.5 Hz, 1H, Ar-H), 6.78 (d, J = 8.8 Hz, 2H, Ar-H), 6.86 (d, J = 15.5 Hz, 1H, =CH), 7.02 (d, J = 8.8 Hz, 2H, Ar-H), 7.48 (d, J = 8.5 Hz, 1H, Ar-H), 9.42 (br s, 1H, NH). HRMS found [M+H]⁺ (m/z): 350.1007. Calcd for C₁₇H₁₉NO₅S m/z: 349.0984.

(*E*)-2-(2',6'-Dimethoxyphenyl)-*N*-(4-methoxyphenyl)ethenesulfonamide (6h): The title compound was obtained from 2-(N-(4-methoxyphenyl)sulfamoyl)acetic acid (4d) and 2,6-dimethoxybenzaldehyde following the procedure as described in 6e method B. Yield, 65%; white solid, mp 160–162 °C. ¹H NMR (DMSO-d₆, 600 MHz): δ 3.61 (s, 3H, OCH₃), 3.75 (s, 6H, 2 X OCH₃), 6.63 (d, J = 8.4 Hz, 2H, Ar-H), 6.79 (d, J = 8.7 Hz, 2H, Ar-H), 7.02 (d, J = 8.8 Hz, 2H, Ar-H), 7.05 (d, J = 15.9 Hz, 1H, =CH), 7.29 (t, J = 8.3 Hz, 1H, Ar-H), 7.51 (d, J = 15.6 Hz, 1H, CH=), 9.41 (br s, 1H, NH). HRMS found [M+H]⁺ (m/z): 350.0959. Calcd for C₁₇H₁₉NO₅S m/z: 349.0984.

(*E*)-*N*-(4-Methoxyphenyl)-2-(2',4',6'-trimethoxyphenyl)ethenesulfonamide (6i): The title compound was obtained from 2-(N-(4-methoxyphenyl)sulfamoyl)acetic acid 4d and 2,4,6-trimethoxybenzaldehyde following the procedure as described in method A. Yield, 49%; light yellow solid, mp 176–178 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.79 (s, 3H, OCH₃), 3.84 (s, 6H, 2 X OCH₃), 3.85 (s, 3H, OCH₃), 6.09 (s, 2H, Ar-H), 6.12 (br s, 1H, NH), 6.85 (dd, J = 6.6, 2.1 Hz, 2H, Ar-H), 7.11 (d, J = 15.6 Hz, 1H, =CH), 7.18 (dd, J = 6.6, 2.1 Hz, 2H, Ar-H), 7.81 (d, J = 15.6 Hz, 1H, CH=). HRMS found [M+H]⁺ (m/z): 380.1113. Calcd for C₁₈H₂₁NO₆S m/z: 379.1090.

(*E*)-*N*-(4-Methoxyphenyl)-2-(3',4',5'-trimethoxyphenyl)ethenesulfonamide (6j): The title compound was obtained from 2-(N-(4-methoxyphenyl)sulfamoyl)acetic acid 4d and 3,4,5-trimethoxybenzaldehyde following the procedure as described in 6e method B. Yield, 60%; pale yellow solid, mp 66–68 °C. ¹H NMR (DMSO-d₆, 600 MHz): δ 3.61 (s, 3H, OCH₃), 3.65 (s, 3H, OCH₃), 3.71 (s, 6H, 2 X OCH₃), 6.84 (d, J = 8.9 Hz, 2H, Ar-H), 6.95 (s, 2H, Ar-H), 7.07 (d, J = 8.9 Hz, 2H, Ar-H), 7.15 (d, J = 15.3 Hz, 1H, =CH), 7.19 (d, J = 15.3 Hz, 1H, CH=), 9.58 (br s, 1H, NH). HRMS found [M+H]⁺ (m/z): 380.1068. Calcd for C₁₈H₂₁NO₆S m/z: 379.1090.

(*E*)-2-(4²-Methoxyphenyl)-*N*-(2,4,6-trimethoxyphenyl)ethenesulfonamide (6k): The title compound was obtained from 2-(N-(2,4,6-trimethoxyphenyl)sulfamoyl)acetic acid 4f and 4-methoxybenzaldehyde following the procedure as described in method A. Yield, 49%; off white solid, mp 156–158 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.81 (s, 9H, 3 X OCH₃), 3.86 (s, 3H, OCH₃), 5.84 (br s, 1H, NH), 6.13 (s, 2H, Ar-H), 6.83 (d, J = 15.3 Hz, 1H, =CH), 6.92 (dd, J = 2.1, 6.6 Hz, 2H, Ar-H), 7.32 (d, J = 15.6 Hz, 1H, CH=), 7.42 (dd, J = 2.1, 6.6 Hz, 2H, Ar-H), 7.32 (d, J = 15.6 Hz, 1H, CH=), 7.42 (dd, J = 2.1, 6.6 Hz, 2H, Ar-H), 4.72 (m/z): 380.1071. Calcd for C₁₈H₂₁NO₆S m/z: 379.1090.

(*E*)-2-(4'-Hydroxy-2',6'-dimethoxyphenyl)-*N*-(4-methoxyphenyl)ethenesulfonamide (6l): The title compound was obtained from 2-(N-(4-methoxyphenyl)sulfamoyl)acetic acid 4d and 2,6-dimethoxy-4-hydroxybenzaldehyde following the procedure as described in 6e method B. Yield, 60%; white solid, mp 146–148 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.82 (s,

3H, OCH₃), 3.86 (s, 6H, 2 X OCH₃), 6.05 (s, 2H, Ar-H), 6.50 (br s, 1H, NH), 6.86 (dd, J = 6.6, 2.1 Hz, 2H, Ar-H), 7.13 (d, J = 15.6 Hz, 1H, =CH), 7.20 (dd, J = 6.6, 2.1 Hz, 2H, Ar-H), 7.82 (d, J = 15.6 Hz, 1H, CH=). HRMS found $[M-H]^-$ (m/z): 364.0957. Calcd for $C_{17}H_{19}NO_6S$ m/z: 365.0933.

(*E*)-*N*-(4-Methoxyphenyl)-2-(2',4',6'-trifluorophenyl)ethenesulfonamide (6m): The title compound was obtained from 2-(N-(4-methoxyphenyl)sulfamoyl)acetic acid 4d and 2,4,6-trifluorobenzaldehyde following the procedure as described in 6e method B. Yield, 60%; pale yellow solid, mp 120–122 °C. ¹H NMR (DMSO-d₆, 600 MHz): δ 3.62 (s, 3H, OCH₃), 6.81 (d, J = 8.9 Hz, 2H, Ar-H), 6.94 (d, J = 15.8 Hz, 1H, =CH), 7.05 (d, J = 8.9 Hz, 2H, Ar-H), 7.06 (d, J = 15.8 Hz, 1H, CH=), 7.28 (t, J = 9.1 Hz, 2H, Ar-H), 9.68 (br s, 1H, NH). HRMS found [M+H]⁺ (m/z): 344.0511. Calcd for C₁₅H₁₂F₃NO₃S m/z: 343.0490.

(*E*)-*N*-(*4*-*Methoxyphenyl*)-2-(*perfluorophenyl*)*ethenesulfonamide* (*6n*): The title compound was obtained from 2-(N-(4-methoxyphenylsulfamoyl)acetic acid **4d** and 2,3,4,5,6-pentafluorobenzaldehyde following the procedure as described in method A. Yield, 48%; light yellow solid, mp 131–133 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.85 (s, 3H, OCH₃), 6.43 (b r s, 1H, NH), 6.85 (dd, J = 6.6, 2.1 Hz, 2H, Ar-H), 7.12 (d, J = 15.3 Hz, 1H, =CH), 7.18 (dd, J = 6.6, 2.1 Hz, 2H, Ar-H), 7.81 (d, J = 15.6 Hz, 1H, CH=). HRMS found [M+H]⁺ (m/z): 380.0326. Calcd for C₁₅H₁₀F₅NO₃S m/z: 379.0302.

(*E*)-*N*-(3-Fluoro-4-methoxyphenyl)-2-(2',4',6'-trimethoxyphenyl)ethenesulfonamide (60): The title compound was obtained from 2-(N-(3-fluoro-4-methoxyphenyl)sulfamoyl)acetic acid **4e** and 2,4,6-trimethoxybenzaldehyde following the procedure as described in method A. Yield, 49%; light yellow solid, mp 152–154 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.85 (s, 6H, 2 X OCH₃), 3.86 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃), 6.10 (s, 2H, Ar-H), 6.24 (br s, 1H, NH), 6.86 – 6.95 (m, 2H, Ar-H), 7.07 (dd, J = 12.0, 2.1 Hz, 1H, Ar-H), 7.09 (d, J = 15.6 Hz, 1H, =CH), 7.85 (d, J = 15.6 Hz, 1H, CH=). HRMS found [M+H]⁺ (m/z): 398.1014. Calcd for C₁₈H₂₀FNO₆S m/z: 397.0995.

(*E*)-*N*-(3-Hydroxy-4-methoxyphenyl)-2-(2',4',6'-trimethoxyphenyl)ethenesulfonamide (*6p*): The title compound was obtained from 2-(N-(3-Hydroxy-4-

methoxyphenyl)sulfamoyl)acetic acid **4k** and 2,4,6-trimethoxybenzaldehyde following the procedure as described in **6e** method **B**. Yield, 64%; light green solid, mp 148–150 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.84 (s, 6H, 2 X OCH₃), 3.85 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃), 5.63 (br s, 1H, OH), 6.09 (s, 2H, Ar-H), 6.11 (br s, 1H, NH), 6.73 – 6.83 (m, 3H, Ar-H), 7.12 (d, J = 15.6 Hz, 1H, =CH), 7.86 (d, J = 15.6 Hz, 1H, CH=). HRMS found [M +H]⁺ (m/z): 396.1062. Calcd for C₁₈H₂₁NO₇S m/z: 395.1039.

(E)-2-Methoxy-5-(2-(2,4,6-trimethoxyphenyl)vinylsulfonamido)phenyl 2-(2,5-dimethyl-3,6-dioxocyclohexa-1,4-dienyl)-2-methylpropanoate (6q). (Scheme 7)

Stage 1: Preparation of 6-Hydroxy-4,4,5,8-tetramethylchroman-2-one (22): To a solution of 2,5-Dimethylbenzoquinone 21 (10 g, 73.5 mmol) in diethyl ether (300 mL) was added an aqueous solution of sodium hydrosulfite (178.0 g, 870 mmol in 150 mL water). The mixture was shaken until the ether layer became colorless. The ether layer was separated and the aqueous layer was extracted with diethyl ether (3 X 200 mL). The combined ether layer were washed with brine (2 X 150 mL) and dried over anhydrous sodium sulfate. Evaporation of solvent under vacuum resulted dihydroquinone as a white solid. The above dihydroquinone (10.03 g, 72.6 mmol) was mixed with 3,3-dimethylacrylic acid (8.0 g, 80 mmol) and methanesulfonic acid (111 mL) and stirred at room temperature for 10 min and heated to 85 °C for 3 h. After completion of reaction, cooled to room temperature and poured onto ice and extracted with ethyl acetate (4 X 100 mL). The combined organic layers

were washed with saturated sodium bicarbonate solution (2 X 100 mL), water (3 X 100 mL) and dried over anhydrous sodium sulfate. Evaporation of solvent under vacuum resulted crude **22**, which on recrystallization with ethyl acetate and hexane (1:1) resulted pure **22**. Yield, 81%; light brown solid, mp 194–196 °C. ¹H NMR (CDCl₃, 400 MHz): δ 1.64 (s, 6H, 2 X CH₃), 2.39 (s, 3H, CH₃), 2.51 (s, 3H, CH₃), 2.74 (s, 2H, CH₂), 5.10 (bs, 1H, OH), 6.75 (s, 1H, Ar-H). HRMS found [M+H]⁺ (m/z): 221.1112. Calcd for C₁₃H₁₆O₃ m/z: 220.1099.

Stage 2: Preparation of 3-(2,5-dimethyl-3,6-dioxocyclohexa-1,4-dienyl)-3-methylbutanoic acid (20): To a solution of 6-Hydroxy-4,4,5,8-tetramethylchroman-2-one, **22** (3.0 g, 13.6 mmol) in a mixture of acetonitrile (90 mL), acetone (10 mL), and water (90 mL) was added N-bromosuccinimide (2.45 g, 13.6 mmol) in portions at room temperature under stirring and maintained for 30 min. After completion of reaction, evaporated the solvent under reduced pressure and extracted with diethyl ether (300 mL). The ethereal solution was washed with saturated NaHCO₃ (3 X 300 mL), and the combined aqueous phase was washed with diethyl ether (3 X 100 mL). After acidification of the aqueous solution with concentrated HCl to pH 2–3, the aqueous solution was extracted with diethyl ether (2 X 200 mL), dried over anhydrous Na₂SO₄. Evaporation of solvent under vacuum resulted as yellow oily residue, **20**. Yield: 63%. ¹H NMR (CDCl₃, 300 MHz): δ 1.37 (s, 6H, 2 X CH₃), 1.89 (s, 3H, CH₃), 2.04 (s, 3H, CH₃), 2.94 (s, 2H, CH₂), 6.38 (s, 1H, Ar-H). HRMS found [M-H]⁻ (m/z): 235.1061. Calcd for C₁₃H₁₆O₄ m/z: 236.1049.

Step 2: (E)-2-Methoxy-5-(2-(2,4,6-trimethoxyphenyl)vinylsulfonamido)phenyl 2-(2,5dimethyl-3,6-dioxocyclohexa-1,4-dienyl)-2-methylpropanoate (6q): To a solution of (E)-N-(3-hydroxy-4-methoxyphenyl)-2-(2',4',6'-trimethoxyphenyl)ethenesulfonamide, **6p** (0.3 g, 0.76 mmol) in anhydrous dichloromethane (30 mL) containing 3-(2,5-dimethyl-3,6dioxocyclohexa-1,4-dienyl)-3-methylbutanoic acid, 20 (0.18 g, 0.76 mmol) were added 1ethyl-3-(3-dimethylaminopropylcarbodiimide hydrochloride (EDAC, 0.44 g, 2.3 mmol) and 4-dimethylamino pyridine (DMAP, 0.07 g, 0.58 mmol). The mixture was stirred at room temperature for 12 h. After completion of reaction, the reaction mixture was filtered and evaporated the filtrate under vacuum, resulted crude 6q. The crude product was chromatographed over silica gel column and eluted successively with chloroform and chloroform-methanol mixture with increasing polarity. The product containing fractions were combined and concentrated under vacuum, afforded pure **6q**. Yield: 69%, white solid, mp 90–92 °C. ¹H NMR (CDCl₃, 400 MHz): δ 1.45 (s, 6H, 2 X CH₃), 1.85 (s, 3H, CH₃), 2.07 (s, 3H, CH₃), 3.14 (s, 2H, CH₂), 3.64 (s, 3H, OCH₃), 3.74 (s, 6H, 2 X OCH₃), 3.77 (s, 3H, OCH₃), 6.00 (s, 2H, Ar-H), 6.14 (br s, 1H, NH), 6.30 (d, J = 1.6 Hz, 1H, Ar-H), 6.75 (d, J = 8.8 Hz, 1H, Ar-H), 6.81 (d, J = 2.7 Hz, 1H, Ar-H), 6.96 (dd, J = 2.7, 8.8 Hz, 1H, Ar-H), 7.00 (d, J = 15.5 Hz, 1H, =CH), 7.75 (d, J = 15.5 Hz, 1H, CH=). HRMS found $[M+H]^+$ (m/ z): 614.1997. Calcd for C₃₁H₃₅NO₁₀S m/z: 613.1982.

Preparation of (E)-2-methoxy-5-(2-(2',4',6'-trimethoxy-phenyl) vinylsulfonamido)phenyl dihydrogen phosphate (23): To a cooled solution of phosphorus oxychloride (0.5 mL, 5.3 mmol) in tetrahydrofuran (2 mL) was added a filtered solution of (E)-N-(3-hydroxy-4-methoxyphenyl)-2-(2-(2',4',6'-trimethoxyphenyl)ethane-sulfonamide **6p** (0.5 g, 1.3 mmol) in tetrahydrofuran (5 mL) and triethylamine (1.23 mL, 16.7 mmol) drop wise at 0 °C. After addition completion, the reaction mixture stirred at room temperature for 3 h. After completion of the reaction, monitored by TLC, the reaction mixture poured onto crushed ice (15.0 g) and resulting solution was stirred at room temperature for 18 h. Removal of tetrahydrofuran under vacuum at 40 °C resulted semi solid, which on stirring for 1 h resulted solid. The solid was filtered, and taken in acidic water (15 mL, pH 4–6) and stirred for 1 h at room temperature; the purified solid was filtered and dried under vacuum at room temperature. Yield, 69%; yellow solid, mp 158–160 °C. ¹H NMR (DMSO-*d*6, 300 MHz): δ 3.69 (s, 3H, OCH₃), 3.82 (s, 3H, OCH₃), 3.83 (s, 6H, 2 X OCH₃), 6.26 (s, 2H, Ar-H), 6.83–

6.85 (dd, J = 2.0, 8.7 Hz, 1H, Ar-H), 6.92 (d, J = 8.8 Hz, 1H, Ar-H), 6.98 (d, J = 15.5 Hz, 1H, =CH), 7.23 (d, J = 2.1 Hz, 1H, Ar-H), 7.58 (d, J = 15.6 Hz, 1H, CH=), 9.48 (br s, 1H, NH). HRMS found $[M+H]^+$ (m/z): 476.0726. Calcd for $C_{18}H_{22}NO_{10}PS$ m/z: 475.0702.

Preparation of Sodium (E)-2-Methoxy-5-(2-(2,4,6-trimethoxyphenyl)vinylsulfonamido)phenyl phosphate (6r): To an ice-cold stirred solution of (E)-2-methoxy-5-(2-(2',4',6'trimethoxyphenyl)vinylsulfonamido)phenyl dihydrogen phosphate, **23** (0.2 g, 0.42 mmol) in 1,2-dimethoxyethane (3 mL) was added 25% sodium hydroxide solution (0.17 µL) and the reaction mixture was stirred for 3 h at room temperature. The solvent was decanted and the crude product was dried under vacuum. The crude solid was triturated with dry ethyl acetate (2 mL), filtered and washed with dry ethyl acetate (2 mL) to get pure **6r**. Yield, 85%; pale yellow solid, mp 182–184 °C. ¹H NMR (D₂O, 300 MHz): δ 3.63 (s, 3H, OCH₃), 3.68 (s, 9H, 3 × OCH₃), 5.98 (s, 2H, Ar-H), 6.66–6.68 (dd, J = 2.1, 8.7 Hz, 1H, Ar-H), 6.78 (d, *J* = 8.7 Hz, 1H, Ar-H), 6.91 (d, *J* = 2.1 Hz, 1H, Ar-H), 7.06 (d, *J* = 15.8 Hz, 1H, =CH), 7.43 (d, *J* = 15.7 Hz, 1H, CH=). HRMS found [M+H]⁺ (m/z): 476.0501. Calcd for C₁₈H₂₀NNa₂O₁₀PS m/z: 519.0341.

