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Abstract
Nicotinamide adenine dinucleotide (NAD) is a critical metabolite that is required for a range of cellular reactions. A key
enzyme in the NAD salvage pathway is nicotinamide phosphoribosyl transferase (NAMPT), and here, we describe
GNE-618, an NAMPT inhibitor that depletes NAD and induces cell death in vitro and in vivo. While cells proficient
for nicotinic acid phosphoribosyl transferase (NAPRT1) can be protected from NAMPT inhibition as they convert
nicotinic acid (NA) to NAD independent of the salvage pathway, this protection only occurs if NA is added before
NAD depletion. We also demonstrate that tumor cells are unable to generate NAD by de novo synthesis as they lack
expression of key enzymes in this pathway, thus providing amechanistic rationale for the reliance of tumor cells on the
NAD salvage pathway. Identifying tumors that are sensitive to NAMPT inhibition is one potential way to enhance the
therapeutic effectiveness of an NAMPT inhibitor, and here, we show that NAMPT, but not NAPRT1,mRNA and protein
levels inversely correlate with sensitivity to GNE-618 across a panel of 53 non–small cell lung carcinoma cell lines.
Finally, we demonstrate that GNE-618 reduced tumor growth in a patient-derived model, which is thought to more
closely represent heterogeneous primary patient tumors. Thus, we show that dependence of tumor cells on the NAD
salvage pathway renders them sensitive to GNE-618 in vitro and in vivo, and our data support further evaluation of the
use of NAMPT mRNA and protein levels as predictors of overall sensitivity.
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Introduction
In recent years, there has been a tremendous increase in our under-
standing and appreciation for the role of cell metabolism in promoting
tumorigenesis [1]. Specifically, it has become more widely accepted that
tumor cells are dependent on specific metabolic pathways for growth and
survival. Critical alterations in the flux through these pathways have been
found in tumors. For instance, mutations have been discovered in the
enzymes isocitrate dehydrogenase-1 (IDH1)/IDH2 [2] and fumarate
hydratase [3], while phosphoglycerate dehydrogenase is amplified in
some tumors [4]. Additionally, there are examples where oncogenes,
such as KRAS in pancreatic tumors [5], or tumor suppressors, such as
PTEN [6], have been implicated in reprogramming cell metabolism.
Nicotinamide adenine dinucleotide (NAD) is a critical cellular
metabolite important for a wide range of cellular processes including
energy production, reductive biosynthesis, mitochondrial function,
calcium homeostasis, and the response to oxidative stress [7,8]. NAD
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generation primarily occurs through two key pathways, either by
de novo synthesis initiated from cellular uptake of tryptophan or
by the salvage pathway that recycles nicotinamide (NAM) to NAD
[9]. A third pathway, the Preiss-Handler pathway [10,11], converts
nicotinic acid (NA, also known as niacin or vitamin B3) to NA mono-
nucleotide by the enzyme NA phosphoribosyl transferase (NAPRT1),
which is then converted to NAD in two steps. Co-administration of
NA with a nicotinamide phosphoribosyl transferase (NAMPT) inhibi-
tor can prevent NAD depletion and cell death; however, this protection
only occurs if cells are proficient for NAPRT1 [12]. Recent work has
indicated that the primary mechanisms for inactivation of NAPRT1
in tumors is by DNA methylation, and a quantitative DNA methyla-
tion assay can be used to readily identify tumors that are NAPRT1
deficient (Shames et al., submitted for publication). Thus, the presence
of two salvage pathways, with one selectively lost in tumor cells, sug-
gested the intriguing concept of identifying tumors that are NAPRT1
deficient and then co-administrating an NAMPT inhibitor with NA
in patients, as this approach could potentially protect normal host tissue
but not NAPRT1-deficient tumor cells from NAMPT inhibition.

Two NAMPT small molecule inhibitors have entered clinical trials
(GMX1778 and its prodrug GMX1777 and FK866/APO866). While
both compounds completed phase I evaluation and entered phase II trials,
no results beyond phase I data have been released [13–16]. Moreover, a
common dose-limiting toxicity noted for both compounds was throm-
bocytopenia. One potential way to enhance the therapeutic effectiveness
of an NAMPT inhibitor is to co-administer NA, as this is predicted to
rescue NAPRT1-proficient cells. It has been shown that when labeled
NA was added to purified human platelets it could be converted into
NAD [17], indicating that theNAPRT1 pathway is functional in human
platelets. Moreover, it was also shown that thrombocytopenia could
be reduced in a murine model when NA was co-administered with
FK866 [18]. Thus, co-administration of NA with an NAMPT inhibitor
may spare platelets from NAMPT inhibition and may permit higher
doses of an NAMPT inhibitor to be tolerated. While this approach was
taken in one clinical trial, NAwas not administered until days 8 to 15, but
there was no effect on thrombocytopenia [19]. However, in this study,
there was no attempt to preselect NAPRT1-deficient tumors and NA
was administered to patients once thrombocytopenia appeared. An alter-
native approach to enhance the therapeutic effectiveness of an NAMPT
inhibitor is to identify tumors that may be more susceptible to NAMPT
inhibition. Interestingly, none of these clinical trials attempted to stratify
patients based on potential sensitivity to an NAMPT inhibitor.

Here, we describe a novel NAMPT inhibitor, GNE-618, and
demonstrate that this compound reduced in vivo tumor growth in an
A549 non–small cell lung carcinoma (NSCLC) model. Moreover, we
provide a mechanistic explanation for why tumor cells heavily rely on
the NAMPT salvage pathway for NAD generation. Our data also sug-
gest that co-administration of NA with an NAMPT inhibitor may be
required in the clinic to afford maximum protection of normal tissue.
Finally, we demonstrate that GNE-618 effectively reduces tumor
growth of patient-derived gastric models. Out data suggest that patient
stratification based on NAMPT sensitivity may provide an approach
to enhance the therapeutic effectiveness of an NAMPT inhibitor.

Materials and Methods

Cell Lines and Viability Assays
Cell lines were obtained from the American Type Culture Collection

(ATCC, Manassas, VA) or Deutsche Sammlung von Mikroorganismen
und Zellkulturen (DSMZ, Braunschweig, Germany), expanded, and
stored at early passage in a central cell bank. Lines were authenticated
by short tandem repeat and genotyped upon re-expansions. Cells were
grown in RPMI 1640 medium supplemented with 10% FBS and 2mM
glutamine (Invitrogen, Grand Island, NY) and passaged no more than
20 times after thawing.

To determine inhibitory constant (IC50) values, cells were plated
such that 30% to 40% confluency was achieved the next day. Nine
point dose titrations of GNE-618 were added to the cells, and after
96 hours, cell viability was quantified using CyQUANT Direct Cell
Proliferation Assay (Invitrogen, Ltd), followed by CellTiter-Glo Lumi-
nescent Cell Viability Assay (Promega Corporation, Madison, WI), or
by measuring total protein content using a CytoScan SRB Cytotoxicity
Assay Kit (Cat. No. 786-213; G-Biosciences, St Louis, MO). IC50

values were calculated with a four-parameter fit using XLfit 5.1 (ID
Business Solutions, Ltd, La Jolla, CA) or Prism 5.04 (GraphPad
Software Inc, La Jolla, CA).