(*E*)-*N*-(4-methoxy-3-nitrophenyl)-2-(2',4',6'-trimethoxyphenyl)ethenesulfonamide (6s): The title compound was obtained from 2-(N-(4-methoxy-3-nitrophenyl)sulfamoyl)acetic acid **4g** and 2,4,6-trimethoxybenzaldehyde following the procedure as described in method A. Yield, 49%; yellow solid, mp 172–174 °C. ¹H NMR (DMSO-d₆, 300 MHz): δ 3.83 (s, 9H, 3 X OCH₃), 3.86 (s, 3H, OCH₃), 6.28 (s, 2H, Ar-H), 6.95 (d, J = 15.3 Hz, 1H, =CH), 7.34 (d, J = 9.0 Hz, 1H, Ar-H), 7.42 (dd, J = 2.7, 9.0 Hz, 1H, Ar-H), 7.61 (d, J = 15.6 Hz, 1H, CH=), 7.65 (d, J = 2.7 Hz, 1H, Ar-H), 9.94 (br s, 1H, NH). HRMS found [M+H]⁺ (m/z): 425.0963. Calcd for C₁₈H₂₀N₂O₈S m/z: 424.0940.

(E)-N-(3-Amino-4-methoxyphenyl)-2-(2',4',6'trimethoxyphenyl)ethenesulfonamide (6t) (Scheme 2)

Method A: The (E)-N-(4-Methoxy-3-nitrophenyl)-2-(2',4',6'-trimethoxyphenyl)ethanesulfonamide **6s** (0.65 mg, 1.5 mmol) was dissolved in acetone/water (40:20 mL) and heated to 50 °C. After 30 min sodium hydrosulfite (5.27 g, 30.0 mmol) was added slowly, and temperature was maintained at 50 °C for 30 min. After completion of reaction, the contents were cooled to room temperature, water was added, and the product was isolated by extraction with ethyl acetate. The organic phase was washed with water (3 X 100 mL), brine (50 mL), dried over anhydrous sodium sulfate, filtered, and concentrated under vacuum to obtain the desired crude product **6t**. The pure compound **6t** was obtained following purification by silica gel flash column chromatography. Yield, 40%; yellow solid, mp 164– 166 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.82 (s, 3H, OCH₃), 3.84 (s, 6H, 2 X OCH₃), 3.85 (s, 3H, OCH₃), 6.07 (br s, 1H, NH), 6.09 (s, 2H, Ar-H), 6.53 (dd, J = 2.4, 8.4 Hz, 1H, Ar-H), 6.67 – 6.69 (m, 2H, Ar-H), 7.12 (d, J = 15.6 Hz, 1H, =CH), 7.85 (d, J = 15.6 Hz, 1H, CH=). ¹³C NMR (CDCl₃, 75 MHz): δ 163.3, 161.2, 145.1, 136.8, 133.1, 130.2, 123.1, 112.3, 110.6, 109.7, 104.0, 90.4, 55.8, 55.7, 55.4. HRMS found [M+H]⁺ (m/z): 395.1216. Calcd for C₁₈H₂₂N₂O₆S m/z: 394.1199.

Method B: A solution of (E)-N-(4-Methoxy-3-nitrophenyl)-2-(2',4',6'-trimethoxyphenyl)ethanesulfonamide **6s** (0.65 mg, 1.5 mmol) in methanol/acetic acid (2:1, 30 mL) was heated to 60 °C and iron powder (0.42 g, 7.5 mmol) was added and continued stirring at 80 °C for 2 h. After completion of the reaction, the contents were cooled to 0 °C, DCM (30 mL) was added and neutralized the acetic acid with 10% sodium hydroxide solution (10 mL). The contents were stirred for 15 min and separated the organic phase, washed with water, brine and dried over anhydrous sodium sulfate. Removal of the solvent under reduced pressure gave crude product which on purification by silica gel flash column chromatography (ethyl acetate/hexane) afforded pure **6t**. Analytical data are the same as obtained by method A.

(*E*)-*N*-(4-methoxy-3-nitrophenyl)-2-(3',4',5'-trimethoxyphenyl)ethenesulfonamide (6u): The title compound was obtained from 2-(N-(4-methoxy-3-nitrophenyl)sulfamoyl)acetic acid 4g and 3,4,5-trimethoxybenzaldehyde following the procedure as described in 6e, method B. Yield, 75%; pale yellow solid, mp 170–172 °C. ¹H NMR (DMSO-d₆; 300 MHz): 3.67 (s, 3H, OCH₃), 3.79 (s, 6H, 2 × OCH₃), 3.86 (s, 3H, OCH₃), 7.05 (s, 2H, Ar-H), 7.30 (d, J = 15.4 Hz, 1H, =CH), 7.33 (d, J = 9.2 Hz, 1H, Ar-H), 7.37 (d, J = 15.4 Hz, 1H, =CH), 7.44 (dd, J = 9.1, 2.6 Hz, 1H, Ar-H), 7.67 (d, J= 2.6 Hz, 1H, Ar-H), 10.17 (br s, 1H, NH). HRMS found [M+H]⁺ (m/z): 425.0969. Calcd for C₁₈H₂₀N₂O₈S m/z: 424.0940.

(*E*)-*N*-(*3*-*Amino*-*4*-*methoxyphenyl*)-*2*-(*3'*, *4'*, *5'*-*trimethoxyphenyl*)*ethenesulfonamide* (*6v*): The title compound was obtained by the reduction of above (E)-N-(4-methoxy-3-nitrophenyl)-2-(3', 4', 5'-trimethoxyphenyl)ethanesulfonamide, **6u** following the procedure as described for compound **6t**, method B. Yield, 55%; white solid, mp 132–134 °C. ¹H NMR (DMSO-d₆, 300 MHz): δ 3.67 (s, 3H, OCH₃), 3.68 (s, 3H, OCH₃), 3.79 (s, 6H, 2 X OCH₃), 4.76 (br s, 2H, NH₂), 6.34 (d, J = 6.8 Hz, 1H, Ar-H), 6.52 (s, 1H, Ar-H), 6.65 (d, J = 7.8 Hz, 1H, Ar-H), 7.00 (s, 2H, Ar-H), 7.15 (d, J = 15.2 Hz, 1H, =CH), 7.25 (d, J = 15.2 Hz, 1H, CH=), 9.43 (br s, 1H, NH). HRMS found [M+H]⁺ (m/z): 395.1221. Calcd for C₁₈H₂₂N₂O₆S m/z: 394.1199.

(*E*)-4-(3',5'-dimethoxy-(4-(2-(*N*-(3-nitro-4-methoxyphenyl)sulfamoyl)vinyl)phenoxy)butanoic acid (6w): The title compound was obtained from 2-(N-(4-methoxy-3nitrophenyl)sulfamoyl)acetic acid 4g and 4-(4-formyl-3,5-dimethoxy)butyric acid following the procedure as described in 6e, method B. Yield, 63%; pale yellow solid, mp 182–184 °C. ¹H NMR (CDCl₃, 300 MHz): δ 2.11–2.18 (m, 2H, CH₂), 2.61 (t, J = 7.1Hz, 2H, CH₂), 3.83 (s, 6H, 2 X OCH₃), 3.87 (s, 3H, OCH₃), 4.08 (t, J = 6.1Hz, 2H, CH₂), 6.09 (s, 2H, Ar-H), 6.24 (br s, 1H, NH), 7.12 (d, J=15.6 Hz, 1H, =CH), 7.15 (d, J = 8.7 Hz, 1H, Ar-H), 7.43 (dd, J = 8.7, 2.3 Hz, 1H, Ar-H), 7.64 (d, J = 2.2 Hz, 1H, Ar-H), 7.78 (d, J=15.6 Hz, 1H, CH=). HRMS found [M+H]⁺ (m/z): 497.1173. Calcd for C₂₁H₂₄N₂O₁₀S m/z: 496.1152.

(*E*)-4-(4-(2-(*N*-(3-*Amino*-4-*methoxyphenyl*)sulfamoyl)vinyl)-3 ',5 '-dimethoxyphenoxy)butanoic acid (6×): The title compound was obtained by the reduction of above (E)-4-(3',5'dimethoxy-(4-(2-(N-(3-nitro-4-methoxyphenyl)sulfamoyl)vinyl)phenoxy)butanoic acid, **6w** following the procedure as described for compound **6t**, method B. Yield, 51%; light yellow solid, mp 164–166 °C. ¹H NMR (CDCl₃, 300 MHz): δ 2.04–2.10 (m, 2H, CH₂), 2.53 (t, J = 7.1 Hz, 2H, CH₂), 3.75 (s, 6H, 2 X OCH₃), 3.77 (s, 3H, OCH₃), 4.00 (t, J = 6.0 Hz, 2H, CH₂), 6.02 (s, 2H, Ar-H), 6.20 (br s, 1H, NH), 6.66–6.70 (m, 3H, Ar-H), 7.02 (d, J = 15.6 Hz, 1H, =CH), 7.77 (d, J=15.6 Hz, 1H, CH=). HRMS found [M+H]⁺ (m/z): 467.1432. Calcd for C₂₁H₂₆N₂O₈S m/z: 466.1410.

(*E*)-4-(4-(2-(*N*-(3-Hydroxy-4-methoxyphenyl)sulfamoyl)vinyl)-3 $,5 \, '$ dimethoxyphenoxy)butanoic acid (6y): The title compound was obtained from 2-(N-(3-Hydroxy-4-methoxyphenyl) sulfamoyl)acetic acid 4k and 4-(4-formyl-3,5-dimethoxy)butyric acid following the procedure as described in 6e, method B. Yield, 60%; orange red solid, mp 116–118 °C. ¹H NMR (CDCl₃, 300 MHz): δ 2.01–2.08 (m, 2H, CH₂), 2.41 (t, J = 7.1 Hz, 2H, CH₂), 3.83 (s, 6H, 2 X OCH₃), 3.87 (s, 3H, OCH₃), 4.10 (t, J = 6.1 Hz, 2H, CH₂), 6.09 (s, 2H, Ar-H), 6.24 (br s, 1H, NH), 7.06 (d, J = 8.7 Hz, 1H, Ar-H), 7.33 (dd, J = 2.4, 8.7 Hz, 1H, Ar-H), 7.42 (d, J = 15.6 Hz, 1H, =CH), 7.78 (d, J = 15.6 Hz, 1H, CH=), 7.84 (d, J = 2.4 Hz, 1H, Ar-H). HRMS found [M+H]⁺ (m/z): 468.1273. Calcd for C₂₁H₂₅NO₉S m/z: 467.1250. (*E*)-*N*-(*4-fluoro-3-nitrophenyl*)-2-(2',4',6'-trimethoxyphenyl)ethanesulfonamide (6z): The title compound was obtained from 2-(N-(4-Fluoro-3-nitrophenyl)sulfamoyl)acetic acid **4i** and 2,4,6-trimethoxybenzaldehyde following the procedure as described in method A. Yield, 49%; light yellow solid, mp 196–198 °C. ¹H NMR (DMSO-d₆, 300 MHz): δ 3.83 (s, 3H, OCH₃), 3.84 (s, 6H, 2 X OCH₃), 6.28 (s, 2H, Ar-H), 6.98 (d, J = 15.3 Hz, 1H, =CH), 7.47 – 7.52 (m, 1H, Ar-H), 7.58 (d, J = 9.0 Hz, 1H, Ar-H), 7.71 (d, J = 15.6 Hz, 1H, CH=), 7.87 (dd, J = 6.6, 2.4 Hz, 1H, Ar-H), 10.35 (br s, 1H, NH). HRMS found [M+H]⁺ (m/z): 413.0761. Calcd for C₁₇H₁₇FN₂O₇S m/z: 412.0740.

(*E*)-*N*-(3-*Amino*-4-*fluorophenyl*)-2-(2',4',6'-trimethoxyphenyl)ethenesulfonamide (6aa): The title compound was obtained by the reduction of above (E)-N-(4-fluoro-3nitrophenyl)-2-(2',4',6'-trimethoxyphenyl)ethanesulfonamide, **6z** following the procedure as described for compound **6t**, method B. Yield, 54%; light brown solid, mp 154–156 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.83 (s, 6H, 2 X OCH₃), 3.85 (s, 3H, OCH₃), 6.09 (s, 2H, Ar-H), 6.30 (br s, 1H, NH), 6.44 – 6.49 (m, 1H, Ar-H), 6.74 (dd, J = 7.8, 2.4 Hz, 1H, Ar-H), 6.88 (dd, J = 9.0, 1.8 Hz, 1H, Ar-H), 7.11 (d, J = 15.6 Hz, 1H, =CH), 7.87 (d, J = 15.3 Hz, 1H, CH=). HRMS found [M+H]⁺ (m/z): 383.1016. Calcd for C₁₇H₁₉FN₂O₅S m/z: 382.0999.

(*E*)-*N*-(4-Methoxy-3,5-dinitrophenyl)-2-(2',4',6'-trimethoxyphenyl)ethenesulfonamide (6ab): The title compound was obtained from 2-(N-(4-Methoxy-3,5-

dinitrophenyl)sulfamoyl)acetic acid **4j** and 2,4,6-trimethoxybenzaldehyde following the procedure as described in method A. Yield, 49%; yellow solid, mp 200–202 °C. ¹H NMR (DMSO-d₆, 300 MHz): δ 3.84 (s, 3H, OCH₃), 3.86 (s, 6H, 2 X OCH₃), 3.88 (s, 3H, OCH₃), 6.29 (s, 2H, Ar-H), 7.04 (d, J = 15.6 Hz, 1H, =CH), 7.79 (d, J = 15.6 Hz, 1H, CH=), 7.97 (s, 2H, Ar-H), 10.73 (br s, 1H, NH). HRMS found [M+H]⁺ (m/z): 470.0811. Calcd for C₁₈H₁₉N₃O₁₀S m/z: 469.0791.

(E)-N-(3,5-Diamino-4-methoxyphenyl)-2-(2,4,6-trimethoxyphenyl)ethenesulfonamide

(*6ac*): The title compound was obtained by the reduction of above (E)-N-(4-methoxy-3,5-dinitrophenyl)-2-(2,4,6-trimethoxyphenyl)ethenesulfonamide, **6ab** following the procedure as described for compound **6t**, method A. Yield, 40%; brown solid, mp 160–162 °C. ¹H NMR (DMSO-d₆, 500 MHz): δ 3.47 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 3.81 (s, 6H, 2 X OCH₃), 4.61 (br s, 4H, 2 X NH₂), 5.79 (s, 2H, Ar-H), 6.25 (s, 2H, Ar-H), 6.96 (d, J = 15.5 Hz, 1H, =CH), 7.56 (d, J = 15.5 Hz, 1H, CH=), 9.00 (br s, 1H, NH). HRMS found [M+H]⁺ (m/z): 410.1329. Calcd for C₁₈H₂₃N₃O₆S m/z: 409.1308.

(*E*)-*N*-(3-Fluoro-4-methoxyphenyl)-2-(4'-methoxyphenyl)ethenesulfonamide (6ad): The title compound was obtained from 2-(N-(3-fluoro-4-methoxyphenyl)sulfamoyl)acetic acid **4e** and 4-methoxybenzaldehyde following the procedure as described in method A. Yield, 49%; light brown solid, mp 122–124 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.85 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃), 6.50 (br s, 1H, NH), 6.64 (d, J = 15.3 Hz, 1H, =CH), 6.86 – 6.96 (m, 4H, Ar-H), 7.08 (dd, J = 12.0, 2.1 Hz, 1H, Ar-H), 7.37–7.41 (m, 2H, Ar-H), 7.42 (d, J = 15.3 Hz, 1H, CH=). HRMS found [M+H]⁺ (m/z): 338.0800. Calcd for C₁₆H₁₆FNO₄S m/z: 337.0784.

(*E*)-*N*-(3-Fluoro-4-methoxyphenyl)-2-(perfluorophenyl)ethenesulfonamide (6ae): The title compound was obtained from 2-(N-(3-fluoro-4-methoxyphenyl)sulfamoyl)acetic acid **4e** and 2,3,4,5,6-pentafluorobenzaldehyde following the procedure as described in method A. Yield, 48%; light yellow solid, mp 113–115 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.85 (s, 3H, OCH₃), 6.23 (br s, 1H, NH), 6.73 (d, J = 8.7 Hz, 1H, Ar-H), 6.83 (dd, J = 2.4, 8.7 Hz, 1H,

Ar-H), 6.91 (d, J = 15.3 Hz, 1H, =CH), 7.06 (d, J = 8.7 Hz, 1H, Ar-H), 7.82 (d, J = 15.6 Hz, 1H, CH=). HRMS found $[M+H]^+$ (m/z): 398.0222. Calcd for $C_{15}H_9F_6NO_3S$ m/z: 397.0207.

(*E*)-*N*-(*4*-*Methoxy*-3-*nitrophenyl*)-2-(*perfluorophenyl*)*ethenesulfonamide* (*6af*): The title compound was obtained from 2-(N-(4-methoxy-3-nitrophenyl)sulfamoyl)acetic acid **4g** and 2,3,4,5,6-pentafluorobenzaldehyde following the procedure as described in method A. Yield, 49%; light yellow solid, mp 102–104 °C. ¹H NMR (DMSO-d₆, 300 MHz): δ 3.83 (s, 3H, OCH₃), 6.30 (br s, 1H, NH), 7.32 (d, J = 15.6 Hz, 1H, =CH), 7.41 (d, J = 2.7 Hz, 1H, Ar-H), 7.60 (dd, J = 2.7, 9.0 Hz, 1H, Ar-H). 7.76 (d, J = 15.6 Hz, 1H, CH=), 7.86 (d, J = 2.7 Hz, 1H, Ar-H). HRMS found [M+H]⁺ (m/z): 425.0172. Calcd for C₁₅H₉F₅N₂O₅S m/z: 424.0152.

(*E*)-*N*-(*3*-*Amino*-*4*-*methoxyphenyl*)-*2*-(*perfluorophenyl*)*ethenesulfonamide* (*6ag*): The title compound was obtained by the reduction of above (E)-N-(4-methoxy-3-nitrophenyl)-2-(perfluorophenyl)ethenesulfonamide, **6af** following the procedure as described for compound **6t**, method B. Yield, 54%; yellow solid, mp 86–88 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.84 (s, 3H, OCH₃), 6.38 (br s, 1H, NH), 6.47 (dd, J = 2.7, 8.7 Hz, 1H, Ar-H), 6.73 (d, J = 2.7 Hz, 1H, Ar-H), 7.03 (d, J = 2.7 Hz, 1H, Ar-H), 7.14 (d, J = 15.6 Hz, 1H, =CH), 7.49 (d, J = 15.6 Hz, 1H, CH=). HRMS found [M+H]⁺ (m/z): 395.0424. Calcd for C₁₅H₁₁F₅N₂O₃S m/z: 394.0411.

(*E*)-2-(4'-Methoxy-3'-nitrophenyl)-*N*-(perfluorophenyl)ethenesulfonamide (6ah): The title compound was obtained from 2-(N-(perfluorophenyl)sulfamoyl)acetic acid **4h** and 4-methoxy-3-nitrobenzaldehyde following the procedure as described in method A. Yield, 49%; light brown solid, mp 160–162 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.85 (s, 3H, OCH₃), 7.07 (d, J = 9.0 Hz, 1H, Ar-H), 7.21 (d, J = 15.3 Hz, 1H, =CH), 7.33 (br s, 1H, NH), 7.48 (dd, J = 2.7, 9.0 Hz, 1H, Ar-H), 7.61 (d, J = 15.6 Hz, 1H, CH=), 7.73 (d, J = 2.7 Hz, 1H, Ar-H). HRMS found [M+H]⁺ (m/z): 425.0168. Calcd for C₁₅H₉F₅N₂O₅S m/z: 424.0152.

(*E*)-2-(3'Amino-4'-methoxyphenyl)-*N*-(perfluorophenyl)ethenesulfonamide (6ai): The title compound was obtained by the reduction of above (E)-2-(4'-methoxy-3'-nitrophenyl)-N-(perfluorophenyl)ethenesulfonamide, **6ah** following the procedure as described for compound **6t**, method A. Yield, 41%; pale yellow solid, mp 98–100 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.83 (s, 3H, OCH₃), 7.04 (d, J = 8.7 Hz, 1H, Ar-H), 7.27 (d, J = 15.6 Hz, 1H, =CH), 7.29 (br s, 1H, NH), 7.42 (dd, J = 2.4, 8.7 Hz, 1H, Ar-H), 7.62 (d, J = 15.6 Hz, 1H, CH=), 7.69 (d, J = 2.7 Hz, 1H, Ar-H). HRMS found [M+H]⁺ (m/z): 395.0426. Calcd for C₁₅H₁₁F₅N₂O₃S m/z: 394.0411.

(*E*)-*N*,2-*Bis*(*perfluorophenyl*)*ethenesulfonamide* (*6aj*): The title compound was obtained from 2-(N-(perfluorophenyl)sulfamoyl)acetic acid **4h** and 2,3,4,5,6pentafluorobenzaldehyde following the procedure as described in method A. Yield, 49%; off white solid, mp 138–140 °C. ¹H NMR (CDCl₃, 400 MHz): δ 6.14 (br s, 1H, NH), 7.24 (d, J = 15.8 Hz, 1H, =CH), 7.44 (d, J = 15.8 Hz, 1H, CH=). HRMS found [M+H]⁺ (m/z): 439.9746. Calcd for C₁₄H₃F₁₀NO₂S m/z: 438.9725.

General Procedure for the preparation of (E)-N-Aryl-2-arylethenesulfonamides (6)

Method C (Scheme 5)

Method 1: To a solution of 2-(N-(4-methoxy-phenyl) sulfamoyl)acetic acid, **4d** (2.0 g, 8.2 mmol) in anhydrous methylene chloride (100 mL), was added thionyl chloride (4.0 mL) in portions at room temperature. The resulting solution was stirred at room temperature for 6 h.

After reaction completion, monitor by TLC, the reaction mixture was concentrated under reduced pressure, and the residue was dissolved in toluene and then reconcentrated to give the crude acid chloride, which was used in next step without further purification.

Method 2: To a solution of 2-(N-(4-methoxy-phenyl)sulfamoyl)acetic acid, **4d** (2.0 g, 8.2 mmol) in anhydrous methylene chloride (100 mL), was added oxalyl chloride (1.6 mL, 18.0 mmol) drop wise at room temperature and continue stirring for 20 min. Then added 5 drops of anhydrous N,N-dimethylformamide to the reaction mixture. The mixture was stirred at room temperature for 12 h. After completion, the reaction mixture concentrated under reduced pressure and the residue triturated with hexane: diethyl ether, 1:1 to give solid which was isolated by filtration. The crude phenylsulfamoyl acetyl chlorides **14** were prepared using one of the methods.

2-(*N*-(**4-***Methoxyphenyl*)*sulfamoyl*)*acetyl chloride* (*14a*)*:* Chlorination of 2-(N-(4-methoxyphenyl) sulfamoyl)*acetic acid*, **4d** with thionyl chloride as described in method A yielded the corresponding 2-(N-(4-methoxyphenyl)sulfamoyl)*acetyl* chloride. Yield: 80%; white solid, mp 147–149 °C. ¹H NMR (DMSO-d₆, 300 MHz): δ 3.73 (s, 3H, OCH₃), 4.29 (s, 2H, CH₂), 6.90 (d, J = 9.0 Hz, 2H, Ar-H), 7.17 (d, J = 9.0 Hz, 2H, Ar-H), 9.76 (br s, 1H, NH). HRMS found [M+H]⁺ (m/z): 264.0037. Calcd for C₉H₁₀ClNO₄S m/z: 263.0019.

2-(*N*-(**4-***Methoxy-3-nitrophenyl*)*sulfamoyl*)*acetyl chloride* (*14b*)*:* Chlorination of 2-(N-(4-methoxy-3-nitrophenyl)sulfamoyl)acetic acid, **4g** with thionyl chloride as described in method A yielded the corresponding 2-(N-(4-methoxy-3-nitrophenyl)sulfamoyl)acetyl chloride. Yield: 78%; pale yellow solid, mp 136–138 °C. ¹H NMR (DMSO-d₆, 300 MHz): δ 3.91 (s, 3H, OCH₃), 4.44 (s, 2H, CH₂), 7.39 (d, J = 9.0 Hz, 1H, Ar-H), 7.50 (dd, J = 2.7, 9.0 Hz, 1H, Ar-H), 7.73 (d, J = 2.7 Hz, 1H, Ar-H), 10.22 (br s, 1H, NH). HRMS found [M+H]⁺ (m/z): 308.9896. Calcd for C₉H₉ClN₂O₆S m/z: 307.9870.

2-(*N*-(**3-***Hydroxy-4-methoxyphenyl*)*sulfamoyl*)*acetyl chloride* (**1***4c*): Chlorination of 2-(N-(3-hydroxy-4-methoxyphenyl)sulfamoyl)acetic acid, **4k** with oxalyl chloride as described in method B yielded the corresponding 2-(N-(3-hydroxy-4-methoxyphenyl)sulfamoyl)acetyl chloride. Yield: 67%; light yellow solid, mp 129–131 °C. ¹H NMR (DMSO-d₆, 500 MHz): δ 3.94 (s, 3H, OCH₃), 4.38 (s, 2H, CH₂), 6.61 (dd, J = 2.4, 8.4 Hz, 1H, Ar-H), 6.76 (d, J = 2.7 Hz, 1H, Ar-H), 6.82 (d, J = 8.7 Hz, 1H, Ar-H), 9.28 (br s, 1H, NH). HRMS found [M +H]⁺ (m/z): 280.0000. Calcd for C₉H₁₀ClNO₅S m/z: 278.9968.

Step 2: General Procedure for the preparation of Phenacyl N-Arylsulfone (16): To a cooled solution of anhydrous aluminium chloride (1.85 g, 13.91 mmol) and 1,3,5-trimethoxy benzene, **15** (15.91 g, 94.60 mmol) in anhydrous dichloromethane (100 mL) was added 2- (N-(4-methoxyphenyl)sulfamoyl)acetyl chloride, **14a** (5.98 g, 22.68 mmol) in portions at 0 °C over a period of 30 min and continued stirring at room temperature for 4 h. After completion of reaction, the reaction mixture quenched by addition of water, extracted with methylene chloride and washed with water. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under vacuum to obtain the desired product, which is used in next step without further purification.

N-(*4-Methoxyphenyl*)-2-oxo-2-(2',4',6'-trimethoxyphenyl)ethanesulfonamide (16a): Friedel-Crafts alkylation of 2-(N-(4-methoxyphenyl)sulfamoyl)acetyl chloride, **14a** with excess 1,3,5-trimethoxybenzene (**15**) yielded the corresponding N-(4-methoxyphenyl)-2oxo-2-(2',4',6'-trimethoxyphenyl)ethanesulfonamide. Yield: 80%; off white solid, mp 148– 150 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.73 (s, 3H, OCH₃), 3.84 (s, 6H, 2 X OCH₃), 3.85 (s, 3H, OCH₃), 4.97 (s, 2H, CH₂), 6.09 (s, 2H, Ar-H), 6.22 (br s, 1H, NH), 6.90 (d, J = 8.6

Hz, 2H, Ar-H), 7.32 (d, J = 8.6 Hz, 2H, Ar-H). HRMS found $[M+H]^+$ (m/z): 396.1060. Calcd for $C_{18}H_{21}NO_7S$ m/z: 395.1039.

N-(*4*-*Methoxy-3-nitrophenyl*)-2-oxo-2-(2',4',6'-trimethoxyphenyl)ethanesulfonamide (*16b*): Friedel-Crafts alkylation of 2-(N-(4-methoxy-3-nitrophenyl)sulfamoyl)acetyl chloride, **14b** with excess 1,3,5-trimethoxybenzene (**15**) yielded the corresponding N-(4-methoxy-3-nitrophenyl)-2-oxo-2-(2',4',6'-trimethoxyphenyl)ethanesulfonamide. Yield: 78%; light yellow solid, mp 160–162 °C. ¹H NMR (DMSO-d₆, 300 MHz): δ 3.76 (s, 3H, OCH₃), 3.87 (s, 6H, 2 X OCH₃), 3.89 (s, 3H, OCH₃), 4.86 (s, 2H, CH₂), 6.09 (s, 2H, Ar-H), 7.41 (d, J = 9.0 Hz, 1H, Ar-H), 7.56 (dd, J = 2.7, 9.0 Hz, 1H, Ar-H), 7.78 (d, J = 2.7 Hz, 1H, Ar-H), 9.62 (br s, 1H, NH). HRMS found [M+H]⁺ (m/z): 441.0916. Calcd for C₁₈H₂₀N₂O₉S m/z: 440.0890.

N-(*3*-*Hydroxy*-*4*-*methoxyphenyl*)-*2*-*oxo*-*2*-(*2'*,*4'*,*6'*-*trimethoxyphenyl*)*ethanesulfonamide* (*16c*): Friedel-Crafts alkylation of 2-(N-(3-hydroxy-4-methoxyphenyl)sulfamoyl)acetyl chloride, **14c** with excess 1,3,5-trimethoxybenzene (**15**) yielded the corresponding N-(3-hydroxy-4-methoxyphenyl)-2-oxo-2-(2',4',6'-trimethoxyphenyl)ethanesulfonamide. Yield: 77%; white solid, mp 158–160 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.73 (s, 3H, OCH₃), 3.84 (s, 6H, 2 X OCH₃), 3.85 (s, 3H, OCH₃), 4.61 (s, 2H, CH₂), 6.16 (s, 2H, Ar-H), 6.27 (br s, 1H, NH), 6.61 (dd, J = 2.4, 8.4 Hz, 1H, Ar-H), 6.76 (d, J = 2.7 Hz, 1H, Ar-H), 6.82 (d, J = 8.7 Hz, 1H, Ar-H). HRMS found [M+H]⁺ (m/z): 412.1015. Calcd for C₁₈H₂₁NO₈S m/z: 411.0988.

Step 3: General Procedure for the preparation of 2-Hydroxy-N-Aryl-2-arylethanesulfonamide (17): To a cooled solution of N-aryl-2-oxo-2-arylethanesulfonamide, 16 (10 mmol) in anhydrous tetrahydrofuran (40 mL) under N₂ atmosphere, was added NaBH₄ (10 mmol) slowly at 0 °C. The reaction mixture was maintained at room temperature for 3 h. After completion of the reaction, the contents were poured onto crushed ice. The solid that separated out was filtered, washed with cold water, and dried under vacuum resulted 17. The following - hydroxy-N-Aryl-2-arylethane-sulfonamide 17 were prepared using above the method.

2-Hydroxy-N-(4-methoxyphenyl)-2-(2',4',6'-trimethoxyphenyl)ethanesulfonamide (17a): The title compound was obtained by the reduction of N-(4-methoxyphenyl)-2-oxo-2-(2',4', 6'-trimethoxyphenyl)ethanesulfonamide, **16a** following the procedure as described for compound **17**. Yield, 88%; white solid, mp 162–164 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.49 (dd, J = 9.9, 4.6 Hz, 2H, CH₂-CH), 3.73 (s, 3H, OCH₃), 3.84 (s, 6H, 2 X OCH₃), 3.85 (s, 3H, OCH₃), 4.97 (m, 1H, CH-OH), 5.34 (d, J = 4.2 Hz, 1H, CH₂-CH), 6.11 (s, 2H, Ar-H), 6.20 (br s, 1H, NH), 6.92 (d, J = 8.6 Hz, 2H, Ar-H), 7.36 (d, J = 8.6 Hz, 2H, Ar-H). HRMS found [M+H]⁺ (m/z): 398.1219. Calcd for C₁₈H2₃NO₇S m/z: 397.1195.

2-Hydroxy-N-(4-methoxy-3-nitrophenyl)-2-(2',4',6'-trimethoxyphenyl)ethanesulfonamide (17b): The title compound was obtained by the reduction of N-(4-methoxy-3-nitrophenyl)-2-oxo-2-(2',4',6'-trimethoxyphenyl)ethanesulfonamide, **16b** following the procedure as described for compound **17**. Yield, 85%; white solid, mp 168–170 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.52 (dd, J = 9.9, 4.6 Hz, 2H, CH₂-CH), 3.76 (s, 3H, OCH₃), 3.86 (s, 6H, 2 X OCH₃), 3.88 (s, 3H, OCH₃), 4.99 (m, 1H, CH-OH), 5.39 (d, J = 4.2 Hz, 1H, CH₂-CH), 6.14 (s, 2H, Ar-H), 6.19 (br s, 1H, NH), 7.42 (d, J = 9.0 Hz, 1H, Ar-H), 7.69 (dd, J = 8,7, 1.8 Hz, 1H, Ar-H), 7.93 (d, J = 1.8 Hz, 1H, Ar-H). HRMS found [M+H]⁺ (m/z): 443.1057. Calcd for C₁₈H₂₂N₂O₉S m/z: 442.1046.

2-Hydroxy-N-(3-hydroxy-4-methoxyphenyl)-2-(2',4',6'-trimethoxyphenyl)ethanesulfonamide (17c): The title compound was obtained by the reduction of N-(3-hydroxy-4-

methoxyphenyl)-2-oxo-2-(2',4',6'-trimethoxyphenyl)ethanesulfonamide, **16c** following the procedure as described for compound **17**. Yield, 86%; white solid, mp 152–154 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.43 (dd, J = 9.9, 4.6 Hz, 2H, CH₂-CH), 3.84 (s, 6H, 2 X OCH₃), 3.85 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃), 5.05 (m, 1H, CH-OH), 5.63 (br s, 1H, OH), 6.02 (d, J = 4.2 Hz, 1H, CH₂-CH), 6.09 (s, 2H, Ar-H), 6.19 (br s, 1H, NH), 6.73–6.83 (m, 3H, Ar-H). HRMS found [M+H]⁺ (m/z): 414.1163. Calcd for C₁₈H₂₃NO₈S m/z: 413.1144.

Step 4: General Procedure for the preparation of (E)-N-Aryl-2-arylethenesulfonamide (6). (Scheme 5): p-Toluenesulfonic acid (1 mmol) was added in one portion to a mixture of 2-hydroxy-N-Aryl-2-arylethanesulfonamide, **17** (5 mmol) in anhydrous toluene (25 mL) at room temperature and under N₂ atmosphere. The temperature was raised to 120 °C, and the mixture was refluxed for 3 h using a Dean-Stark water separator. After completion of the reaction, the reaction mixture was concentrated under reduced pressure and then quenched by the addition of water (25 mL). The aqueous layer was neutralized with a saturated aqueous solution of sodium hydrogen carbonate and extracted with dichloromethane (3 X 25 mL). The combined organic extracts were washed with brine (2 X 25 mL), dried over Na₂SO₄, filtered and the solvent was evaporated under reduced pressure to afford crude product, which on recrystallization in 2-propanol afforded the desired product **6**. The following (E)-N-aryl-2-arylethenesulfonamides were prepared using the above procedure.

(*E*)-*N*-(*4*-*Methoxyphenyl*)-2-(2',4',6'-*trimethoxyphenyl*)*ethenesulfonamide* (*6i*): The title compound was obtained by the dehydration of 2-hydroxy-N-(4-methoxyphenyl)-2-(2',4',6'-trimethoxyphenyl)ethanesulfonamide, **17a** following the procedure as described for compound **6** in scheme 4. Yield, 56%; light yellow solid, mp 176–178 °C. Analytical data are the same as **6i** obtained by method A in scheme 1.

(*E*)-*N*-(4-methoxy-3-nitrophenyl)-2-(2,4,6-trimethoxyphenyl)ethenesulfonamide (6s): The title compound was obtained by the dehydration of 2-hydroxy-N-(4-methoxy-3-nitrophenyl)-2-(2',4',6'-trimethoxyphenyl)-ethanesulfonamide, **17b** following the procedure as described for compound **6** in scheme 4. Yield, 58%; yellow solid, mp 172–174 °C. Analytical data are the same as **6s** obtained by method A in scheme 1.