For image-based analysis, cells were stainedwith SYTOXGreen (Cat.
No. S7020; Life Technologies, Grand Island, NY), and nuclei were
stained with Hoechst 33342 (Cat. No. R37605; Life Technologies).
Images were acquired with ImageXpress Micro (Molecular Devices,
Sunnyvale, CA) and quantified with MetaXpress software.

To generate inducible overexpression of NAMPT in 293T cells,
NAMPT cDNA clone was purchased from Invitrogen (Cat. No.
IOH44532, pENTR221). The expression vector and stable cell line
were generated as described, with puromycin as a selection marker [20].
Metabolite Profiling and NAD Measurements
Calu-6 cells were exposed to 100 nM GNE-618 for 6 or 24 hours

and harvested and processed according to Metabolon standard proto-
cols [21]. For NADmeasurements, cells were plated onto 24-well plates
and treated with GNE-618 for 48 hours. After treatment, cells were
washed with phosphate-buffered saline, and NAD was extracted with
0.5 N perchloric acid. Tumor samples were homogenized, treated with
0.5 N perchloric acid, and neutralized with ammonium formate. NAD
levels were determined by a liquid chromatography–tandem mass
spectrometry/mass spectrometry (LC-MS/MS) assay using 13C5-NAD
as an internal standard.
mRNA Profiling and RNA-Seq Data Analysis
Analysis of NAMPT mRNA levels in the NSCLC cell line panel

was carried out as described [22]. RNA-seq reads were aligned to the
human genome version GRCh37 using Genomic Short-read Nucleo-
tide Alignment Program (GSNAP) [23]. Gene expression was obtained
by counting the number of reads aligning concordantly within a pair
and uniquely to each gene locus as defined by consensus coding DNA
sequence (CCDS). The gene counts were then normalized using the
DESeq Bioconductor software package [24].
Intracellular Multiparameter Flow Cytometry
Cells were fixed in 1% paraformaldehyde (RT15711; Electron

Microscopy Sciences, Hatfield, PA), permeabilized, and stained in
BD Perm/Wash Buffer (554723; BD Biosciences, San Jose, CA). Cell
staining was carried out with anti–phospho-histone H3-AF488 anti-
body (3465; Cell Signaling Technology, Danvers, MA) and a propi-
dium iodide staining solution (25 mg/ml Cf, P4864; Sigma-Aldrich,
St Louis, MO) containing RNAse A (R6513; Sigma-Aldrich). Flow
cytometry collection was performed on an LSRII flow cytometer
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(BD Biosciences), and data were analyzed using FlowJo software
(TreeStar Inc, Ashland, OR).

Western Blot Analysis
Western blot analysis was performed, and the signals were quan-

tified with LI-COR Odyssey System. Western blot analysis was
carried out using antibodies directed against NAMPT (clone 4D5,
Cat. No. NBP1-0435; Novus, Littleton, CO), NAPRT1 (Cat. No.
HPA024017; Sigma), or ACTIN (A5441; Sigma).

Xenograft Models
All in vivo studies were approved byGenentech’s Institutional Animal

Care and Use Committee and adhere to the National Institutes of
Health Guidelines for the Care and Use of Laboratory Animals. Human
cell culture–derived tumor xenografts were established by subcutaneous
injection of tumor cells into NCr nude mice (Taconic Laboratories,
Oxnard, CA). Patient-derived xenograft models were established from
primary tumor fragments engrafted subcutaneously in BALB/c nude
mice. Animals were distributed into treatment groups (n = 10 per group)
when tumors reached amean volume of approximately 150 to 300mm3.
GNE-618 (100 mg/kg) and niacin (100 mg/kg) were administered by
oral gavage in PEG400/H2O/EtOH (60/30/10) and sterile water vehi-
cles, respectively. Tumor volumes were determined using digital calipers
(Fred V. Fowler Company, Inc, Newton, MA) using the formula (L ×
W × W )/2. Curve fitting was applied to log2-transformed individual
tumor volume data using a linear mixed-effects model with the R package
nlme, version 3.1-97 in R v2.13.0 (R Development Core Team 2008;
R Foundation for Statistical Computing, Vienna, Austria). Tumor
growth inhibition (%TGI) was calculated as the percentage of the area
under the fitted curve (AUC) for the respective drug treatment group
per day relative to vehicle control animals, such that %TGI = 100 ×
(1 − (AUCtreatment/day)/(AUCvehicle/day)). One hundred percent TGI
is characterized as tumor stasis, whereas values greater than 100%
TGI indicates tumor regression. Ninety-five percent confidence intervals
(CIs) were defined by the lower and upper ranges of %TGI values
for each drug treatment group. Tumor sizes and body weights were
recorded twice weekly over the course of the study. Mice with tumor
volumes ≥2000 mm3 and recorded body weight loss ≥20% from their
weight at the start of treatment were promptly killed.

Results

Inhibition of NAMPT with GNE-618 Induces Cell Death
GNE-618 was recently identified as a novel small molecule inhibitor

that inhibitsNAMPT in a biochemical assay with an IC50 of 0.006 μM
(Zheng et al., manuscript in preparation; Figure 1A) and reduced levels
of NAD with an 50% minimal response (EC50) of 2.6 nM in the
NSCLC cell line Calu-6 (Figure 1B). Cell cycle analysis of Calu-6 cells
exposed to GNE-618 for 72 hours revealed an increase in the sub-2N
population, which is indicative of cell death, and a decrease in the per-
centage of cells in the G1 andM phases of the cell cycle (Figure 1C ).We
specifically note a dramatic reduction in the mitotic index (Figures 1C
and W1A). Thus, inhibition of NAMPT results in broad cell cycle
effects, a rapid loss of mitotic cells, and a loss of cell viability.
GNE-618 also reduced cellular proliferation of Calu-6 cells as de-

termined using two different assay formats, either measuring ATP
(EC50 of 13.6 ± 1.8 nM) or total protein content (SRB assay; EC50

of 25.8 ± 4.2 nM; Figure 1D). As Calu-6 cells express NAPRT1
(O’Brien et al., submitted for publication), we verified that this reduc-
tion in viability and cell death in response to GNE-618 was due to
on-target inhibition of NAMPT, as these cells could be rescued by
the co-administration of NA (Figure 1D). We confirmed that these
cells were dying, as there was a reduction in live cell nucleic acid con-
tent (CyQUANT Direct), a decrease in nucleus number (Hoechst
stain), and an increase in dead cells (SYTOX Green assay; Figure W1,
B and C). In all cases EC50 values ranged from ∼16 to 38 nM.

While GNE-618 can effectively deplete Calu-6 NAD levels by
∼95% within 24 hours, we verified that protection with NA prevents
depletion of NAD (Figure 1E). Surprisingly, protection of cell death
by NA only occurs if NA is added within ∼24 hours of GNE-618
(Figures 1F and W1D). At 48 hours, NAD is depleted by >99%,
whereas, at 24 hours, there is still ∼10% of cellular NAD remaining
(Figure 1G ). Thus, NA must be present within 24 hours to afford
maximum protection from NAMPT inhibition, suggesting that there
is an NAD threshold that is required to maintain viability; once NAD
levels drop below this threshold (∼95%), cells are unable to recover.