(*E*)-*N*-(3-Hydroxy-4-methoxyphenyl)-2-(2,4,6-trimethoxyphenyl)ethenesulfonamide (6p): The title compound was obtained by the dehydration of 2-hydroxy-N-(3-hydroxy-4methoxyphenyl)-2-(2',4',6'-trimethoxyphenyl)-ethanesulfonamide, **17c** following the procedure as described for compound **6** in scheme 4. Yield, 55%; light green solid, mp 148– 150 °C. Analytical data are the same as **6p** obtained by method B in scheme 1.

General Procedure for the preparation of (E)-N-Aryl-2-arylethenesulfonamides (6)

Method D (Scheme 6)

Step 1: General Procedure for the synthesis of (E)-Styryl sulfonyl chloride 19. (Scheme 6): The following (E)-Styryl sulfonyl chloride, **19** were prepared according to the procedure reported in the literature.^{27c}

(*E*)-2-Phenylethenesulfonyl chloride (19a): Chlorosulfonylation of styrene **18a** with sulfuryl chloride resulted the corresponding (E)-2-phenylethenesulfonyl chloride. The yield of this reaction was 85% giving a white solid with a melting point of 86–88 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.26 (d, J = 15.6 Hz, 1H, = CH), 7.34 – 7.63 (m, 5H, Ar-H), 7.70 (d, J = 15.6 Hz, 1H, CH=). HRMS found [M+H]⁺ (m/z): 202.9878. Calcd for C₈H₇ClO₂S m/z: 201.9855.

(*E*)-2-(4-Bromophenyl)ethenesulfonyl chloride (19b): Chlorosulfonylation of 4bromostyrene **18b** with sulfuryl chloride resulted the corresponding (E)-2-(4bromophenyl)ethenesulfonyl chloride. The yield of this reaction was 89% giving a white solid with a melting point of 98–100 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.11 (d, J = 15.6 Hz, 1H, = CH), 7.52 (d, J = 8.4 Hz, 2H, Ar-H), 7.59 (d, J = 8.4 Hz, 2H, Ar-H), 7.78 (d, J = 15.6 Hz, 1H, CH=). HRMS found [M+H]⁺ (m/z): 280.8982. Calcd for C₈H₆BrClO₂S m/z: 279.8960.

(*E*)-2-(4-Methoxyphenyl)ethenesulfonyl chloride (19c): Chlorosulfonylation of 4methoxystyrene **18c** with sulfuryl chloride resulted the corresponding (E)-2-(4methoxyphenyl)ethenesulfonyl chloride. The yield of this reaction was 79% giving a white solid with a melting point of 82–84 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.85 (s, 3H, OCH₃), 6.94 (d, J = 8.7 Hz, 2H, Ar-H), 7.16 (d, J = 15.3 Hz, 1H, = CH), 7.62 (d, J = 8.7 Hz, 2H, Ar-H),7.41 (d, J = 15.6 Hz, 1H, CH=). HRMS found [M+H]⁺ (m/z): 232.9986. Calcd for C₉H₉ClO₃S m/z: 231.9961.

Method 1: To a solution of phenylethenesulfonyl chloride, **19** (0.5 g, 2.5 mmol) and triethylamine (2.6 g, 25 mmol) in dichloromethane (15 mL) at room temperature, was added a solution of aniline, **1a** (0.235 g, 2.5 mmol) in dichloromethane (10 mL) drop wise over a period of 15 min and continued stirring for 5 h. After completion of reaction, water was added, stirred for 15 min and separated the organic layer, dried over anhydrous sodium sulfate and evaporated under reduced pressure resulted crude **6**. The crude on silica gel column purification resulted pure **6**.

Method 2: To a solution of phenylethenesulfonyl chloride, **19** (0.5 g, 2.5 mmol) in pyridine (5 mL) at room temperature, was added aniline, **1a** (0.235 g, 2.5 mmol) over a period of 5 min and continued stirring for 6 h. After completion of reaction, water was added, stirred for 30 min and the solid separated was filtered, washed with cold water and dried under vacuum resulted crude **6**. The crude on silica gel column purification resulted pure **6**. The following (E)-N-Aryl-2-arylethenesulfonamide, **6** were prepared using one of the above methods.

(E)-N,2-Diphenylethenesulfonamide (6a): Condensation of (E)-2-phenylethenesulfonyl chloride, **19a** with aniline, **1a** resulted the corresponding (E)-N,2-

diphenylethenesulfonamide. The yield of this reaction was 83%, giving a white solid with a melting point 112-114 °C. The analytical data are the same as **6a** obtained by method A in scheme 1.

(*E*)-*N*-(*4*-*Chlorophenyl*)-*2*-*phenylethenesulfonamide* (*6b*): Condensation of (E)-2phenylethenesulfonyl chloride, **19a** with 4-chloroaniline, **1b** resulted the corresponding (E)-N-(4-chlorophenyl)-2-phenylethenesulfonamide. The yield of this reaction was 80%, giving a white crystalline solid with a melting point 108–110 °C. The analytical data are the same as **6b** obtained by method A in scheme 1.

(E)-2-(4'-Bromophenyl)-N-(4-fluorophenyl)ethenesulfonamide (6c): Condensation of (E)-2-(4-bromophenyl)ethenesulfonyl chloride, **19b** with 4-fluoroaniline, **1c** resulted the corresponding (E)-2-(4'-bromophenyl)-N-(4-fluorophenyl)ethenesulfonamide. The yield of this reaction was 79%, giving a white solid with a melting point 138–140 °C. The analytical data are the same as **6c** obtained by method A in scheme 1.

(*E*)-*N*-(4-*Fluorophenyl*)-2-(4'-methoxyphenyl)ethenesulfonamide (6d): Condensation of (E)-2-(4-methoxyphenyl)ethenesulfonyl chloride, **19c** with 4-fluoroaniline, **1c** resulted the corresponding (E)-N-(4-fluorophenyl)-2-(4'-methoxyphenyl)ethenesulfonamide. The yield

of this reaction was 78%, giving a white solid with a melting point 98–100 °C. The analytical data are the same as **6d** obtained by method A in scheme 1.

General Procedure for the Preparation of Sulfonamido Amino Esters (24). (Scheme 10): To a solution of sodium acetate (41.0 g, 500 mmol) dissolved in ethanol (250 mL) was added methyl 2-bromoacetate (76.4 g, 500 mmol) and refluxed for 10 min. To the cooled reaction mixture compound (E)-N-(3-amino-4-methoxyphenyl)-2-(2',4',6'-trimethoxyphenyl)ethenesulfonamide, **6t** (39.44 g, 100 mmol) was added and then refluxed for 48 h. After completion of the reaction, the reaction mixture was concentrated under vacuum and poured into ice-water. The solid formed was filtered, washed with water, finally with cold 2-propanol and dried under vacuum, (**24**) which was used in next step without further purification. The following amino esters were prepared using the above procedure.

(*E*)-*Methyl* 2-(2-*methoxy*-5-(2-(2',4',6'-trimethoxyphenyl)vinylsulfonamido)phenylamino)acetate (24a): The title compound was obtained by the alkylation of (E)-N-(3-amino-4methoxyphenyl)-2-(2',4',6'-trimethoxyphenyl)ethenesulfonamide 6t with methyl 2bromoacetate following the procedure as described for compound 24. Yield, 70%; light brown solid, mp 142–144 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.78 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 3.84 (s, 6H, 2 × OCH₃), 3.85 (s, 3H, OCH₃), 3.91 (s, 2H, CH₂), 4.74 (t, J = 5.4 Hz, 1H, NH), 6.09 (s, 2H, Ar-H), 6.44 (d, J = 2.1 Hz, 1H, Ar-H), 6.49 (dd, J = 2.4, 8.4 Hz, 1H, Ar-H), 6.67 (d, J = 8.4 Hz, 1H, Ar-H), 7.12 (d, J = 15.6 Hz, 1H, =CH), 7.86 (d, J = 15.6 Hz, 1H, CH=). HRMS found [M+H]⁺ (m/z): 467.1429. Calcd for C₂₁H₂₆N₂O₈S m/z: 466.1410.

(*E*)-*Methyl* 2-(2-*methoxy-5-(2-(2',4',6'-trimethoxyphenyl)vinylsulfonamido)phenylamino)propanoate (24b):* The title compound was obtained by the alkylation of (E)-N-(3-amino-4methoxyphenyl)-2-(2',4',6'-trimethoxyphenyl)ethenesulfonamide **6t** with methyl 2-bromopropionate following the procedure as described for compound **24**. Yield, 66%; off white solid, mp 146–148 °C. ¹H NMR (CDCl₃, 300 MHz): δ 1.47 (d, J = 6.9 Hz, 3H, CH₃), 3.73 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 3.84 (s, 6H, 2 X OCH₃), 3.85 (s, 3H, OCH₃), 4.12 (br s, 1H, CH), 4.75 (br s, 1H, NH), 6.09 (s, 2H, Ar-H), 6.10 (s, 1H, NH), 6.46 (d, J = 2.4 Hz, 1H, Ar-H), 6.49 (dd, J = 2.4, 8.1 Hz, 1H, Ar-H), 6.66 (d, J = 8.1 Hz, 1H, Ar-H), 7.12 (d, J = 15.6 Hz, 1H, =CH), 7.84 (d, J = 15.6 Hz, 1H, CH=). HRMS found [M+H]⁺ (m/z): 481.1591. Calcd for C₂₂H₂₈N₂O₈S m/z: 480.1566.

(E)-Methyl 2-(2-methoxy-5-(2-(2',4',6'-

trimethoxyphenyl)vinylsulfonamido)phenylamino)-2-methylpropanoate (24c): The title compound was obtained by the alkylation of (E)-N-(3-amino-4-methoxyphenyl)-2-(2',4',6'-trimethoxyphenyl)ethenesulfonamide **6t** with methyl 2-bromo2-methylpropionate following the procedure as described for compound **24**. Yield, 65%; brown solid, mp 140–142 °C. ¹H NMR (CDCl₃, 300 MHz): δ 1.55 (s, 6H, 2 X CH₃), 3.71 (s, 3H, OCH₃), 3.82 (s, 3H, OCH₃), 3.84 (s, 6H, 2 X OCH₃), 3.85 (s, 3H, OCH₃), 4.69 (br s, 1H, NH), 6.02 (br s, 1H, NH), 6.08 (s, 2H, Ar-H), 6.33 (d, J = 2.4 Hz, 1H, Ar-H), 6.51 (dd, J = 2.4, 8.4 Hz, 1H, Ar-H), 6.66 (d, J = 8.7 Hz, 1H, Ar-H), 7.12 (d, J = 15.6 Hz, 1H, =CH), 7.82 (d, J = 15.6 Hz, 1H, CH=). HRMS found [M+H]⁺ (m/z): 495.1719. Calcd for C₂₃H₃₀N₂O₈S m/z: 494.1723.

(E)-Methyl 2-(2-methoxy-5-(2-(2',4',6'-

trimethoxyphenyl)vinylsulfonamido)phenylamino)-2-phenylacetate (24d): The title compound was obtained by the alkylation of (E)-N-(3-amino-4-methoxyphenyl)-2-(2',4',6'-trimethoxyphenyl)ethenesulfonamide **6t** with methyl α-bromo-phenylacetate following the procedure as described for compound **24**. Yield, 63%; light yellow solid, mp 138–140 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.71 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 3.85 (s, 6H, 2

X OCH₃), 3.87 (s, 3H, OCH₃), 4.69 (d, J = 6.0 Hz, 1H, CH), 5.83 (d, J = 6.3 Hz, 1H, NH), 6.09 (s, 2H, Ar-H), 6.34 (d, J = 2.4 Hz, 1H, Ar-H), 6.41 (dd, J = 2.4, 8.4 Hz, 1H, Ar-H), 6.57 (d, J = 8.7 Hz, 1H, Ar-H), 7.09 (d, J = 15.6 Hz, 1H, =CH), 7.25–7.33 (m, 3H, Ar-H), 7.46 (d, J = 8.7 Hz, 2H, Ar-H), 7.83 (d, J = 15.6 Hz, 1H, CH=). HRMS found $[M+H]^+$ (m/z): 543.1747. Calcd for $C_{27}H_{30}N_2O_8S$ m/z: 542.1723.

(E)-Methyl 2-(4"-Fluorophenyl)-2-(2-methoxy-5-(2-(2',4',6'-

trimethoxyphenyl)vinylsulfon-amido) phenylamino)acetate (24e): The title compound was obtained by the alkylation of (E)-N-(3-amino-4-methoxyphenyl)-2-(2',4',6'-trimethoxyphenyl)ethenesulfonamide **6t** with methyl 2-bromo-2- (4-fluorophenyl)acetate following the procedure as described for compound **24**. Yield, 64%; off white solid, mp 124–126 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.69 (s, 3H, OCH₃), 3.82 (s, 3H, OCH₃), 3.83 (s, 6H, 2 X OCH₃), 3.85 (s, 3H, OCH₃), 4.78 (d, J = 5.5 Hz, 1H, CH), 5.98 (br s, 1H, NH), 6.09 (s, 2H, Ar-H), 6.23 (d, J = 2.1 Hz, 1H, Ar-H), 6.39 (dd, J = 2.1, 8.1 Hz, 1H, Ar-H), 6.63 (d, J = 8.1 Hz, 1H, Ar-H), 7.12 (d, J = 8.4 Hz, 2H, Ar-H), 7.17 (d, J = 15.6 Hz, 1H, =CH), 7.37 (d, J = 8.4 Hz, 2H, Ar-H), 7.86 (d, J = 15.6 Hz, 1H, CH=). HRMS found [M+H]⁺ (m/z): 561.1653. Calcd for C₂₇H₂₉FN₂O₈S m/z: 560.1629.

(E)-Methyl 2-(4"-Chlorophenyl)-2-(2-methoxy-5-(2-(2',4',6'-

trimethoxyphenyl)*vinylsulfon-amido*) *phenylamino*)*acetate* (*24f*): The title compound was obtained by the alkylation of (E)-N-(3-amino-4-methoxyphenyl)-2-(2',4',6'-trimethoxyphenyl)ethenesulfonamide **6t** with methyl 2-bromo-2- (4-chlorophenyl)acetate following the procedure as described for compound **24**. Yield, 64%; light yellow solid, mp 144–146 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.71 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 3.85 (s, 6H, 2 X OCH₃), 3.86 (s, 3H, OCH₃), 4.86 (s, 1H, CH), 6.04 (br s, 1H, NH), 6.11 (s, 2H, Ar-H), 6.27 (d, J = 2.4 Hz, 1H, Ar-H), 6.39 (dd, J = 2.4, 8.4 Hz, 1H, Ar-H), 6.63 (d, J = 8.4 Hz, 1H, Ar-H), 7.01 (d, J = 15.6 Hz, 1H, =CH), 7.11 (d, J = 8.4 Hz, 2H, Ar-H), 7.24 (d, J = 8.4 Hz, 2H, Ar-H), 7.94 (d, J = 15.6 Hz, 1H, CH=). HRMS found [M+H]⁺ (m/z): 577.1361. Calcd for C₂₇H₂₉ClN₂O₈S m/z: 576.1333.

(E)-Methyl 2-(4"-Bromophenyl)-2-(2-methoxy-5-(2-(2',4',6'-

trimethoxyphenyl)*vinylsulfon-amido*) *phenylamino*)*acetate* (*24g*)*:* The title compound was obtained by the alkylation of (E)-N-(3-amino-4-methoxyphenyl)-2-(2',4',6'-trimethoxyphenyl)ethenesulfonamide **6t** with methyl 2-bromo-2- (4-bromophenyl)acetate following the procedure as described for compound **24**. Yield, 62%; light brown solid, mp 150–152 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.68 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), 3.82 (s, 6H, 2 X OCH₃), 3.85 (s, 3H, OCH₃), 4.89 (s, 1H, CH), 6.07 (br s, 1H, NH), 6.09 (s, 2H, Ar-H), 6.27 (d, J = 1.8 Hz, 1H, Ar-H), 6.44 (dd, J = 1.8, 8.1 Hz, 1H, Ar-H), 6.50 (d, J = 8.1 Hz, 1H, Ar-H), 6.95 (d, J = 15.6 Hz, 1H, =CH), 7.18 (d, J = 8.4 Hz, 2H, Ar-H), 7.86 (d, J = 15.6 Hz, 1H, CH=), 7.91 (d, J = 8.4 Hz, 2H, Ar-H). HRMS found [M+H]⁺ (m/z): 621.0851. Calcd for C₂₇H₂₉BrN₂O₈S m/z: 620.0828.

General Procedure for the Preparation of Sulfonamido Amino Acids (25). (Scheme 10):

To a solution of sulfonamido amine ester **24** (46.6 g, 100 mmol) in ethanol (200 mL), 20% aqueous sodium hydroxide solution (100 mL) was added slowly with vigorous stirring. The reaction mixture was stirred at 60 °C for 1 h. After completion of the reaction, the solvent was removed under vacuum and the remainder was acidified with dilute hydrochloric acid to pH 4. The solid that formed was filtered, washed with water and dried to get the sulfonamido amino acid **25**.

(*E*)-2-(2-Methoxy-5-(2-(2',4',6'-trimethoxyphenyl)vinylsulfonamido)phenylamino)acetic acid (25a): The title compound was obtained by the hydrolysis of (E)-methyl 2-(2-

methoxy-5-(2-(2',4',6'-trimethoxyphenyl)vinylsulfonamido)phenylamino)acetate, **24a** following the procedure as described for compound **25**. Yield, 50%; pale yellow solid, mp 110–112 °C. ¹H NMR(DMSO-d₆, 300 MHz): δ 3.71 (s, 2H, CH₂), 3.82 (s, 3H, OCH₃), 3.84 (s, 3H, OCH₃), 3.87 (s, 6H, 2 X OCH₃), 6.26 (s, 2H, Ar-H), 6.48 (d, J = 1.8 Hz, 1H, Ar-H), 6.65 (dd, J = 1.8, 8.1 Hz, 1H, Ar-H), 6.86 (d, J = 8.1 Hz, 1H, Ar-H), 6.94 (d, J = 15.6 Hz, 1H, =CH), 7.60 (d, J = 15.6 Hz, 1H, CH=), 8.99 (br s, 1H, NH). HRMS found [M-H]⁻ (m/z): 451.1209. Calcd for C₂₀H₂₄N₂O₈S m/z: 452.1253.

propanoic acid (25b): The title compound was obtained by the hydrolysis of (E)-methyl 2-(2-methoxy-5-(2-(2',4',6'-trimethoxyphenyl)vinylsulfonamido)phenylamino)propanoate, **24b** following the procedure as described for compound **25**. Yield, 57%; light brown solid, mp 116–118 °C. ¹H NMR (DMSO-d₆, 300 MHz): δ 1.28 (d, J = 6.9 Hz, 3H, CH₃), 3.69 (s, 3H, OCH₃), 3.71 (d, J = 6.9 Hz, 1H, C<u>H</u>), 3.83 (s, 3H, OCH₃), 3.84 (s, 6H, 2 X OCH₃), 4.77 (br s, 1H, NH), 6.28 (s, 2H, Ar-H), 6.34 (d, J = 2.4 Hz, 1H, Ar-H), 6.51 (d, J = 2.7 Hz, 1H, Ar-H), 6.66 (dd, J = 2.1, 8.1 Hz, 1H, Ar-H), 6.95 (d, J = 15.6 Hz, 1H, =CH), 7.59 (d, J = 15.6 Hz, 1H, CH=), 9.15 (br s, 1H, NH). HRMS found [M-H]⁻ (m/z): 465.1386. Calcd for C₂₁H₂₆N₂O₈S m/z: 466.1410.