Tumor Cells Are Dependent on the Salvage Pathway as They
Are Unable to Use the De Novo Pathway to Generate NAD

To better understand the effect of NAD depletion on global
metabolic pathways, we undertook a metabolomic analysis using
Calu-6 cells to probe which metabolites and/or pathways are modu-
lated in response to NAMPT inhibition. Calu-6 cells were exposed
to GNE-618 for 6 or 24 hours, and metabolites were identified both
by gas chromatography (GC)-MS and by LC-MS/MS; this analysis led
to the identification of a total of 367 unique metabolites (Table W1).

We initially focused on metabolites in the NAD salvage pathway
and observed that levels of NAD, NAM, and nicotinamide ribo-
nucleotide (NMN) all significantly decreased within 24 hours (Fig-
ure 2A). When a more global analysis was undertaken, there were
changes in metabolite levels within 6 hours in the cofactor/vitamin
(includes NAD), amino acid, and carbohydrate synthesis pathways
(Figure 2B). By 24 hours, more significant changes are observed, most
notably affecting cofactor/vitamin, nucleotide synthesis, lipid synthesis,
glycolysis, and amino acid metabolism. Within glycolysis, there was
a reduction in levels of 2-phosphoglycerate, phosphoenolpyruvate,
and pyruvate, each of which is downstream of a key NAD-using
step (Figure 2C). Interestingly, other than a large increase in levels of
dihydroxyacetone phosphate, there was no significant accumulation
of metabolites upstream of glyceraldehyde-3-phosphate, as would be
expected if there was a block in the latter steps of glycolysis, as pre-
viously described for FK866 [25]. This could be explained by the
observation of an increase in maltose, maltotriose, and maltotetraose
metabolites (Figure 2D), which is consistent with cells diverting their
excess glucose toward glycogen deposition. Thus, rather than accumu-
lating six-carbon glycolytic intermediates, it appears that Calu-6 cells
may dispose of excess glucose by converting it into glycogen. Addition-
ally, there are decreases in nucleotide, lipid, and amino acid synthesis,
which may contribute to the cell cycle effects arising from NAD
depletion. Moreover, at 24 hours there is an increase in peptide levels,
possibly consistent with cell death. This altered metabolic profile is
generally consistent with recent reports indicating a role for NAMPT
in de novo lipogenesis in prostate cancer cells [26] and for a role in
glycolysis [25].

The rapid reduction of salvage pathway metabolites (NAD, NMN,
and NAM) that occurred following NAMPT inhibition (Figure 2A)
suggested that NAD cannot be readily replenished by the de novo path-
way, which catabolizes tryptophan through a series of eight steps to



Figure 1. GNE-618 reduces NAD levels and cell viability in Calu-6 NSCLC cells. (A) Structure of GNE-618 and its associated IC50 for NAMPT.
(B) A dose titration of GNE-618 reduces NAD levels in Calu-6 cells at 48 hours asmeasured by LC-MS/MS (average± SD, n=2). (C) Cell cycle
analysis of Calu-6 cells following 72-hour incubation with the indicated concentrations of GNE-618 (averages ± SD, n = 2). (D) GNE-618
reduces ATP and protein levels (SRB assay) (average ± SD, n = 3). In both cases, co-administration of 10 μM NA with GNE-618 prevents
loss of viability. (E) Calu-6 cells were incubated with 200 nM GNE-618, 10 μM NA, or both for 48 hours, and NAD levels were quantified by
LC-MS/MS (average ± SD is shown, n = 2). (F) GNE-618 was added to Calu-6 cells at time 0, and 10 μM NA was added at the indicated
times and viability was assessed at 96 hours (SRB assay; average± SD, n=2). (G) Calu-6 cells were exposed to 100 nMGNE-618 for various
times and harvested, and NAD levels were determined by LC-MS/MS (average ± SD, n = 2).
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generate NAD [9]. While only two metabolites in the de novo path-
way, tryptophan and kynurenine, could be detected by metabolomic
profiling, there was clearly no evidence for an increase in steady-state
levels of either of these metabolites, although reduced levels of both
was detected at 24 hours (Figure 3A). However, while this suggests
that there is no up-regulation of the de novo pathway, this type of anal-
ysis only reveals the steady-state levels of these metabolites and may not
accurately reflect flux through the pathway.

To further evaluate the ability of Calu-6 cells to use the de novo
pathway, a functional assay was used to evaluate if this pathway was
active. Media were supplemented with up to 2 mM tryptophan to
determine if adding an excess of tryptophan could protect cells from
GNE-618 by generating NAD through the de novo pathway. Surpris-
ingly, tryptophan could not prevent cell death in response to GNE-
618 (Figure 3B). In contrast, the addition of NMN, the downstream
product of NAMPT, prevented cell death mediated by GNE-618
(Figure 3B), consistent with previous reports that NMN can prevent
cell death in response to the NAMPT inhibitor FK866 or GMX1778
[12,27]. Surprisingly quinolinate, an intermediate in the de novo
pathway that is downstream of kynurenine and three steps upstream
of NAD, could protect cells from NAMPT inhibition. The maximal
protection obtained with quinolinate was ∼70%, as higher concen-
trations were lethal to cells. To expand this analysis beyond Calu-6
cells, we examined the ability of cell lines representing different
tumor types to be protected from NAMPT inhibition with these
same metabolites. Like Calu-6 cells, we found that HCT-116 (colo-
rectal), PC-3 (prostate), and A2780 (ovarian) cancer cells were not
protected from cell death with the co-administration of tryptophan



Figure 2. Metabolomic profiling of Calu-6 tumor cells following NAMPT inhibition. (A) Calu-6 cells were exposed to 100 nM GNE-618 for
6 or 24 hours, and metabolomic profiling was used to evaluate changes in a total of 367 unique metabolites. The levels of NAD, NMN,
and NAM at 6 and 24 hours following exposure to GNE-618 are shown relative to levels in control cells (average ± SD, n = 5 for each
group). (B) The graphs indicate the log2-fold change in each metabolite relative to control cells at 6 and 24 hours following exposure to
GNE-618 (n = 5 for each time point). Modulation of metabolites involved in glycolysis (C) or glycogen storage (D) in Calu-6 cells at 6 and
24 hours is shown. The relative level of each detectable metabolite is shown (n = 5). The whiskers span the 10% to 90% percentile
range of the data, and the median is shown as a line.
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Figure 3. Tumor cell lines are unable to use the de novo pathway to generate NAD. (A) Two metabolites (tryptophan and kynurenine)
in the de novo pathway were detected in our metabolomic profiling, and their relative levels in control cells or cells exposed to GNE-618
for 6 and 24 hours are shown (n = 5 ± SD). Key metabolites in the de novo salvage pathway are shown in the pathway diagram along
with the enzymes that catalyze each step. (B) Calu-6 cells were incubated with 200 nM GNE-618 and a dose titration of tryptophan,
quinolinate, or NMN, for 96 hours, and cell viability was assessed (CyQUANT readout; average ± SD, n = 2). (C) HCT-116, PC-3, and
A2780 cells were incubated with 200 nM GNE-618 and a dose titration of tryptophan, quinolinate, or NMN, for 96 hours, and cell viability
was assessed (CyQUANT readout; average ± SD, n = 3).
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(Figure 3C ). Interestingly, the ability of quinolinate to protect cells
varied, suggesting that some tumor cells have the ability to use
downstream metabolites to generate NAD. In contrast, all cell lines
could be protected by NMN (Figure 3C ).