(*E*)-2-(2-*Methoxy-5*-(2-(2',4',6'-trimethoxyphenyl)vinylsulfonamido)phenylamino)-2methylpropanoic acid (25c): The title compound was obtained by the hydrolysis of (E)methyl 2-(2-methoxy-5-(2-(2',4',6'-trimethoxyphenyl)vinylsulfonamido)phenylamino)-2methylpropanoate, **24c** following the procedure as described for compound **25**. Yield, 61%; light yellow solid, mp 122–124 °C. ¹H NMR (DMSO-d₆, 300 MHz): δ 1.44 (s, 6H, 2 X CH₃), 3.72 (s, 3H, OCH₃), 3.82 (s, 9H, 3 X OCH₃), 6.27 (s, 2H, Ar-H), 6.34 (dd, J = 2.4, 8.4 Hz 1H, Ar-H), 6.45 (d, J = 2.4 Hz, 1H, Ar-H), 6.70 (d, J = 8.7 Hz, 1H, Ar-H), 6.95 (d, J = 15.6 Hz, 1H, =CH), 7.57 (d, J = 15.6 Hz, 1H, CH=), 9.24 (br s, 1H, NH). ¹³C NMR (DMSO-d6, 75 MHz): δ 176.6, 163.1, 160.6, 143.7, 135.3, 131.1, 130.6, 123.9, 109.8, 108.6, 105.6, 102.5, 90.9, 56.0, 55.9, 55.5, 55.4, 25.2. HRMS found [M-H]⁻ (m/z): 479.1539. Calcd for C₂₂H₂₈N₂O₈S m/z: 480.1566.

(*E*)-2-(2-*Methoxy*-5-(2-(2',4',6'-trimethoxyphenyl)vinylsulfonamido)phenylamino)-2phenylacetic acid (25d): The title compound was obtained by the hydrolysis of (E)-methyl 2-(2-methoxy-5-(2-(2',4',6'-trimethoxyphenyl)vinylsulfonamido)phenylamino)-2phenylacetate, **24d** following the procedure as described for compound **25**. Yield, 60%; white solid, mp 124–126 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.79 (s, 6H, 2 X OCH₃), 3.81 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 4.86 (d, J = 6.0 Hz, 1H, CH), 6.28 (s, 2H, Ar-H), 6.32 (d, J = 2.4 Hz, 1H, Ar-H), 6.42 (dd, J = 2.4, 8.4 Hz, 1H, Ar-H), 6.59 (d, J = 8.7 Hz, 1H, Ar-H), 7.14 (d, J = 15.6 Hz, 1H, CH=), 9.20 (br s, 1H, NH). HRMS found [M-H]⁻ (m/z): 527.1541. Calcd for C₂₆H₂₈N₂O₈S m/z: 528.1566.

(E)-2-(4"-Fluorophenyl)-2-(2-methoxy-5-(2-(2',4',6'-trimethoxyphenyl)vinylsulfonamido)phenylamino)acetic acid (25e): The title compound was obtained by the hydrolysis of (E)methyl 2-(4"-fluorophenyl)-2-(2-methoxy-5-(2-(2',4',6'-

trimethoxyphenyl)vinylsulfonamido)-phenylamino)acetate, **24e** following the procedure as described for compound **25**. Yield, 48%; light yellow solid, mp 102–104 °C. ¹H NMR (DMSO-d₆, 300 MHz): δ 3.79 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 3.84 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 4.72 (d, J = 5.5 Hz, 1H, C<u>H</u>), 6.29 (s, 2H, Ar-H), 6.33 (d, J = 2.1 Hz, 1H, Ar-H), 6.69 (dd, J = 2.1, 8.1 Hz, 1H, Ar-H), 6.73 (d, J = 8.1 Hz, 1H, Ar-H), 7.09 (d, J = 8.4 Hz, 2H, Ar-H), 7.17 (d, J = 15.6 Hz, 1H, =CH), 7.32 (d, J = 8.4 Hz, 2H, Ar-H), 7.66 (d, J = 15.6 Hz, 1H, =CH), 7.32 (d, J = 8.4 Hz, 2H, Ar-H), 7.66 (d, J = 15.6 Hz, 1H, =CH), 7.32 (d, J = 8.4 Hz, 2H, Ar-H), 7.66 (d, J = 15.6 Hz, 1H, =CH), 7.32 (d, J = 8.4 Hz, 2H, Ar-H), 7.66 (d, J = 15.6 Hz, 1H, =CH), 7.32 (d, J = 8.4 Hz, 2H, Ar-H), 7.66 (d, J = 15.6 Hz, 1H, =CH), 7.32 (d, J = 8.4 Hz, 2H, Ar-H), 7.66 (d, J = 15.6 Hz, 1H, =CH), 7.32 (d, J = 8.4 Hz, 2H, Ar-H), 7.66 (d, J = 15.6 Hz, 1H, =CH), 7.32 (d, J = 8.4 Hz, 2H, Ar-H), 7.66 (d, J = 15.6 Hz, 1H, =CH), 7.32 (d, J = 8.4 Hz, 2H, Ar-H), 7.66 (d, J = 15.6 Hz, 1H, =CH), 7.32 (d, J = 8.4 Hz, 2H, Ar-H), 7.66 (d, J = 15.6 Hz, 1H, =CH), 7.32 (d, J = 8.4 Hz, 2H, Ar-H), 7.66 (d, J = 15.6 Hz, 1H, =CH), 7.32 (d, J = 8.4 Hz, 2H, Ar-H), 7.66 (d, J = 15.6 Hz, 1H, =CH), 7.32 (d, J = 8.4 Hz, 2H, Ar-H), 7.66 (d, J = 15.6 Hz, 1H, =CH), 7.32 (d, J = 8.4 Hz, 2H, Ar-H), 7.66 (d, J = 15.6 Hz, 1H, =CH), 7.32 (d, J = 8.4 Hz, 2H, Ar-H), 7.66 (d, J = 15.6 Hz, 1H, =CH), 7.32 (d, J = 8.4 Hz, 2H, Ar-H), 7.66 (d, J = 15.6 Hz, 1H, =CH), 7.32 (d, J = 8.4 Hz, 2H, Ar-H), 7.66 (d, J = 15.6 Hz, 1H, =CH), 7.32 (d, J = 8.4 Hz, 2H, Ar-H), 7.66 (d, J = 15.6 Hz, 1H, Ar-H), 7.80 (d, J = 15.6 Hz, 1

Hz, 1H, CH=), 9.04 (br s, 1H, NH). HRMS found $[M-H]^-$ (m/z): 545.1427. Calcd for $C_{26}H_{27}FN_2O_8S$ m/z: 546.1472.

(E)-2-(4"-Chlorophenyl)-2-(2-methoxy-5-(2-(2',4',6'-trimethoxyphenyl)vinylsulfonamido)phenylamino)acetic acid (25f): The title compound was obtained by the hydrolysis of (E)methyl 2-(4"-chlorophenyl)-2-(2-methoxy-5-(2-(2',4',6'-

trimethoxyphenyl)vinylsulfonamido)-phenylamino)acetate, **24f** following the procedure as described for compound **25**. Yield, 60%; brown solid, mp 108–110 °C. ¹H NMR (DMSO-d₆, 300 MHz): δ 3.78 (s, 3H, OCH₃), 3.84 (s, 6H, 2 X OCH₃), 3.87 (s, 3H, OCH₃), 4.89 (s, 1H, CH), 6.18 (d, J =2.1 Hz, 1H, Ar-H), 6.30 (s, 2H, Ar-H), 6.36 (dd, J = 2.4, 8.7 Hz, 1H, Ar-H), 6.73 (d, J=8.7 Hz, 1H, Ar-H), 6.87 (d, J = 15.6 Hz, 1H, =CH), 7.20 (d, J = 8.4 Hz, 2H, Ar-H), 7.58 (d, J = 15.6 Hz, 1H, CH=), 7.94 (d, J = 8.4 Hz, 2H, Ar-H), 9.14 (br s, 1H, NH). HRMS found [M-H]⁻ (m/z): 561.1156. Calcd for C₂₆H₂₇ClN₂O₈S m/z: 562.1177.

(E)-2-(4"-Bromophenyl)-2-(2-methoxy-5-(2-(2',4',6'-trimethoxyphenyl)vinylsulfonamido)phenylamino)acetic acid (25g): The title compound was obtained by the hydrolysis of (E)methyl 2-(4"-bromophenyl)-2-(2-methoxy-5-(2-(2',4',6'-

trimethoxyphenyl)vinylsulfonamido)-phenylamino)acetate, **24g** following the procedure as described for compound **25**. Yield, 70%; light brown solid, mp 138–140 °C. ¹H NMR (DMSO-d₆, 300 MHz): δ 3.83 (s, 3H, OCH₃), 3.84 (s, 6H, 2 X OCH₃), 3.86 (s, 3H, OCH₃), 4.96 (s, 1H, CH), 6.31 (s, 2H, Ar-H), 6.41 (d, J = 2.1 Hz, 1H, Ar-H), 6.69 (dd, J = 2.1, 8.1 Hz, 1H, Ar-H), 6.91 (d, J = 8.1 Hz, 1H, Ar-H), 7.14 (d, J = 15.6 Hz, 1H, =CH), 7.39 (d, J = 8.4 Hz, 2H, Ar-H), 7.57 (d, J = 8.4 Hz, 2H, Ar-H), 7.61 (d, J = 15.6 Hz, 1H, CH=), 9.12 (br s, 1H, NH). HRMS found [M-H]⁻ (m/z): 605.0647. Calcd for C₂₆H₂₇BrN₂O₈S m/z: 606.0671.

Biology

Tissue Culture and Reagents—Paclitaxel (Taxol), Nocodazole, Colchicine, Tamoxifen and 2-Thiouracil was purchased from Sigma-Aldrich (St. Louis, MO). Cell lines were purchased from ATCC (Manassas, VA). Cell lines were routinely grown in DMEM or RPM1 (CellGro, Manassas, VA) supplemented with 10% fetal bovine serum (Cell Generation, CO) and 1 unit/mL Penicillin-Streptomycin (GIBCO-Life Technologies, Inc., Gaithersburg, MD).

Cytotoxicity Assay

We have tested a number of tumor cell lines using a dose response end point assay system. The cells were grown in either DMEM or RPMI supplemented with 10% fetal bovine serum and 1 unit/mL penicillin-streptomycin solution. The tumor cells were plated into twelve-well dishes at a cell density of 2.5×10^4 cells/mL/well, and compounds were added 24 h later at various concentrations. Cell counts were determined from duplicate wells after 96 h of treatment. The total number of viable cells was determined by trypan blue exclusion.

Flow Cytometry

Cancer cell line DU145 (human prostate tumor) cells, were grown in DMEM (Cellgro) supplemented with 10% fetal bovine serum and 1 unit/mL penicillin-streptomycin. The cells were plated onto 100 mm² dishes at a cell density of 1.0×10^6 cells/dish, and 24 h later, they were treated with increasing concentration of **6t**. The cells were harvested 24 h after treatment. The cells were removed from the plate by trypsin digestion and combined with the non-attached cells found in the medium. The cell pellets were washed in phosphate buffered saline (PBS), and fixed in ice cold 70% ethanol for at least 24 h. The fixed cells were then washed with room temperature PBS and stained with propidium iodide (50 µg/

mL) and RNase A (0.5 mg) for 30 min at 37 °C. The stained cells were then analyzed on a Becton-Dickinson (BD) (FACScan) flow cytometer and the data analyzed by cell cycle analysis software (Modfit, BD).

PARP Western

DU145 cells were plated at a density of 1.0×10^6 cells per 100 mm² plate and treated 24 h later with either DMSO or increasing concentrations of **6t**. The cells were collected the indicated time points and cell pellets were frozen. The frozen cell pellets were lysed in 0.1 % Triton X-100 based lysis buffer containing protease inhibitors. Equal amounts of total cellular protein was then resolved on a 10%-SDS-polyacrylamide gel. The gels were transferred onto nitrocellulose paper (S/S). Licor's (Nebraska) Odyssey western detection procedure was used to visualize PARP cleavage. Following hybridization to anti- PARP antibodies (BD), the blot was treated with secondary antibodies labeled with IRDye 800 (Licor) and developed using the Odyssey scanner.

Fluorescent Tubulin Staining

DU145 cells were grown on glass coverslips and then treated with 0.025 μ M **6t**. The treated coverslips were harvested after 24 h and washed with room temperature PBS and fixed in freshly prepared 4% paraformaldehyde. The fixed cells were then treated with PBS containing 10 % FBS/0.1% Triton X-100 for 45 min at room temperature. The coverslips were washed and then treated with monoclonal anti alpha-tubulin antibody conjugated with FITC (DM1A, Sigma) for 1 h at 37 °C. The coverslips were washed and then treated with PBS containing 1 μ g/mL Propidium iodide for 5 min at room temperature. The coverslips were washed and mounted onto slides using Prolong Gold Antifade solution (Molecular Probes, Invitrogen, CA). The stained cells were analyzed by confocal microscopy using the inverted Olympus microscope FluoView system with a 60× objective. The image was generated by XYZ-sectioning (35-0.2 μ M sections) and compiling the scans using the software provided.

In vivo Tubulin Polymerization

DU145 cells were plated in 24 well dish at a cell number of 1.0×10^4 cells per well in 1 mL completed DMEM. Compounds were added the following day at the desired concentration. Following the 24 h paclitaxel treatment, compounds were added to the cells for 4 h. The cells were lysed in 100 µL hypotonic lysis buffer:1 mM MgCl₂, 2 mM EGTA, Tris-HCL (pH 6.6), 0.5% NP40, 1–2 mM PMSF, 2 µg/mL Aprotinin, 2 µg/mL Leupeptin and the lysates were spun for 10 min at 14,000 rpm at room temperature. To the supernatant, 25 µL of 4× sample buffer was added and the pellet was resuspended pellet in 100 µL hypotonic buffer and add 25 µL sample buffer. The samples were resolved by 10% SDS-PAGE. The blot was hybridized using a monoclonal antibody to alpha tubulin (Sigma clone DM1A).

Soft Agar Assay

The soft agar plates were prepared as described in Cosenza, et al.⁴¹ Briefly, Noble bottom agar (0.8%) was plated onto 60 mm tissue culture plates. Exponentially growing MIA-PaCa-2 cells (1.0×10^5) were mixed with growth medium with various concentrations of each compound and mixed with Noble agar to a final concentration of 0.4%. Each concentration was plated in triplicates. The top agar was allowed to harden and the plates were then incubated at 5% CO₂ at 37 °C for 3 weeks. The plates were then stained with 0.05% nitroblue tetrazolium (NBT) solution and representative plates were photographed using an Olympus stereoscope mounted with a Sony digital camera system (DKC5000, Sony Inc).

Nude Mouse Assay

Female athymic (NCr-nu/nu, Taconic) nude mice were injected with $0.5-1.0 \times 10^7$ BT20 cells subcutaneously in the hind leg using a 1 mL tuberculin syringe equipped with a 27–1/2 gauge needle. Approximately 14 days later, mice were paired (N=7:Vehicle and N=8:6t) such that each group harbored tumors with an average volume of approximately 100–150 mm³. The intraperitoneal injections were performed using a 1 mL tuberculin syringe equipped with a 27–1/2 gauge needle. The animals were treated 3 times a week for 2 weeks with 20 mg/kg of 6t dissolved in DMSO and 0.1 mL of 6t solution in DMSO was injected in mice. Tumor measurements (two dimensions) were done $3\times$ a week using traceable digital vernier calipers (Fisher). Tumor volume was calculated using the following equation: V= (L x (S²) $\pi/6$, where L is the longer and S is the shorter of the two dimensions. Change in tumor volume was determined by dividing the starting volume (V) by the determined volume (V1) following treatment. Body weight was determined during each measurement. The animals were observed for signs of toxicity. There was no body weight loss of more than 10% in any group nor were there any animal deaths. All studies were performed under the guidelines of Temple University IACUC.

Competitive Mass Spectrometry Binding Assay

Competitive mass spectrometry binding studies were conducted as previously described.³⁴ Colchicine, vinblastine and paclitaxel (1.2 μ M for each) were incubated with porcine brain tubulin (1.0 mg/mL) in the incubation buffer [80 mM piperazine-N,N'-bis(2-ethanesulfonic acid) (PIPES), 2.0 mM magnesium chloride (MgCl₂), 0.5 mM ethylene glycol tetraacetic acid (EGTA), pH 6.9] at 37°C for 1h. To study the colchicine and vinblastine binding sites, the incubations were performed under conditions which did not contain GTP because these ligands prefer to bind to dimeric tubulin. For paclitaxel binding studies, preformed microtubules in 100 μ L incubation buffer were prepared by pre-incubating tubulin in the presence of GTP (1 mM) for 1h. Varying concentrations $(0.1-100 \,\mu\text{M})$ of podophyllotoxin, vincristine, and docetaxel (positive controls for each binding sites) and 6t (0.1–100 μ M) were used to compete with the binding of colchicine- vinblastine- and paclitaxel-tubulin binding, and after a 1h incubation, the filtrate was obtained by ultrafiltration (molecular size cutoff of 30kDa, Microcon, Bedford, MA) and analyzed for either colchicine, vinblastine or paclitaxel concentrations by mass spectrometry. The ability of 6t to inhibit the binding of each ligand was expressed as a percentage of control binding in the absence of any competitor. Each experiment was performed in triplicate. The IC₅₀ values of 6t and podophylltoxin were calculated by fitting the Hill equation to the measured percentage binding as a function of the log of concentration using nonlinear regression (GraphPad Prism Software, San Diego, CA).