We next examined mRNA levels of select enzymes in the de novo
pathway, as the inability to use intermediates could be explained by
the lack of expression of key enzymes. We profiled mRNA levels of
IDO1, KYNU, HAAO, and QPRT by RNA-seq and discovered that
all four cell lines had undetectable levels of either IDO1 or KYNU,
potentially explaining the inability of tryptophan to rescue these cell
lines (Table 1). Additionally, the two cell lines that could be rescued
with quinolinate (A2780 and Calu-6) were the only two cell lines
that had detectable mRNA levels for QPRT. Thus, our data suggest
that the inability of these tumor cell lines to use the de novo pathway
is due to lack of expression of key components early in the pathway
and thus provide an explanation for why tumor cell lines are reliant
on the salvage pathway for NAD generation.

Cell Line Profiling Reveals that NAMPT, but Not NAPRT1,
mRNA and Protein Levels Predict Sensitivity to GNE-618

Screening of GNE-618 across a panel of 53 NSCLC cell lines re-
vealed that ∼25% of the cell lines had an EC50 of <10 nM and
∼50% had an EC50 less than 25 nM by CellTiter-Glo assay (ATP
measurement; Figure 4A and Table W2). EC50 values obtained with
CyQUANT Direct assay (live nucleic acid measurement) yield similar
results (Figure W2A; Spearman r = 0.99). While there are no reports
of any correlation between NAPRT1 levels and sensitivity to NAMPT
inhibitors, it remains ambiguous whether NAMPT protein or mRNA
levels predict sensitivity. One report showed that NAMPT mRNA
levels correlated with sensitivity to GMX1778 across 25 tumor cell lines
(r = 0.83) [12], whereas a more recent report did not see a correlation
between sensitivity of FK866 and NAMPT protein levels in 18 multiple
myeloma cell lines (r = 0.136) [28]. Thus, we were interested to test
if NAMPT and/or NAPRT1 mRNA or protein levels would predict
sensitivity to GNE-618 across a panel of NSCLC cell lines. Using gene
expression arrays, we found a correlation between NAMPT mRNA
Table 1. mRNA Levels as Determined by RNA-Seq of Key Enzymes in the De Novo NAD
Synthesis Pathways in the Indicated Cell Lines.
Cell Line
 Trp Rescue
 Quin Rescue
 IDO1
 KYNU
 HAAO
 QPRT
A2780
 N
 Y
 0.56
 −4.00
 −4.00
 4.14

Calu-6
 N
 Y
 −4.00
 1.94
 −0.60
 5.22

HCT116
 N
 N
 −4.00
 −4.00
 −4.00
 −4.00

PC3
 N
 N
 −4.00
 −1.08
 −4.00
 −4.00
Expression levels are displayed as the log2 RPKM.
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levels and sensitivity to GNE-618 (Spearman r = 0.75, P < .0001;
Figure 4B) but no correlation between NAPRT1 mRNA levels and
sensitivity to GNE-618 (Spearman r = 0.31, P = .009; Figure 4C ).
To examine the correlation between protein levels and sensitivity to
GNE-618, we performed Western blot analysis on a subset of these cell
lines and determined that NAMPT protein levels also correlated with
overall sensitivity (Spearman r = 0.723, P < .0001; Figures 4D and
W2B), whereas NAPRT1 levels did not (Spearman r = 0.31, P = .052;
Figures 4E and W2B). Thus, our data demonstrate that NAMPT, but
not NAPRT1, mRNA and protein levels inversely correlate with sen-
sitivity to GNE-618 across a large panel of cell lines. We also confirmed
that NAMPT protein levels could impact sensitivity to GNE-618, as
Figure 4. NAMPT, but not NAPRT1, mRNA and protein levels correla
SD, n = 3) for each cell line following exposure to GNE-618 for a to
mRNA levels (log2, RMA normalized) [22] were compared to the EC
assayed for NAMPT (D) or NAPRT1 (E) protein levels by Western
corresponding EC50 for GNE-618.
overexpression of a GFP-tagged version of NAMPT decreased sensitivity
to GNE-618 in 293T cells (Figure W3).

GNE-618 Induces TGI in an A549 Tumor Xenograft Model
GNE-618 inhibited A549 cell growth with an EC50 of 27.2 ±

9.8 nM (Figure 4A and Table W2), which was reversed upon co-
treatment with NA (Figure 5A). In addition, NAD levels were rapidly
reduced in a time-dependent manner after treatment with GNE-618
(Figure 5B). We therefore decided to examine the efficacy of GNE-
618 in an A549 xenograft model. GNE-618, administered orally
at 100 mg/kg (maximum efficacious dose; Zheng et al., manuscript
in preparation), significantly inhibited tumor growth by 88% (lower
te with sensitivity to GNE-618. (A) The calculated EC50 (average ±
tal of 96 hours (CellTiter-Glo) is shown. NAMPT (B) or NAPRT1 (C)
50 for GNE-618 for each cell line. Representative cell lines were
blot analysis. Protein levels in each line were compared to the
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CI = 57 and upper CI = 105; Figure 5C ) and had minimal effects on
body weight (Figure W4A) when compared to vehicle-treated animals.
Co-administration of NA with GNE-618 completely abrogated the
antitumor growth effects of NAMPT inhibition in vivo (Figure 5C ).
Thus, GNE-618 can effectively attenuate tumor growth of the A549
NSCLC xenograft model and this effect is due to on-target inhibition
of NAMPT.
GNE-618 Reduces NAD Level and Is Efficacious in a
Patient-Derived Tumor Xenograft Model

While our data and previous publications [12,18,28,29] have
shown that inhibition of NAMPT can decrease tumor burden in cell
culture–derived xenograft models, studies using patient-derived tumor
models have not been reported. Thus, our aim was to determine if
GNE-618 would also demonstrate in vivo efficacy in a model that
may be more representative of the heterogeneity observed in primary
patient tumors.
Figure 5. GNE-618 inhibits tumor growth of an A549 NSCLC xeno-
graft model. (A) A549 cells were incubated with a dose titration of
GNE-618 in the presence or absence of 10 μM NA, and viability
was measured after 96 hours (CellTiter-Glo assay; average ± SD,
n = 3). (B) A549 cells were exposed to 100 nM GNE-618 for various
times, and NAD levels were determined by LC-MS/MS (average ±
SD, n = 2). (C) GNE-618 was administered orally and daily for
21 days, and NA was co-administered orally twice daily for 21 days
in A549 tumor xenografts (n = 10 animals per group). The bar
below the x-axis indicates the dosing period.

Figure 6. GNE-618 inhibits growth of the STO#81 patient-derived
gastric model. (A) GNE-618 was administered orally for 5 days at
100 mg/kg, and tumor growth was monitored for 24 days (n =
10 animals per group). NA (100 mg/kg) was either dosed alone or
with GNE-618 orally twice daily for 5 days. The bar below the x-axis
indicates the dosing period. (B) NAD levels in tumors derived from
the STO#81 model harvested at 1 hour following the final oral dose
of GNE-618 (100 mg/kg) ± NA (100 mg/kg) on day 5. Tumors were
harvested and NAD levels were quantified by LC-MS/MS. The
average tumor NAD level ± SD (n = 4 animals per group) relative
to vehicle-treated animals is shown. Asterisk indicates P < .005.
We examined the ability of GNE-618 to reduce tumor growth in
a gastric tumor model, STO#81, and found that administration of
GNE-618 at 100 mg/kg daily for 5 days had minimal effects on
body weight (Figure W4B) but induced tumor regressions and in-
hibited tumor growth by 126% (lower CI = 110 and upper CI =
164; Figure 6A). Remarkably, GNE-618 induced durable tumor
regressions up to day 21, even though drug treatment was discon-
tinued on day 5. We also verified that TGI was due to on-target in-
hibition of NAMPT, as twice daily co-administration of 100 mg/kg
NA significantly reduced TGI with GNE-618. NAD levels were
also examined in these tumors 1 hour following the last dose of
100 mg/kg GNE-618 and was found to be reduced by >95% (Fig-
ure 6B). Tumors from animals that were also co-dosed with 100 mg/
kg NA showed a modest reduction of NAD levels, although this was
not statistically significant.
Discussion
NAMPT is a very appealing therapeutic target given its central
role in the NAD salvage pathway, and inhibition of NAMPT with
small molecule inhibitors, such as GMX1778/1777 [12,29] and
FK866 [28,30], can rapidly reduce NAD levels in tumor cells
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and induce cell death. Here, we describe GNE-618, a novel NAMPT
inhibitor, and show that this compound effectively depletes NAD levels
in cells and tumors and is efficacious in multiple xenograft models.
Metabolomic profiling in Calu-6 cells revealed that inhibition of

the NAD salvage pathway resulted in modulation of metabolites
across many different metabolic pathways. Interestingly, the profile
was consistent with a reduction of three-carbon metabolites down-
stream of the enzyme glyceraldehyde-3-phosphate, similar to what
was recently reported for the NAMPT inhibitor FK866 [25]. In
Calu-6 cells however, no accumulation of the upstream six-carbon
metabolites was noted. In addition, no large changes were observed
in metabolites in the pentose phosphate pathway, again suggesting
that even though carbon flux through glycolysis may be reduced,
metabolites do not overflow into the pentose phosphate pathway,
as observed in A2780 and HCT116 cells in response to the NAMPT
inhibitor FK866 [25]. Instead, our data suggest that excess metabolites
are diverted to promote glycogen storage. Thus, even though many of
the key effects on metabolic pathways may be similar, it appears that
different cell types may have adapted different approaches to deal with
metabolic imbalance.
Both metabolomic profiling and functional assays reveal that the

NAD de novo synthesis pathway is defective in tumor cells, thus ex-
plaining the dependence of these cells on the NAD salvage pathway.
We determined that lack of protection of cell lines with tryptophan
could potentially be explained by the lack of expression of IDO and/
or KYNU (Table 1), and all four cell lines tested lacked expression of
at least two enzymes critical for metabolite progression through the
kynurenine pathway. Interestingly, two of the four cell lines that could
use quinolinate were the only cell lines that expressed QPRT and thus
could convert quinolinate to NA mononucleotide. It is not clear why
these cell lines have silenced expression of genes involved in de novo
synthesis; nevertheless, the consequence is that these cell lines are highly
reliant on the NAMPT-mediated salvage pathway for NAD genera-
tion. Thus, our data show that the NAD salvage pathway is critical for
cancer cells, and our data also provide, for the first time, a mechanistic
rationale for this dependence.
Both in vitro and in vivo activities of GNE-618 is due to on-target

inhibition of NAMPT, as co-administration of NA prevents loss of
NAD (Figures 1E and 6B) and both cell viability and TGI (Fig-
ures 1D, 5C , and 6A). There was no strong correlation with either
NAPRT1 mRNA or protein levels (Figure 4, C and E ). The latter
result is not surprising, as this pathway is only used in cells when they
are supplied with sufficient levels of NA (10 μM affords full pro-
tection; Figure 1D). Moreover, it has been shown that expression
of NAPRT1 is a good predictor of the ability of NA to protect cells
from NAMPT inhibition [12,30,31] (Shames et al., submitted for
publication). There has been conflicting evidence in the literature
on the relationship between NAMPT inhibition and mRNA and pro-
tein levels [12,28]. Our data show a clear correlation between NAMPT
mRNA (r = 0.75) and protein (r = 0.72) levels with sensitivity to
GNE-618 in a panel of NSCLC cell lines (Figure 4, B and D).
We also report the interesting observation that NA is only protec-

tive when added within a window of ∼24 hours following GNE-618
addition, which corresponds to a time when NAD has not been de-
pleted. There was one attempt at co-administrating NA with an
NAMPT inhibitor (GMX1777) in a phase I clinical trial [19], but in
this case, niacin was only administered on days 8 to 15 and was not
able to prevent thrombocytopenia but did ameliorate skin rash. Our
data suggest that efficient protection of host tissue might be better
achieved with early administration of NA and potentially explain
why no protection of platelets was observed in this clinical trial.

GNE-618, a novel NAMPT inhibitor, is efficacious in vivo and
reduces tumor growth of a patient-derived tumor xenograft model.
Additionally, we believe that our data warrant further exploration of
the possibility of using NAMPT mRNA and/or protein levels as pre-
dictors of overall response to NAMPT inhibition. In summary, our
data provide functional evidence that tumor cells are dependent on
the NAD salvage pathway and illustrate the potential for the use of
NAMPT inhibitors across multiple tumor types.
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Figure W1. GNE-618 induces cell death in Calu-6 cells. (A) Cell cycle analysis of Calu-6 cells following a 72-hour incubation with the indi-
cated concentrations of GNE-618. The mitotic index at each concentration, as determined by the percentage of cells staining positive for
phosphorylated Ser10 histone H3 (average ± SD, n= 2), is shown. (B) Calu-6 cell death was evaluated using either live nucleic acid intensity
(CyQUANT), total nucleus count (Hoechst 33342 staining), or SYTOX Green (to visualize dead cells) following a dose titration of GNE-618.
After 96 hours, the associated EC50 for each measurement is indicated along with the SD (n= 2). (C) Representative images of Calu-6 cells
after treatment with 100 nM GNE-618 for 96 hours. Cells were stained either with Hoechst 33342 or with SYTOX Green and imaged with
an ImageXpress Micro. (D) GNE-618 was added to Calu-6 cells at time 0, and 10 μM NA was added at the indicated times and viability was
assessed at 96 hours by counting live nuclei (average ± SD, n = 2).