Acknowledgments

Authors are thankful to Onconova Therapeutics Inc., Newtown, PA and Mount Sinai School of Medicine, New York for the financial assistance and interest in this project. Partial support from NIH grant CA127963.

ABBREVATIONS USED

ADME-Tox	Adsorption, distribution, metabolism, and excretion - Toxicology
MDR	Multidrug resistance
P-gp	P-glycoprotein
BBB	Blood-Brain Barrier
FACS	Fluorescence activated cell sorting

PARP	poly(ADP-ribose)polymerase
FITC	Fluorescein Isothiocyanate

References

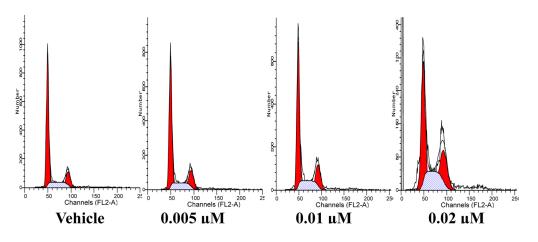
- (a) McIntosh JR, Grishchuk E, West RR. Chromosome-Microtubule Interactions During Mitosis. Annu Rev Cell Dev Bi. 2002; 18:193–219.(b) Gundersen GG, Cook TA. Microtubules and signal transduction. Curr Opin Cell Biol. 1999; 11:81–94. [PubMed: 10047525] (c) Nogales E. Structural Insights Into Microtubule Function. Annu Rev Biochem. 2000; 69:277–302. [PubMed: 10966460]
- (a) Dumontet C, Jordan MA. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov. 2010; 9:790–803. [PubMed: 20885410] (b) Shi Q, Chen K, Morris-Natschke SL, Lee KH. Recent progress in the development of tubulin inhibitors as antimitotic antitumor agents. Curr Pharm Design. 1998; 4:219–248.
- (a) Leggans EK, Duncan KK, Barker TJ, Schleicher KD, Boger DL. A Remarkable Series of Vinblastine Analogues Displaying Enhanced Activity and an Unprecedented Tubulin Binding Steric Tolerance: C20' Urea Derivatives. J Med Chem. 2013; 56:628–639. [PubMed: 23244701] (b) Schleicher KD, Sasaki Y, Tam A, Kato D, Duncan KK, Boger DL. Total Synthesis and Evaluation of Vinblastine Analogues Containing Systematic Deep-Seated Modifications in the Vindoline Subunit Ring System: Core Redesign. J Med Chem. 2013; 56:483–495. [PubMed: 23252481] (c) Neuss, N.; Neuss, MN. The Therapeutic Use of Bisindole Alkaloids from Catharanthus. In: Brossi, A., editor. The Alkaloids. Vol. 37. Academic Press; San Diego: 1990. p. 229-240.(d) Pearce, HL. Medicinal Chemistry of Bisindole Alkaloids from Catharanthus. In: Brossi, A., editor. The Alkaloids. Vol. 37. Academic Press; San Diego: 1990. p. 145-204.(e) Kuehne, ME.; Marko, I. Syntheses of Vinblastine-Type Alkaloids. In: Brossi, A., editor. The Alkaloids. Vol. 37. Academic Press; San Diego: 1990. p. 77-132.
- Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc. 1971; 93:2325–2327. [PubMed: 5553076]
- 5. Kuppens IELM. Current State of the Art of New Tubulin Inhibitors in the Clinic. Curr Clin Pharmacol. 2006; 1:57–70. [PubMed: 18666378]
- 6. (a) Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004; 4:253–265. [PubMed: 15057285] (b) Jordan MA, Wilson L. Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr Opin Cell Biol. 1998; 10:123–130. [PubMed: 9484604] (c) Wilson L, Panda D, Jordan MA. Modulation of microtubule dynamics by drugs: a paradigm for the actions of cellular regulators. Cell Struct Funct. 1999; 24:329–335. [PubMed: 15216890] (d) Panda D, Jordan MA, Chu KC, Wilson L. Differential effects of vinblastine on polymerization and dynamics at opposite microtubule ends. J Biol Chem. 1996; 271:29807–29812. [PubMed: 8939919] (e) Amos LA. What tubulin drugs tell us about microtubule structure and dynamics. Semin Cell Dev Biol. 2011; 22:916–926. [PubMed: 22001382]
- 7. (a) Jordan MA. Mechanism of action of antitumor drugs that interacts with microtubules and tubulin. Curr Med Chem: Anti-Cancer Agents. 2002; 2:1–17.(b) Jordan MA, Thrower D, Wilson L. Mechanism of inhibition of cell proliferation by Vinca alkaloids. Cancer Res. 1991; 51:2212–2222. [PubMed: 2009540] (c) Acharya BR, Choudhury D, Das A, Chakrabarti G. Vitamin K3 disrupts the microtubule networks by tubulin binding: A novel mechanism of its anti-proliferative activity. Biochemistry. 2009; 48:6963–6974. [PubMed: 19527023]
- 8. (a) Cragg GM, Grothaus PG, Newman DJ. Impact of Natural Products on Developing New Anti-Cancer Agents. Chem Rev. 2009; 109:3012–3043. [PubMed: 19422222] (b) Laura Cosentino L, Redondo-Horcajo M, Zhao Y, Santos AR, Chowdury KF, Vinader V, Abdallah QMA, Abdel-Rahman H, Fournier-Dit-Chabert J, Shnyder SD, Loadman PM, Fang W, Diaz JF, Barasoain I, Burns PA, Pors K. Synthesis and Biological Evaluation of Colchicine B-Ring Analogues Tethered with Halogenated Benzyl Moieties. J Med Chem. 2012; 55:11062–11066. [PubMed: 23176628] (c) Ballatore C, Brunden KR, Huryn DM, Trojanowski JQ, Lee VM, Smith AB III. Microtubule Stabilizing Agents as a Potential Treatment for Alzheimer's Disease and Related Neurodegenerative Tauopathies. J Med Chem. 2012; 55:8979–8996. [PubMed: 23020671] (d) Liu J, Zheng C, Ren X,

Ramana Reddy et al.

Zhou F, Li W, Zhu J, Lv J, Zhou Y. Synthesis and Biological Evaluation of 1-Benzylidene-3,4dihydronaphthalen-2-one as a New Class of Microtubule-Targeting Agents. J Med Chem. 2012; 55:5720-5733. [PubMed: 22676247] (e) Abad A, Lopez-Perez JL, Olmo ED, Garcia-Fernandez LF, Francesch A, Trigili C, Barasoain I, Andreu JM, Diaz JF, Feliciano AS. Synthesis and Antimitotic and Tubulin Interaction Profiles of Novel Pinacol Derivatives of Podophyllotoxins. J Med Chem. 2012; 55:6724-6737. [PubMed: 22607205] (f) Regina GL, Bai R, Rensen WM, Cesare ED, Coluccia A, Piscitelli F, Famiglini V, Reggio A, Nalli M, Pelliccia S, Pozzo ED, Costa B, Granata I, Porta A, Maresca B, Soriani A, Iannitto ML, Santoni A, Li J, Cona MM, Chen F, Ni Y, Brancale A, Dondio G, Vultaggio S, Varasi M, Mercurio C, Martini C, Hamel E, Lavia P, Novellino E, Silvestri R. Toward Highly Potent Cancer Agents by Modulating the C-2 Group of the Arylthioindole Class of Tubulin Polymerization Inhibitors. J Med Chem. 2013; 56:123-149. [PubMed: 23214452] (g) Yi X, Zhong B, Smith KM, Geldenhuys WJ, Feng Y, Pink JJ, Dowlati A, Xu Y, Zhou A, Su B. Identification of a Class of Novel Tubulin Inhibitors. J Med Chem. 2012; 55:3425-3435. [PubMed: 22435708] (h) Lee H, Chang J, Nien C, Kuo C, Shih K, Wu C, Chang C, Lai W, Liou J. 5-Amino-2-aroylquinolines as Highly Potent Tubulin Polymerization Inhibitors. Part 2. The Impact of Bridging Groups at Position C-2. J Med Chem. 2011; 54:8517-8525. [PubMed: 22060033] (i) Regina GL, Bai R, Rensen W, Coluccia A, Piscitelli F, Gatti V, Bolonesi A, Lavecchia A, Granata I, Porta A, Bruno M, Soriani A, Iannitto ML, Mariani M, Santoni A, Brancale A, Ferlini C, Dondio G, Varasi M, Mercurio C, Hamel E, Lavia P, Novellino E, Silvestri R. Design and Synthesis of 2-Heterocyclyl-3-arylthio-1H-indoles as Potent Tubulin Polymerization and Cell Growth Inhibitors with Improved Metabolic Stability. J Med Chem. 2011; 54:8394-8406. [PubMed: 22044164] (j) Fortin F, Wei L, Moreau E, Lacroix J, Cokte M, Petitclerc E, Kotra LP, C-Gaudreault R. Design, Synthesis, Biological Evaluation, and Structure-Activity Relationships of Substituted Phenyl 4-(2-Oxoimidazolidin-1-yl)benzenesulfonates as New Tubulin Inhibitors Mimicking Combretastatin A-4. J Med Chem. 2011; 54:4559–4580. [PubMed: 21604746] (k) Chekler ELP, Kiselyov AS, Ouyang X, Chen X, Pattaropong V, Wang Y, Tuma MC, Doody JF. Discovery of Dual VEGFR-2 and Tubulin Inhibitors with in Vivo Efficacy. ACS Med Chem Lett. 2010; 1:488-492.(l) Giannakakou P, Sackett D, Fojo T. Tubulin/microtubules: still a promising target for new chemotherapeutic agents. J Natl Cancer Inst. 2000; 92:182-183. [PubMed: 10655426] (m) Mooberry SL, Weiderhold KN, Dakshanamurthy S, Hamel E, Banner EJ, Kharlamova A, Hempel J, Gupton JT, Brown ML. Identification and characterization of a new tubulin binding tetrasubstituted brominated pyrrole. Mol Pharmacol. 2007; 72:132-140. [PubMed: 17456786]

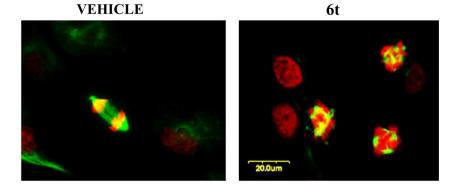
- (a) Deeken JF, Loscher W. The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res. 2007; 13:1663–1674. [PubMed: 17363519] (b) Dumontet C, Duran GE, Steger KA, Beketic-Oreskovic L, Sikic BI. Resistance mechanisms in human sarcoma mutants derived by single-step exposure to paclitaxel (Taxol). Cancer Res. 1996; 56:1091–1097. [PubMed: 8640766] (c) Matesanz R, Barasoain I, Yang CG, Wang L, Li X, de Ines C, Coderch C, Gago F, Barbero JJ, Andreu JM, Fang WS, Diaz JF. Optimization of taxane binding to microtubules: binding affinity dissection and incremental construction of a high affinity analog of paclitaxel. Chem Biol. 2008; 15:573–585. [PubMed: 18559268] (d) Miller DS, Bauer B, Hartz AMS. Modulation of Pglycoprotein at the blood-brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacol Rev. 2008; 60:196–209. [PubMed: 18560012]
- (a) Pellegrini F, Budman DR. Tubulin function, action of antitubulin drugs, and new drug development. Cancer Invest. 2005; 23:264–273. [PubMed: 15948296] (b) Rice A, Liu Y, Michaelis ML, Himes RH, Georg GI, Audus KL. Chemical modification of paclitaxel (Taxol) reduces P-glycoprotein interactions and increases permeation across the blood-brain barrier in vitro and in situ. J Med Chem. 2005; 48:832–838. [PubMed: 15689167] (c) Tong YG, Zhang XW, Geng MY, Yue JM, Xin XL, Tian F, Shen X, Tong LJ, Li MH, Zhang C, Li WH, Lin LP, Ding J. Pseudolarix acid B, a new tubulin-binding agent, inhibits angiogenesis by interacting with a novel binding site on tubulin. Mol Pharmacol. 2006; 69:1226–1233. [PubMed: 16424078] (d) Mulligan JM, Greene LM, Cloonan S, Mc Gee MM, Onnis V, Campiani G, Fattorusso C, Lawler M, Williams DC, Zisterer DM. Identification of tubulin as the molecular target of proapoptotic pyrrolo-1,5-benzoxazepines. Mol Pharmacol. 2006; 70:60–70. [PubMed: 16571652] (e) Beyer CF, Zhang N, Hernandez R, Vitale D, Lucas J, Nguyen T, Discafani C, Ayral-Kaloustian S, Gibbons JJ. TTI-237, a novel microtubule-active compound with in vivo antitumor activity. Cancer Res. 2008; 68:2292–2300. [PubMed: 18381436] (f) Liberatore AM, Coulomb H, Pons D, Dutruel O, Kasprzyk PG, Carlson M, Nelson AS, Newman SP, Stengel C, Auvray P, Hesry V, Foll B,

Narboux N, Morlais D, Le Moing M, Bernetiere S, Dellile R, Camara J, Ferrandis E, Bigg DC, Prevost GP. IRC-083927 is a new tubulin binder that inhibits growth of human tumor cells resistant to standard tubulin binding agents. Mol Cancer Ther. 2008; 7:2426–2434. [PubMed: 18723488]

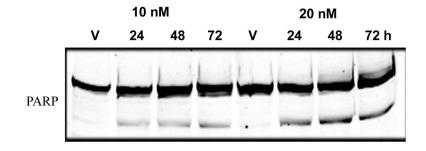

- (a) Xie F, Zhao H, Li D, Chen H, Quan H, Shi X, Lou L, Hu Y. Synthesis and Biological Evaluation of 2,4,5-Substituted Pyrimidines as a New Class of Tubulin Polymerization Inhibitors. J Med Chem. 2011; 54:3200–3205. [PubMed: 21480626] (b) Kemnitzer W, Sirisoma N, May C, Tseng B, Drewe J, Cai SX. Discovery of 4-anilino-N-methylthieno[3,2-d]pyrimidines and 4anilino-N-methylthieno[2,3-d]pyrimidines as potent apoptosis inducers. Bioorg Med Chem Lett. 2009; 19:3536–3540. [PubMed: 19464890] (c) Sirisoma N, Pervin A, Nguyen B, Crogan-Grundy C, Kasibhatla S, Tseng B, Drewe J, Cai SX. Discovery of substituted 4-anilino-2-arylpyrimidines as a new series of apoptosis inducers using a cell- and caspase-based high throughput screening assay. 2. Structure–activity relationships of the 2-aryl group. Bioorg Med Chem Lett. 2009; 19:2305–2309. [PubMed: 19285392] (d) Lee J, Kim SJ, Choi H, Kim YH, Lim IT, Yang HM, Lee CS, Kang HR, Ahn SK, Moon SK, Kim DH, Lee S, Choi NS, Lee KJ. Identification of CKD-516: A Potent Tubulin Polymerization Inhibitor with Marked Antitumor Activity against Murine and Human Solid Tumors. J Med Chem. 2010; 53:6337–6354. [PubMed: 20690624]
- 12. (a) Chaplin DJ, Horsman MR, Siemann DW. Current developments status of small-molecule vascular disrupting agents. Curr Opin Invest Dr. 2006; 7:522-528.(b) Tron GC, Pirali T, Sorba G, Pagliai F, Busacca S, Genazzani AA. Medicinal chemistry of combretastatin A4: present and future directions. J Med Chem. 2006; 49:3033–3044. [PubMed: 16722619] (c) Li Q, Sham HL. Discovery and development of mitotic agents that inhibit polymerization for the treatment of cancers. Expert Opin Ther Pat. 2002; 12:1663-1702.(d) Nam NH. Combretastatin A4 analogues as antimitotic antitumor agents. Curr Med Chem. 2003; 10:1697-1722. [PubMed: 12871118] (e) Hsieh HP, Liou JP, Mahindroo N. Pharmaceutical design of antimitotic agents based on combretastatin. Curr Pharm Design. 2005; 11:1655-1677.(f) Mahindroo N, Liou JP, Chang JY, Hsieh HP. Antitubulin agents for the treatment of cancer- a medicinal chemistry updates. Expert Opin Ther Pat. 2006; 16:647–691.(g) Tron GC, Pagliai F, Del Grosso E, Genazzani AA, Sorba G. Synthesis and cytotoxic evaluation of combretafurazans. J Med Chem. 2005; 48:3260-3268. [PubMed: 15857132] (h) Pirali T, Busacca S, Beltrami L, Imovilli D, Pagliai F, Miglio G, Massarotti A, Verotta L, Tron GC, Sorba G, Genazzani AA. Synthesis and cytotoxicity evaluation of combretafuran, potential scaffolds for dual-action antitumor agents. J Med Chem. 2006; 49:5372–5376. [PubMed: 16913727] (i) Zhang Q, Peng Y, Wang XI, Keenan SM, Arora S, Welsh WJ. Highly potent triazole-based tubulin polymerization inhibitors. J Med Chem. 2007; 50:749-754. [PubMed: 17249649]
- 13. West CML, Price P. Combretastatin A4 phosphate. Anti-Cancer Drug. 2004; 15:179–87.(b) www.clinicaltrials.gov
- 14. (a) Ohsumi K, Hatanaka T, Nakagawa R, Fukuda Y, Morinaga Y, Suga Y, Nihei Y, Ohishi K, Akiyama Y, Tsuji T. Synthesis and antitumor activities of amino acid prodrugs of aminocombretastatins. Anti-Cancer Drug Des. 1999; 14:539–548.(b) Hori K, Saito S. Microvascular mechanisms by which the combretastatin A-4 derivative AC7700 (AVE8062) induces tumour blood flow stasis. Brit J Cancer. 2003; 89:1334–1344. [PubMed: 14520469]
- (a) Davis PD, Dougherty GJ, Blakey DC, Galbraith SM, Tozer GM, Holder AL, Naylor MA, Nolan J, Stratford MRL, Chaplin DJ, Hill SA. ZD6126: A novel vascular-targeting agent that causes selective destruction of tumor vasculature. Cancer Res. 2002; 62:7247–7253. [PubMed: 12499266] (b) Micheletti G, Poli M, Borsotti P, Martinelli M, Imberti B, Taraboletti G, Giavazzi R. Vasculartargeting activity of ZD6126, a novel tubulin-binding agent. Cancer Res. 2003; 63:1534–1537. [PubMed: 12670901]
- 16. (a) Koyanagi N, Nagasu T, Fujita F, Watanabe T, Tsukahara K, Funahashi Y, Fujita M, Taguchi T, Yoshino H, Kitoh K. In vivo tumor growth inhibition produced by a novel sulfonamide, E7010, against rodent and human tumors. Cancer Res. 1994; 54:1702–1706. [PubMed: 8137285] (b) Segreti JA, Polakowski JS, Koch KA, Marsh KC, Bauch JL, Rosenberg SH, Sham HL, Cox BF, Reinhart GA. Tumor selective antivascular effects of the novel antimitotic compound ABT-751: An in vivo rat regional hemodynamic study. Cancer Chemoth Pharma. 2004; 54:273–281.
- 17. Shan B, Medina JC, Santha E, Frankmoelle WP, Chou T-C, Learned RM, Narbut MR, Stott D, Wu P, Jaen JC, Rosen T, Timmermans PBMWM, Beckmann H. Selective, covalent modification of *a*-

tubulin residue Cys-239 by T138067, an antitumor agent with in vivo efficacy against multidrugresistant tumors. Proc Natl Acad Sci USA. 1999; 96:5686–5691. [PubMed: 10318945]