Table W1. List of All Identifiable Metabolites in Calu-6 Cells after Exposure to 100 nM GNE-618
for 6 or 24 Hours.

Subpathway Biochemical Name Fold
Change at
6 Hours

Fold
Change at
24 Hours

Glycine, serine, and
threonine metabolism

Glycine 0.97 0.80
Sarcosine (N -methylglycine) 0.58 0.97
Serine 0.99 0.81
N -acetylserine 0.85 0.79
3-Phosphoserine 0.68 0.22
Threonine 0.94 0.86
N -acetylthreonine 0.79 0.65
Betaine 0.89 0.91

Alanine and aspartate
metabolism

Aspartate 0.77 0.88
Asparagine 1.33 1.13
β-Alanine 0.93 0.69
3-Ureidopropionate 1.10 0.92
Alanine 0.89 0.84
N -acetylalanine 0.95 0.84
N -acetylaspartate (NAA) 0.93 0.82

Glutamate metabolism Glutamate 1.02 1.29
Glutamate, γ-methyl ester 1.07 0.90
Glutamine 0.98 0.96
Pyroglutamine 0.90 0.80
γ-Aminobutyrate (GABA) 0.81 0.75
N -acetylglutamate 0.86 0.79
N -acetylaspartylglutamate (NAAG) 0.97 1.04

Histidine metabolism Histidine 0.90 0.92
Imidazole lactate 1.00 1.00

Lysine metabolism Lysine 1.66 1.49
2-Aminoadipate 1.08 1.03
Pipecolate 0.93 1.08
N -6-trimethyllysine 1.49 1.21
N -6-acetyllysine 1.05 1.12
2-Aminopentanoate 0.90 0.84

Phenylalanine and
tyrosine metabolism

Phenyllactate (PLA) 0.83 0.59
Phenylalanine 0.93 0.94
Tyrosine 0.93 0.94
3-(4-Hydroxyphenyl)lactate 0.78 0.50
Phenylacetylglycine 1.05 1.19

Tryptophan metabolism Kynurenine 0.80 0.70
Tryptophan 0.89 0.81
Indolelactate 1.02 0.43
C-glycosyltryptophan 1.02 1.02
5-Hydroxyindoleacetate 1.39 0.38

Valine, leucine, and
isoleucine metabolism

3-Methyl-2-oxobutyrate 1.00 1.00
3-Methyl-2-oxovalerate 0.95 0.43
β-Hydroxyisovalerate 1.01 1.05
Isoleucine 0.92 0.95
Leucine 0.92 0.95
Valine 0.96 0.94
4-Methyl-2-oxopentanoate 1.01 0.52
Isobutyrylcarnitine 1.06 0.90
2-Methylbutyroylcarnitine 0.81 0.72
Isovalerylcarnitine 0.86 0.73

Cysteine, methionine,
SAM, taurine
metabolism

Cysteine 0.78 0.47
Cysteine sulfinic acid 1.19 1.33
S-methylcysteine 0.86 0.60
Cystathionine 1.16 0.98
Methionine sulfoxide 0.97 1.16
N -formylmethionine 1.08 1.24
Hypotaurine 0.89 0.61
S-adenosylhomocysteine (SAH) 0.98 1.08
Methionine 0.91 0.96
N -acetylmethionine 0.98 1.03
2-Hydroxybutyrate (AHB) 1.17 1.05
Homocysteine 0.84 0.99

Urea cycle, arginine,
proline metabolism

Asymetric dimethylarginine (ADMA) 0.98 0.88
Arginine 1.00 0.96
Ornithine 1.09 1.10
Proline 0.92 0.90
Citrulline 0.94 0.84
N -acetylornithine 0.99 0.87
Trans-4-hydroxyproline 0.96 0.80
Argininosuccinate 1.00 1.00

Table W1. (continued )

Subpathway Biochemical Name Fold
Change at
6 Hours

Fold
Change at
24 Hours

Creatine metabolism Creatine 0.91 0.88
Creatinine 1.04 1.03

Butanoate metabolism 2-Aminobutyrate 1.00 0.80
Polyamine metabolism 5-Methylthioadenosine (MTA) 1.02 0.86

Putrescine 1.32 0.63
N -acetylputrescine 1.21 0.88
Spermidine 0.85 0.74

Guanidino and acetamido
metabolism

4-Guanidinobutanoate 0.86 1.13

Glutathione metabolism Glutathione, reduced (GSH) 0.95 0.69
5-Oxoproline 1.04 1.15
Glutathione, oxidized (GSSG) 1.05 0.78
Cysteine-glutathione disulfide 0.92 1.22
S-lactoylglutathione 1.27 3.53

Dipeptide Glycylvaline 1.25 1.46
Glycylglycine 1.23 1.06
Glycylproline 0.98 0.80
Glycylisoleucine 1.54 1.92
Glycylleucine 1.32 1.28
Glycylphenylalanine 1.08 1.02
Alanylleucine 0.85 1.76
Aspartylphenylalanine 1.88 2.13
α-Glutamylglutamate 0.91 0.81
α-Glutamylthreonine 1.00 1.00
Pro-hydroxy-pro 1.22 1.55
Cysteinylglycine 1.04 0.82
Cyclo(leu-gly) 1.00 1.00
Cyclo(leu-ala) 1.00 1.00
Cyclo(gly-phe) 1.00 1.00
Aspartylleucine 1.07 1.37
Isoleucylalanine 0.85 1.00
Isoleucylglycine 1.20 1.30
Isoleucylserine 1.20 1.15
Leucylalanine 0.70 1.63
Leucylglycine 1.45 1.56
Leucylhistidine 1.00 1.00
Leucylserine 1.20 0.97
Phenylalanylleucine 1.00 1.00
Phenylalanylserine 1.38 1.74
Serylleucine 1.28 1.49
Threonylleucine 1.00 1.00
Tyrosylalanine 1.05 1.28
Tyrosylleucine 1.00 1.00
Valylglycine 1.31 1.25

γ-Glutamyl γ-Glutamylvaline 0.90 0.77
γ-Glutamylleucine 0.89 0.80
γ-Glutamylisoleucine 0.80 0.87
γ-Glutamylglutamate 0.87 1.09
γ-Glutamylphenylalanine 0.79 0.90

Amino sugar metabolism Erythronate 1.09 0.62
N -acetylneuraminate 0.80 0.84
Isobar: UDP-acetylglucosamine,
UDP-acetylgalactosamine

0.98 0.95

N -acetylmannosamine 1.00 1.00
Fructose, mannose,
galactose, starch,
and sucrose metabolism

Fructose 1.32 1.11
Galactitol (dulcitol) 1.00 1.00
6′-Sialyllactose 1.09 1.11
Maltose 1.35 1.44
Mannitol 1.32 1.18
Mannose-6-phosphate 1.05 0.45
Sorbitol 1.77 3.66
Maltotriose 2.20 3.33
Maltotetraose 1.06 2.86



Table W1. (continued )