- Medina, JC. Preparation of benzenesulfonamides and benzamides regulating low-density lipoprotein (LDL) receptor expression and of inhibiting abnormal cell proliferation. WO. 9936391. 1999.
- (a) Li, Q.; Sham, H.; Woods, KW.; Steiner, BA.; Gwaltney, SL., II; Barr, KJ.; Imade, HM.; Rosenberg, S. Preparation of sulfonamides as cell proliferation inhibitors. US. 6521658. 2003. (b) Prinz H. Recent advances in the field of tubulin polymerization inhibitors. Expert Rev Anticanc. 2002; 2:695–708.
- 20. (a) Luo Y, Hradil VP, Frost DJ, Rosenberg SH, Gordon GB, Morgan SJ, Gagne GD, Cox BF, Tahir SK, Fox GB. ABT-751, a novel tubulin-binding agent, decreases tumor perfusion and disrupts tumor vasculature. Anti-cancer Drug. 2009; 20:483–492.(b) Mauer AM, Cohen EE, Ma PC, Kozloff MF, Schwartzberg L, Coates AI, Qian J, Hagey AE, Gordon GB. A phase II study of ABT-751 in patients with advanced non-small cell lung cancer. J Thorac Oncol. 2008; 3:631–636. [PubMed: 18520803] (c) Rustin GJ, Shreeves G, Nathan PD, Gaya A, Ganesan TS, Wang D, Boxall J, Poupard L, Chaplin DJ, Stratford MR, Balkissoon J, Zweifel M. A Phase Ib trial of CA4P (combretastatin A-4 phosphate), carboplatin, and paclitaxel in patients with advanced cancer. Brit J Cancer. 2010; 102:1355–1360. [PubMed: 20389300] (d) Kuppens IELM. Current State of the Art of New Tubulin Inhibitors in the Clinic. Current Clinical Pharmacology. 2006; 1:57–70. [PubMed: 18666378]
- 21. (a) Reddy MVR, Reddy S. Synthesis of α, β-Unsaturated Suflones. Acta Chim Hung. 1984; 115:269–271.(b) Reddy DB, Reddy NS, Reddy MVR, Balasubramanyam S. Preparation of styryl benzyl sulfones and 1, 2-bis- (styrylsulfonylmethyl)-4,5-dimethylbenzenes. Org Prep Proc Int. 1988; 20:205–212.
- Reddy AK, Lohray BB, Bhushan V, Reddy AS, Mamidi NVSR, Reddy PP, Saibaba V, Reddy NJ, Suryaprakash A, Misra P, Vikramadithan RK, Rajagopalan R. Novel Antidiabetic and Hypolipidemic Agents.5. Hydroxyl versus Benzyloxy Containing Chroman Derivatives. J Med Chem. 1999; 42:3265–3278. [PubMed: 10464013]
- 23. Pallela VR, Mallireddigari MR, Cosenza SC, Akula B, Subbaiah DRCV, Reddy EP, Reddy MVR. Hydrothiolation of benzyl mercaptan to arylacetylene: application to the synthesis of (E) and (Z)isomers of ON 01910·Na (Rigosertib®), a phase III clinical stage anti-cancer agent. Org Biomol Chem. 2013; 11:1964–1977. [PubMed: 23386308]
- Nielsen AT, Chafin AT, Christian SL. Nitrocarbons. 4. Reaction of Polynitrobenzenes with Hydrogen Halides. Formation of Polynitrohalobenzenes. J Org Chem. 1984; 49:4575–4580.
- 25. Oliver JE, DeMilo AB. A Knoevenagel-Type Synthesis of Styrene-ω-sulfonanilides. Synthesis. 1975:321–322.
- 26. (a) Long DD, Termin AP. Ring-closing metathesis to a divergent endocyclic sulfonamide template. Tetrahedron Lett. 2000; 41:6743–6747.(b) Berre, pALe; Etienne, A.; Desmazieres, B. Acides α-sulfocarboxyliques et derives. V.-Sulfamoylcarboxyesters et carboxamides acycliques. Thiazetidine-1,2 one-3 dioxydes-1,1. Bull Soc Chim Fr. 1975:807–811.
- 27. (a) Reddy MVR, Reddy S, Reddy DB. Facile method for the synthesis of 2-(arylsulfonyl)-1-phenyl-3-aryl-2-propen-1-ones. Sulfur Lett. 1987; 7:43–48.(b) Russell Llyod B, Anthony D, Chantal Renee F, Richard Francis L. Novel Knoevenagel condensation of a β-keto sulfone and a β-carboalkoxy sulfone. Sulfur Lett. 1999; 23:11–31.(c) Reddy MM, Venkat RP, Reddy EP, Reddy MVR. Sequential Reduction and Dehydration of Phenacyl- (E)-Styryl Sulfones to Unsymmetrical (E, E)- Bis(styryl) Sulfones. Synthesis. 2005:3639–3643.(d) Touati A, Cazaux L. Synthesis of sulfonamides, sulfonates and thiosulfonates which are inhibitors of coniferyl alcohol dehydrogenase. J Soc Alger Chim. 1996; 6:39–52.
- Zheng, Ailian; Shan, Daxian; Binghe Wang, A. Redox-Sensitive Resin Linker for the Solid Phase Synthesis of C-Terminal Modified Peptides. J Org Chem. 1999; 64:156–161. [PubMed: 11674098]
- 29. Reddy, S. Process for preparing (E)-Styryl benzylsulfone compounds and uses thereof for treating proliferative disorders. US 2010/0152491. 2010. p. A1
- 30. Reddy MVR, Venkatapuram P, Mallireddigari MR, Pallela VR, Cosenza SC, Robell KA, Akula B, Hoffman BS, Reddy EP. Discovery of a Clinical Stage Multi Kinase Inhibitor Sodium (E)-2-{2-Methoxy-5-[(2', 4', 6'-trimethoxystyrylsulfonyl)-methyl]phenylamino}acetate (ON 01910.Na):


Synthesis, Structure Activity Relationship and Biological Activity. J Med Chem. 2011; 54:6254–6276. [PubMed: 21812421]

- 31. Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, Brinkley BR, Bazett-Jones DP, Allis CD. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma. 1997; 10:348–360. [PubMed: 9362543]
- Jordan MA, Thrower D, Wilson L. Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis. J Cell Sci. 1992; 102:401–416. [PubMed: 1506423]
- Soldani C, Scovassi AI. Poly (ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis. 2002; 7:321–328. [PubMed: 12101391]
- Robinson J, Engelborghs Y. Tubulin polymerization in dimethyl sulfoxide. J Biol Chem. 1982; 257:5367–5371. [PubMed: 7068596]
- Li CM, Lu Y, Ahn S, Narayanan R, Miller DD, Dalton JT. Competitive mass spectrometry binding assay for characterization of three binding sites of tubulin. J Mass Spectrom. 2010; 45:1160–1166. [PubMed: 20814887]
- Lee Leonard GD, Fojo T, Bates SE. The role of ABC transporters in clinical practice. Oncologist. 2003; 8:411–424. [PubMed: 14530494]
- Harker WG, Sikic BI. Multidrug (pleiotropic) resistance in doxorubicin selected variants of the human sarcoma cell lines MES-SA. Cancer Res. 1985; 45:4091–4096. [PubMed: 4028002]
- Fujimori A, Arker WG, Kohlhagen G, Hoki Y, Pommier Y. Mutation at the catalytic site of topoisomerase 1 in CEM/C2, a human leukemia cell line resistant to camptothecin. Cancer Res. 1995; 55:1339–1346. [PubMed: 7882333]
- Wang Q, Rager JD, Weinstein K, Kardos PS, Dobson GL, Li J, Hidalgo IJ. Evaluation of the MDR-MDCK cell line as a permeability screen for the blood-brain barrier. Int J Pharm. 2005; 288:349–359. [PubMed: 15620875]
- 40. Lv H, Zhang X, Sharma J, Reddy MVR, Reddy EP, Gallo JM. Integrated pharmacokinetic-driven approach to screen candidate anticancer drugs for brain tumor chemotherapy. AAPS J. 2013; 15:250–257. [PubMed: 23180160]
- Cosenza, SC.; Baker, SJ.; Reddy, EP. Methods for oncogenic detection. In Cell Growth, Differentiation and Senescence. Studzinski, GP., editor. Oxford University Press; 1999. p. 161-176.



Cell cycle arrest and apoptosis of DU145 cells treated with **6t**. DU145 cells were treated with various concentrations of **6t** for 24 h and subjected to flow cytometry following propidium iodide staining. DU145 cells were arrested in the G2/M phase of the cell cycle.

Figure 2.

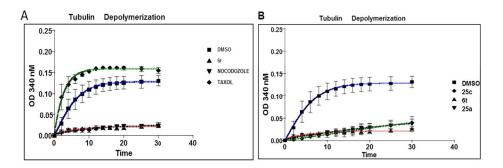
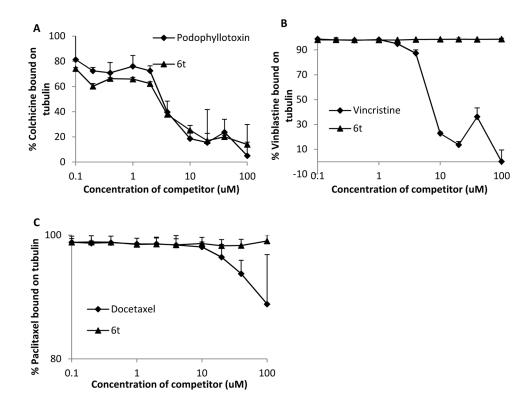
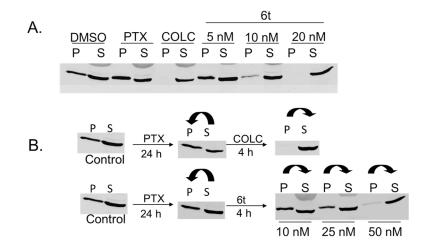

DU145 cells were plated onto glass coverslips and exposed to either 25 nM **6t** or DMSO and then fixed, stained with FITC conjugated (green) anti-tubulin antibodies and propidium iodide (red) and analyzed by confocal microscope (Olympus). **6t** inhibits the normal formation of mitotic microtubules.

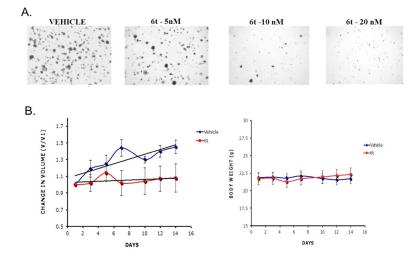
Figure 3.


DU145 cells were treated with the indicated concentrations of **6t** and harvested at the indicated times. Protein lysates were subjected to western blotting against PARP antibodies. Full length PARP gets cleaved in the **6t** treated cells indicating the cells are undergoing apoptosis.

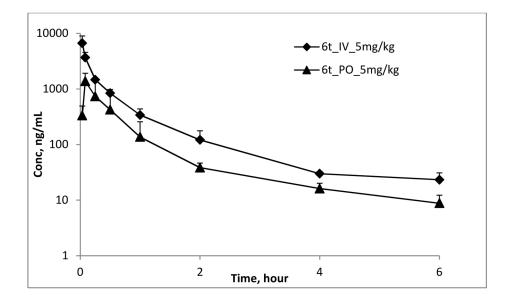
J Med Chem. Author manuscript; available in PMC 2014 July 11.


Figure 4.

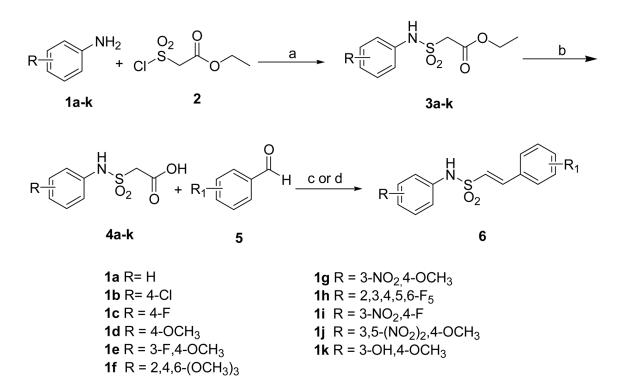
6t inhibit *in vitro* tubulin polymerization. **A**. Purified tubulin was incubated in the presence of 10 μ M concentration of taxol, nocodazole, **6t** and DMSO at 37 °C. The extent of tubulin polymerization was determined by the increasing absorbance at 340 nM over 40 min. **6t** and nocodazole (a known tubulin depolymerizer) were able to completely inhibit tubulin polymerization compared to Taxol (tubulin polymerizer) and DMSO suggesting that **6t** interfere with normal tubulin polymerization kinetics. Data shown are representative of three independent experiments. **B.** Purified tubulin was incubated in the presence of 10 μ M concentration of **6t**, **25a**, **25c** and DMSO at 37 °C. The extent of tubulin polymerization was determined by the increasing absorbance at 340 nM over 40 min. All three compounds were able to completely inhibit tubulin polymerization suggesting that these compounds interfere with normal tubulin polymerization suggesting that these compounds interfere with normal tubulin polymerization kinetics. Data shown are representative of three independent experiments.


Figure 5.

Tubulin competitive binding studies. **6t** competes with colchicine (**A**), but not with vinblastine (**B**) and paclitaxel (**C**) to bind to tubulin. In panel A and B, tubulin was incubated with colchicine or vinblastine $(1.2 \ \mu\text{M})$ in the absence of GTP with increasing concentrations of the test compounds. In panel C, performed microtubules were incubated with paclitaxel ($1.2 \ \mu\text{M}$) and 1 mM GTP, and increasing concentration of the test compounds. Podophyllotoxin, vincristine and docetaxel were used as positive controls for competitive binding with colchicine, vinblastine and paclitaxel, respectively.


Figure 6.

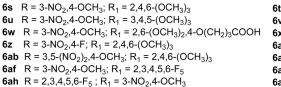
6t inhibits *in vivo* tubulin polymerization. **A**. DU145 cells were treated with vehicle (DMSO), paclitaxel (PTX), colchicine (COLC) or the indicated concentrations of **6t** for 24 h and lysed in a hypotonic buffer. The pellet and supernatants were resolved by SDS-PAGE. The polymerized tubulin in the pellet (P) and the soluble tubulin in supernatant (S) were analyzed for presence of tubulin by western blotting. Like colchicine, a known tubulin depolymerizer, **6t** treatment completely inhibits the polymerization of tubulin. **B**. DU145 cells were first treated with paclitaxel for 24 h and subsequently treated for 4 h with colchicine or **6t**. As expected, paclitaxel treatment induced a shift from soluble to polymerized tubulin (see arrow) while both colchicine and **6t** were both effective at depolymerizing paclitaxel induced polymerized tubulin (see arrows).

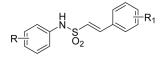

Figure 7.

6t Inhibition of tumor growth. **A.** MIA-PaCa-2 cells were plated in soft agar containing increasing concentrations of **6t** in triplicates. After three weeks of growth, the plates were stained for 48-h using 0.05% nitroblue tetrazolium solution. Representative plates were photographed using an Olympus stereoscope mounted with a Sony digital camera system (DKC 5000, Sony Inc). **6t** inhibits the semi-solid growth of pancreatic cells indicating activity. **B**. Human estrogen receptor negative breast cancer cells (BT20) were implanted into the hind quarter of female nude mice. When the tumors became palpable, they were treated with either 20 mg/kg **6t** or an equal volume of vehicle every other day for a total of 6 injections. The tumor volumes and body weights were determined and plotted (Blue diamonds: Vehicle; Red circles: **6t**) as the average per group along with SEM values (Vehicle: N=7, **6t**: N=8). Trend lines were added using linear regression model (Microsoft Excel).

Figure 8.

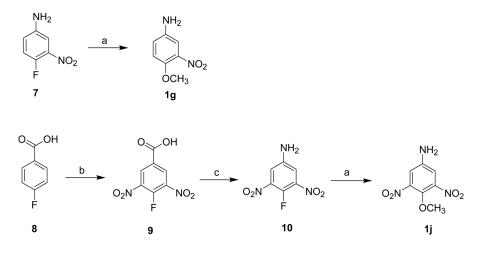
Plasma **6t** concentrations (mean ± SD) following either administration of 5 mg/kg as an IV bolus or oral gavage to normal mice. The resultant IV PK parameters were; total clearance = 2.48 ± 0.19 L/h/kg, volume of distribution at steady-state = 2.13 ± 0.46 L/kg and an elimination half-life of 1.7 h. Oral bioavailability equaled 34% based on ratio of the AUCpo = 0.70 ± 0.42 µg-h/mL to the AUCiv = 2.04 ± 0.17 µg-h/mL.




Scheme 1.

Synthesis of (E)-N-Aryl-2-arylethenesulfonamides (6) from N-Arylsulfonylacetic Acids^a ^a Reagents and conditions: (a) Et₃N, DCM, room temp, 3 h, 80%; (b) 10% NaOH, H₂O, room temp, 3 h, 84%; (c) $C_6H_5CH_2NH_2$, AcOH, reflux, 8 h, 50%; (d) piperidine, benzoic acid, toluene, reflux, 4 h, 60%.

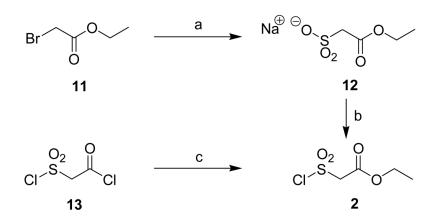
Page 47



 $\begin{array}{ll} \textbf{6t} & \text{R}=3\text{-}NH_2\text{,}4\text{-}OCH_3\text{; } \text{R}_1=2,4,6\text{-}(OCH_3)_3\\ \textbf{6v} & \text{R}=3\text{-}NH_2\text{,}4\text{-}OCH_3\text{; } \text{R}_1=3,4,5\text{-}(OCH_3)_3\\ \textbf{6x} & \text{R}=3\text{-}NH_2\text{,}4\text{-}OCH_3\text{; } \text{R}_1=2,6\text{-}(OCH_3)_2\text{,}4\text{-}O(CH_2)_3\text{COOH}\\ \textbf{6aa} & \text{R}=3\text{-}NH_2\text{,}4\text{-}\text{F; } \text{R}_1=2,4,6\text{-}(OCH_3)_3\\ \textbf{6ac} & \text{R}=3,5\text{-}(NH_2)_2\text{,}4\text{-}OCH_3\text{; } \text{R}_1=2,4,6\text{-}(OCH_3)_3\\ \textbf{6ag} & \text{R}=3\text{-}NH_2\text{,}4\text{-}OCH_3\text{; } \text{R}_1=2,3,4,56\text{-}\text{F}_5\\ \textbf{6ai} & \text{R}=2,3,4,5,6\text{-}\text{F}_5\text{; } \text{R}_1=3\text{-}NH_2\text{,}4\text{-}OCH_3\\ \end{array}$

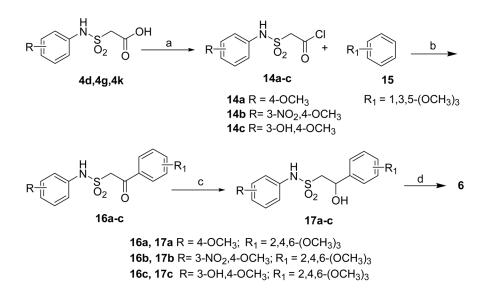
Scheme 2.

Conversion of 3-Nitro and 3,5-Dinitro N-Aryl-2-aryle thenesulfonamides to corresponding Amines (6) a


^aReagents and conditions: (a) Sodium hydrosulfite, acetone / water (2:1), 50 °C, 30 min, 40%; (b) Iron powder, MeOH / AcOH (2:1), 80 °C, 2 h, 55%.

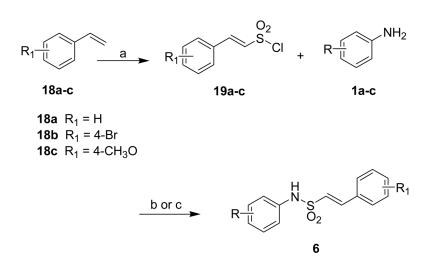
Scheme 3.

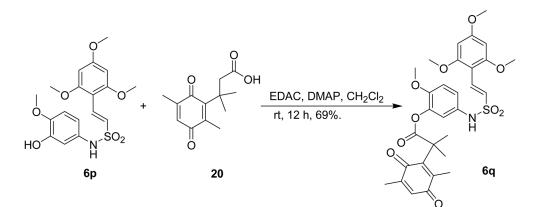
Synthesis of 4-Methoxy-3-nitro Aniline (**1g**) and 4-Methoxy-3,5-dinitrophenyl Amine (**1j**) ^a ^aReagents and conditions: (a) absolute methanol, 6% methanolic KOH, room temp, 30 min, 50%; (b) fuming H_2SO_4 (30%), HNO₃ (90%), 95 °C, 3 h, 70%; (c) fuming H_2SO_4 (20%), ClCH₂CH₂Cl, NaN₃, reflux, 1 h, 70%.



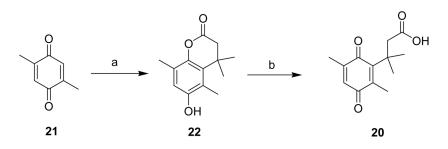
Scheme 4.

Synthesis of Chlorosulfonylacetic acid ethyl ester (2)^a

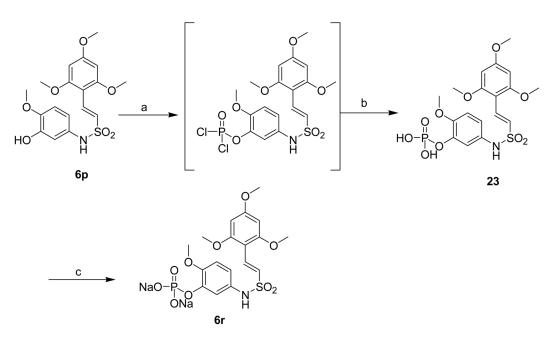

^a Reagents and conditions: (a) Na_2SO_3 , H_2O , EtOH, 50 °C, 30 min, 70 %; (b) PCl₅, 100 °C, 45 min, 85%; (c) EtOH, diethyl ether, 0 °C, 3 h, 55%.


Scheme 5.

Synthesis of (E)-N-Aryl-2-arylethenesulfonamides (6) from Phenacyl N-Arylsulfones^a Reagents and conditions: (a) SOCl₂, DCM, room temp, 6 h, 81% or (COCl)₂, DMF, anhydrous CH₂Cl₂, room temp, 12 h, 67%; (b) AlCl₃, DCM, room temp, 4 h, 80%; (c) NaBH₄, THF, room temp, 3 h, 88%; (d) p-TSA, toluene, reflux, 3 h, 78%.

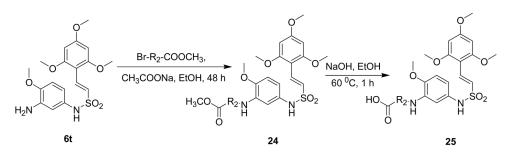

Scheme 6.

Synthesis of (E)-N-Aryl-2-arylethenesulfonamides (6) from (E)-Styryl sulfonyl chloride^a ^a Reagents and conditions: (a) SO_2Cl_2 , DMF, 0 °C to room temp, 3 h, 90%; (b) Et₃N, DCM, room temp, 5 h, 85%; (c) pyridine, room temp, 6 h, 80%.


Scheme 7.

Synthesis of (E)-2-Methoxy-5-(2-(2,4,6-trimethoxyphenyl)vinylsulfonamido)phenyl 2-(2,5-dimethyl-3,6-dioxocyclohexa-1,4-dienyl)-2-methylpropanoate (**6q**)

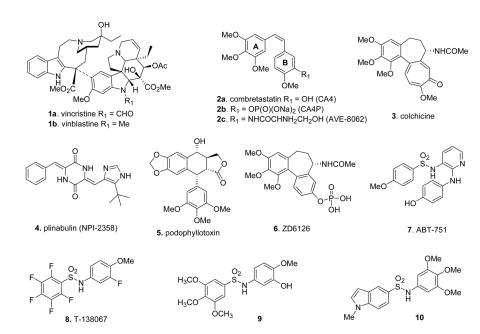
Scheme 8.


Synthesis of 3-(2,5-dimethyl-3,6-dioxocyclohexa-1,4-dienyl)-3-methylbutanoic acid (**20**)^a ^a Reagents and conditions: (a) diethyl ether, aq. $Na_2S_2O_4$, $(CH_3)_2C=CHCOOH$, CH_3SO_3H , 85 °C, 3 h, 81%; (b) CH_3CN , acetone, water, NBS, room temp, 30 min, 60%.

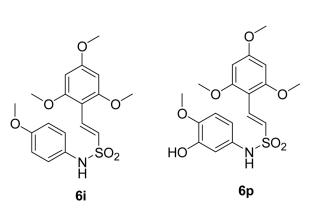
Scheme 9.

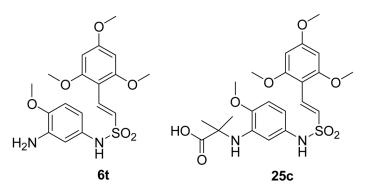
Synthesis of Sodium (E)-2-Methoxy-5-(2-(2',4',6'-trimethoxyphenyl)vinylsulfon-amido) phenyl phosphate (**6r**)^a

^aReagents and conditions: (a) phosphorus oxychloride, THF, triethylamine, 0 °C-room temp, 3 h; (b) water, room temperature, 18 h, 69%; (c) 25% aq.NaOH, $CH_3OCH_2CH_2OCH_3$, 0 °C-room temp, 3 h, 85%.



Scheme 10.


Synthesis of amine esters and acids of (E)-N-(3-Amino-4-methoxyphenyl)-2-(2',4',6'-trimethoxyphenyl)ethenesulfonamide (**6**t)


J Med Chem. Author manuscript; available in PMC 2014 July 11.

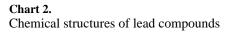


Chart 1. Structures of microtubule depolymerizing agents

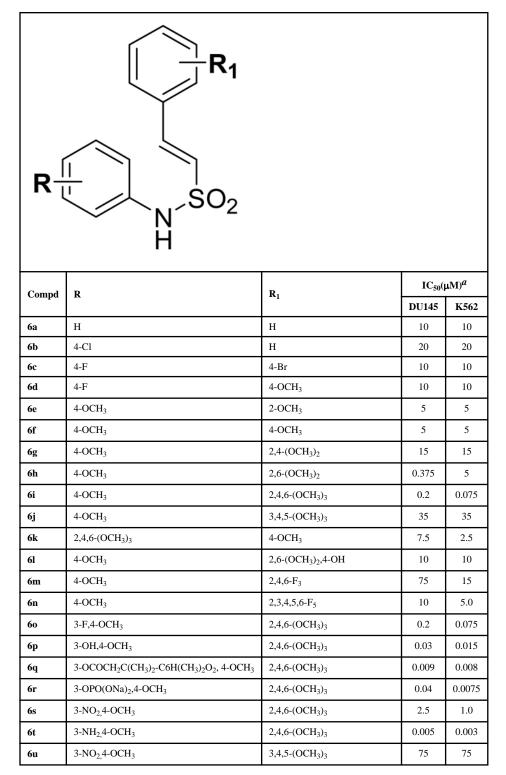


Table 1

In vitro Cytotoxicity of (E)-N-Aryl-2-arylethenesulfonamides (6)

J Med Chem. Author manuscript; available in PMC 2014 July 11.

$R = \begin{bmatrix} R_1 \\ R_2 \\ R_3 \\ R_4 \\ R_5 $						
Compd	R	R ₁	IC ₅₀ (µM) ^a DU145 K562			
6v	3-NH ₂ ,4-OCH ₃	3,4,5-(OCH ₃) ₃	35	15		
6w	3-NO ₂ ,4-OCH ₃	2,6-(OCH ₃) ₂ ,4-O(CH ₂) ₃ COOH	100	100		
6x	3-NH ₂ ,4-OCH ₃	2,6-(OCH ₃) ₂ ,4-O(CH ₂) ₃ COOH	10	10		
6y	3-OH,4-OCH ₃	2,6-(OCH ₃) ₂ ,4-O(CH ₂) ₃ COOH	10	10		
6z	3-NO _{2,} 4-F	2,4,6-(OCH ₃) ₃	100	75		
6aa	3-NH _{2,} 4-F	2,4,6-(OCH ₃) ₃	10	5		
6ab	3,5-(NO ₂) ₂ ,4-OCH ₃	2,4,6-(OCH ₃) ₃	10	10		
6ac	3,5-(NH ₂) ₂ ,4-OCH ₃	2,4,6-(OCH ₃) ₃	2.5	7.5		
6ad	3-F,4-OCH ₃	4-OCH ₃	5	1		
		22456E	10	10		
6ae	3-F,4-OCH ₃	2,3,4,5,6-F ₅	10			
6ae 6af	3-F,4-OCH ₃ 3-NO ₂ ,4-OCH ₃	2,3,4,5,6-F ₅	100	100		
		-				
6af	3-NO ₂ ,4-OCH ₃	2,3,4,5,6-F ₅	100	100		
6af 6ag	3-NO ₂ ,4-OCH ₃ 3-NH ₂ ,4-OCH ₃	2,3,4,5,6-F ₅ 2,3,4,5,6-F ₅	100 75	100 75		

 a IC₅₀ values are the compound concentrations (μ M) required to inhibit cell proliferation by 50% of tumor cells following 96 h treatment with the tested compound; values represent the mean SD from the dose response curves of two independent experiments and are within 5–10%.

Table 2

In vitro cytotoxicity of Amine esters (24) and Acids (25)

H ₃ CO H ₃ CO U N H ₃ CO H		25			
Compd	Compd R ₂		IC ₅₀ (µM) ^{<i>a</i>}		
Compu	R ₂	DU145	K562		
24a	CH ₂	0.35	0.35		
24b	CH(CH ₃)	0.1	0.30		
24c	C(CH ₃) ₂	0.2	0.30		
24d	CH(C ₆ H ₅)	2.5	2.5		
24e	CH(C ₆ H ₄ 4-F)	2.5	2.5		
24f	CH(C ₆ H ₄ 4-Cl)	5.0	2.5		
24g	CH(C ₆ H ₄ 4-Br)	7.5	1.0		
25a	CH ₂	0.4	0.02		
25b	CH(CH ₃)	0.04	0.008		
25c	C(CH ₃) ₂	0.07	0.005		
25d	CH(C ₆ H ₅)	0.075	0.30		
25e	CH(C ₆ H ₄ 4-F)	0.075	0.02		
25f	CH(C ₆ H ₄ 4-Cl)	0.075	0.015		
25g	CH(C ₆ H ₄ 4-Br)	0.25	0.075		

 a IC50 values are the compound concentrations (μ M) required to inhibit cell proliferation by 50% of tumor cells following 96 h treatment with the tested compound; values represent the mean SD from the dose response curves of two independent experiments and are within 5–10%.

J Med Chem. Author manuscript; available in PMC 2014 July 11.

Table 3

In vitro cytotoxicity profiles of most active molecules 6i, 6p, 6t and 25c in various tumor cell lines.

Coll I inc	Tumon Teno		IC ₅₀ (>M) ^d	_p (M<	
Cell Line	1 umor 1 ype	61	6p	6t	25c
DU145	Prostate	0.075	0.050	0.008	0.15
K562	Leukemia	0.075	0.015	0.003	0.01
LNCAP	Prostate	0.100	0.050	0.008	0.10
PC3	Prostate	0.100	0.025	0.008	N/D
SK-MEL-28	Melanoma	0.050	0.025	0.008	N/D
MCF-7	Breast	0.050	0.025	0.004	0.08
SK BR-3	Breast	0.050	0.025	0.004	U/N
BT474	Breast	0.250	0.025	0.010	0.15
BT20	Breast	0.250	0.250	0.008	0.10
T47D	Breast	0.100	0.025	0.008	U/N
A431	Epidermoid	0.030	0.600	0.005	0.15
HCT116	Colo-Rectal	0.100	0.010	0.004	U/N
HCT15	Colo-Rectal	0.100	0.025	0.008	0.20
SKOV3	Ovarian	0.100	0.025	0.008	N/D
OVCAR3	Ovarian	0.100	0.100	0.004	D/N
H187	NSCLC	0.100	0.010	0.004	N/D
N417	SCLC	0.050	0.010	0.004	0.03
RF-48	Gastric	0.025	0.010	0.004	Q/N
RF-1	Gastric	0.050	0.010	0.004	Q/N
MIAPaCa2	Pancreatic	0.100	0.010	0.004	0.08
H80	Glioma	0.100	0.025	0.004	N/D
MES-SA	Uterine	0.050	0.025	0.004	U/N
NAMALWA	Lymphocytic	0.100	0.025	0.008	N/D
DAUDI	Lymphocytic	0.100	0.025	0.008	0.03
MOLT-4	Lymphocytic	0.100	0.025	0.008	0.03
U87	Gliomab	0.229	0.026	0.009	0.09

J Med Chem. Author manuscript; available in PMC 2014 July 11.

^dGI50 (growth inhibitory concentration-50%). Cells were treated with 6i, 6p, 6t and 25c in a 96 h dose response assay. The GI50 concentration (µM) was determined from duplicate cell counts using a Hemocytometer following trypsinization and trypan blue staining.

 $b_{\rm Values}$ are IC50 as measured by SRB as say. ND = not determined

Table 4

Evaluation of 6t and 25c against a panel of Multidrug- resistance Human Tumor Cell lines

compd	cell Line	tumor type	GI ₅₀ (nM) ^a	resistance factor	
Paclitaxel	MES-SA	sarcoma	4	190	
Pacilitaxei	MES-SA / DX5	resistant sarcoma	750	190	
6t	MES-SA	sarcoma	6	1.6	
<u> </u>	MES-SA / DX5	resistant sarcoma	10	1.0	
25c	MES-SA	sarcoma	70	1.3	
250	MES-SA / DX5	resistant sarcoma	90	1.5	
Comptothesin	CEM	leukemic	2	500	
Camptothecin	CEM / C2	resistant leukemic	1000	500	
4	CEM	leukemic	8	,	
6t	CEM / C2	resistant leukemic	8	1	
Paclitaxel	2008	ovarian	3	600	
racittaxei	2008 / 17/ 4	resistant ovarian	2000	600	
0	2008	ovarian	6	1	
6t	2008 / 17/ 4	resistant ovarian	6	1	

 a Cytotoxicity results are expressed as GI50 values, the compound concentrations producing 50% cell growth inhibition, and represent the mean \pm SD of two independent experiments and are within 5–10%.

Table 5

Pharmacological and Toxicological data of 6t.

Assay	Parameter	6t
Solubility ^a	Maximum soluble concentration in PBS	62.5 μM
Cytotoxicity b	LD ₅₀ to Caco-2 cells	>1000 µM
	LD ₅₀ to HepG2 cells	$>1000 \mu M$
Permeability ^c	A-B Papp x E06	9.1 cm/s
	B-A Papp x E06	72 cm/s
	ER	7.9
S9 Metabolic Stability (1h) ^{c,d}	Rat - % remaining	33%
	Dog -% remaining	57%
	Human -% remaining	20%
Plasma Protein Binding (>M) C	Rat -% Bound	99.73%
	Dog - % Bound	98.48%
	Human - % bound	99.67%

^aDetermined by nephelometry

 $^{b}_{}$ determined by fluorescence of Alamar Blue dye

^cquantification of samples was by LC-MS/MS.

 d S9 liver fractions microsomes (1 mg/mL) incubated for 0, 30 and 60 min with 10 μ M concentration of **6t**.