Subpathway Biochemical Name Fold
Change at
6 Hours

Fold
Change at
24 Hours

Glycolysis, gluconeogenesis,
pyruvate metabolism

Glycerate 0.62 0.54
Glucose-6-phosphate (G6P) 1.09 0.26
Glucose 1-phosphate 1.00 1.00
Glucose 0.36 1.12
Fructose-6-phosphate 1.00 0.55
Fructose 1-phosphate 1.20 1.74
Isobar: fructose 1,6-diphosphate,
glucose 1,6-diphosphate,
myo-inositol 1,4
or 1,3-diphosphate

1.08 2.45

2-Phosphoglycerate 0.71 0.59
3-Phosphoglycerate 0.57 0.50
Dihydroxyacetone phosphate 1.73 5.12
1,3-Dihydroxyacetone 0.78 1.17
Phosphoenolpyruvate (PEP) 0.50 0.57
Pyruvate 0.96 0.75
Lactate 1.13 1.17

Nucleotide sugar, pentose
metabolism

6-Phosphogluconate 0.77 0.21

Arabitol 0.95 0.83
Ribitol 1.04 0.87
Threitol 1.57 0.85
Sedoheptulose-7-phosphate 1.11 0.35
Gluconate 1.49 0.96
Ribose 1.39 1.17
Ribose 5-phosphate 1.20 1.60
Ribulose 0.98 1.06
Isobar: ribulose 5-phosphate,
xylulose 5-phosphate

1.52 1.68

UDP-glucuronate 1.75 0.56
Xylitol 1.52 0.62
Arabinose 1.15 0.85
Xylonate 0.49 0.49

Nucleotide sugars UDP-galactose 1.43 1.29
Krebs cycle Citrate 1.61 1.11

α-Ketoglutarate 1.00 1.00
Succinate 0.65 0.27
Succinylcarnitine 1.16 1.00
Fumarate 1.10 1.17
Malate 1.10 1.45

Oxidative phosphorylation Acetylphosphate 1.65 0.79
Phosphate 1.01 0.98
Pyrophosphate (PPi) 0.99 0.88

Essential fatty acid Linoleate (18:2n6) 0.97 0.87
Linolenate [α or γ; (18:3n3 or 6)] 0.94 0.91
Dihomo-linolenate (20:3n3 or n6) 0.79 1.00
Eicosapentaenoate (EPA; 20:5n3) 1.34 1.40
Docosapentaenoate (n3 DPA; 22:5n3) 0.78 0.96
Docosapentaenoate (n6 DPA; 22:5n6) 0.89 0.78
Docosahexaenoate (DHA; 22:6n3) 0.74 0.93

Medium chain fatty acid Caprylate (8:0) 0.78 1.02
Pelargonate (9:0) 0.99 1.03
Caprate (10:0) 1.21 1.18
Undecanoate (11:0) 0.88 0.97
Laurate (12:0) 1.11 1.18

Long-chain fatty acid Myristate (14:0) 1.03 1.07
Myristoleate (14:1n5) 1.03 0.87
Pentadecanoate (15:0) 1.04 1.06
Palmitate (16:0) 0.88 0.98
Palmitoleate (16:1n7) 0.97 0.96
Margarate (17:0) 0.95 1.09
10-heptadecenoate (17:1n7) 0.93 0.96
Stearate (18:0) 0.87 0.97
Oleate (18:1n9) 1.13 0.88
Cis-vaccenate (18:1n7) 1.09 0.86
Nonadecanoate (19:0) 1.07 1.01
10-Nonadecenoate (19:1n9) 0.85 0.96
Eicosenoate (20:1n9 or 11) 0.89 0.86
Dihomo-linoleate (20:2n6) 0.84 0.94
Mead acid (20:3n9) 0.67 1.02
Arachidonate (20:4n6) 0.70 1.14
Docosadienoate (22:2n6) 0.94 0.97

Table W1. (continued )

Subpathway Biochemical Name Fold
Change at
6 Hours

Fold
Change at
24 Hours

Docosatrienoate (22:3n3) 0.83 0.90
Adrenate (22:4n6) 0.67 0.90
Lignocerate (24:0) 1.24 0.78

Fatty acid, ester n-Butyl Oleate 1.42 1.81
Fatty acid, monohydroxy 4-Hydroxybutyrate (GHB) 1.09 0.88

2-Hydroxystearate 0.89 0.66
2-Hydroxypalmitate 0.99 0.77
13-HODE + 9-HODE 1.24 1.13

Fatty acid, dicarboxylate 2-Hydroxyglutarate 0.99 0.57
Tetradecanedioate 1.00 1.00
Hexadecanedioate 1.00 1.00
Octadecanedioate 1.00 1.00

Fatty acid, amide Oleamide 1.72 1.04
Stearamide 1.41 0.87

Fatty acid, branched 13-Methylmyristic acid 0.97 1.02
Methyl palmitate (15 or 2) 0.89 1.03
17-Methylstearate 0.98 0.95

Eicosanoid Prostaglandin E2 0.59 0.99
Fatty acid metabolism
(also BCAA metabolism)

Propionylcarnitine 0.82 0.83
Butyrylcarnitine 0.91 0.96

Fatty acid metabolism Valerylcarnitine 1.00 1.00
Carnitine metabolism Deoxycarnitine 0.94 0.95

Carnitine 0.65 0.62
3-Dehydrocarnitine 0.93 0.77
Acetylcarnitine 0.85 1.20
Hexanoylcarnitine 0.63 1.38
Laurylcarnitine 1.00 1.00
Myristoylcarnitine 1.00 1.00
Palmitoylcarnitine 1.77 0.78
Stearoylcarnitine 1.03 0.49
Oleoylcarnitine 1.84 0.84

Bile acid metabolism Glycocholate 1.14 1.80
Taurocholate 1.31 1.66
Taurochenodeoxycholate 1.42 1.90
Glycochenodeoxycholate 1.28 1.88

Glycerolipid metabolism Choline phosphate 1.50 1.88
Ethanolamine 0.83 0.95
Phosphoethanolamine 1.13 1.21
Glycerophosphoethanolamine 1.00 1.00
Glycerol 1.00 0.92
Choline 0.64 0.64
Glycerol 3-phosphate (G3P) 0.90 0.81
Glycerophosphorylcholine (GPC) 0.99 0.97
Cytidine 5′-diphosphocholine 0.97 0.98

Inositol metabolism Myo-inositol 0.97 0.87
Inositol 1-phosphate (I1P) 0.99 0.81
Scyllo-inositol 1.31 1.00

Lysolipid 1-Palmitoylglycerophosphoethanolamine 0.90 1.08
2-Palmitoylglycerophosphoethanolamine 1.11 0.75
2-Palmitoleoylglycerophosphoethanolamine 1.14 0.68
1-Stearoylglycerophosphoethanolamine 0.84 0.86
1-Oleoylglycerophosphoethanolamine 0.68 0.93
2-Oleoylglycerophosphoethanolamine 1.18 0.93
2-Linoleoylglycerophosphoethanolamine 1.24 0.99
1-Arachidonoylglycerophosphoethanolamine 0.57 0.73
2-Arachidonoylglycerophosphoethanolamine 1.07 0.96
2-Docosapentaenoylglycerophospho-
ethanolamine

1.14 0.86

2-Docosahexaenoylglycerophospho-
ethanolamine

1.11 0.91

1-Stearoylglycerophosphoglycerol 1.12 1.02
1-Myristoylglycerophosphocholine 1.23 0.77
2-Myristoylglycerophosphocholine 1.29 0.64
1-Pentadecanoylglycerophosphocholine 0.69 0.21
1-Palmitoylglycerophosphocholine 1.17 0.68
2-Palmitoylglycerophosphocholine 1.10 0.72
1-Palmitoleoylglycerophosphocholine 1.11 0.71
2-Palmitoleoylglycerophosphocholine 1.16 0.64
1-Heptadecanoylglycerophosphocholine 0.46 0.46
1-Stearoylglycerophosphocholine 0.99 0.72
2-Stearoylglycerophosphocholine 0.95 0.47
1-Oleoylglycerophosphocholine 1.23 0.69



Table W1. (continued )

Subpathway Biochemical Name Fold
Change at
6 Hours

Fold
Change at
24 Hours

2-Oleoylglycerophosphocholine 1.14 0.73
1-Linoleoylglycerophosphocholine 1.15 0.51
2-Linoleoylglycerophosphocholine 1.14 0.74
2-Eicosatrienoylglycerophosphocholine 1.07 0.61
2-Arachidonoylglycerophosphocholine 1.09 0.81
1-Docosapentaenoylglycerophosphocholine 1.18 0.68
2-Docosapentaenoylglycerophosphocholine 1.01 0.64
2-Docosahexaenoylglycerophosphocholine 1.05 0.72
1-Palmitoylglycerophosphoinositol 0.92 1.26
1-Stearoylglycerophosphoinositol 0.71 1.08
1-Oleoylglycerophosphoinositol 0.70 0.96
1-Arachidonoylglycerophosphoinositol 0.38 1.43
2-Arachidonoylglycerophosphoinositol 0.74 1.13
2-Oleoylglycerophosphoinositol 0.97 1.58
2-Oleoylglycerophosphoserine 1.15 1.91
1-Palmitoylplasmenylethanolamine 0.60 0.83

Monoacylglycerol 1-Palmitoylglycerol (1-monopalmitin) 0.89 0.76
2-Palmitoylglycerol (2-monopalmitin) 0.95 0.91
1-Stearoylglycerol (1-monostearin) 1.19 0.85
1-Oleoylglycerol (1-monoolein) 1.09 0.85
2-Oleoylglycerol (2-monoolein) 1.71 2.14

Diacylglycerol 1,2-Dipalmitoylglycerol 1.07 0.81
Sphingolipid Sphinganine 1.40 1.12

Sphingosine 1.00 0.87
Phytosphingosine 1.60 1.20
Palmitoyl sphingomyelin 1.03 0.90
Stearoyl sphingomyelin 0.93 0.49

Sterol/steroid Lathosterol 1.33 0.79
Cholesterol 1.05 0.94
Dihydrocholesterol 1.11 1.01
7-α-hydroxycholesterol 1.05 1.03
7-β-hydroxycholesterol 1.23 0.92
7-ketocholesterol 1.45 1.03

Purine metabolism,
(hypo)xanthine/inosine
containing

Xanthine 0.67 0.52
Xanthosine 1.09 0.72
Hypoxanthine 0.81 0.66
Inosine 1.37 1.17
2′-Deoxyinosine 0.59 0.82

Purine metabolism,
adenine containing

Adenine 0.98 0.64
Adenosine 2.00 2.86
N 1-methyladenosine 0.63 0.63
Adenosine 2′-monophosphate (2′-AMP) 0.71 0.78
Adenosine 3′-monophosphate (3′-AMP) 2.64 4.12
Adenosine 5′-monophosphate (AMP) 1.74 4.86
Adenosine 5′-diphosphate (ADP) 1.34 2.23
Adenosine 5′-triphosphate (ATP) 1.17 1.32
Adenylosuccinate 1.00 4.02

Purine metabolism,
guanine containing

Guanine 1.00 1.00

Guanosine 1.69 0.86
Guanosine 5′-monophosphate (5′-GMP) 4.70 12.00
Guanosine 5′-diphospho-fucose 0.87 0.69
N 1-methylguanosine 0.69 0.60
2′-O-methylguanosine 0.68 0.59
N 2,N 2-dimethylguanosine 0.67 0.61
N 6-carbamoylthreonyladenosine 0.67 0.54
Guanosine 3′-monophosphate (3′-GMP) 1.00 1.00

Table W1. (continued )

Subpathway Biochemical Name Fold
Change at
6 Hours

Fold
Change at
24 Hours

Purine metabolism,
urate metabolism

Allantoin 1.25 1.19

Pyrimidine metabolism,
cytidine containing

Cytidine 0.60 0.51
Cytidine 5′-monophosphate (5′-CMP) 2.59 3.19

Pyrimidine metabolism,
thymine containing

Thymine 0.54 0.65
Thymidine 0.92 0.64

Pyrimidine metabolism,
thymine containing;
valine, leucine and
isoleucine metabolism

3-Aminoisobutyrate 1.00 1.00

Pyrimidine metabolism,
uracil containing

Uracil 0.82 0.50
Uridine 0.94 0.79
Pseudouridine 0.57 0.61
Uridine monophosphate (5′ or 3′) 3.92 13.04
Uridine 5′-diphosphate (UDP) 1.00 1.00
Uridine 5′-triphosphate (UTP) 1.00 1.00

Purine and pyrimidine
metabolism

Methylphosphate 1.11 0.85

Ascorbate and aldarate
metabolism

Gulono-1,4-lactone 1.08 0.92
Arabonate 1.00 1.00

Biotin metabolism Biotin 1.17 1.35
Folate metabolism 5-Methyltetrahydrofolate (5MeTHF) 0.88 0.71
Nicotinate and
nicotinamide
metabolism

Nicotinamide 0.70 0.22
Nicotinamide ribonucleotide (NMN) 0.29 0.03
nicotinamide adenine dinucleotide (NAD+) 0.55 0.10
nicotinamide adenine dinucleotide
reduced (NADH)

1.16 0.37

nicotinate adenine dinucleotide (NAAD+) 1.00 1.00
Nicotinamide adenine dinucleotide
phosphate (NADP+)

1.11 0.62

Nicotinamide riboside 0.30 0.28
Adenosine 5′diphosphoribose 1.00 1.00
1-Methylnicotinamide 1.03 0.77

Pantothenate and
CoA metabolism

Pantothenate 0.76 0.78
Phosphopantetheine 1.08 1.30
coenzyme A 0.57 0.19
acetyl CoA 0.67 0.44

Pyridoxal metabolism Pyridoxal 1.09 0.86
Riboflavin metabolism Flavin adenine dinucleotide (FAD) 1.03 0.93
Thiamine metabolism Thiamin (Vitamin B1) 1.10 1.04
Tocopherol metabolism α-Tocopherol 0.91 0.78
Vitamin B6 metabolism Pyridoxate 0.59 1.05
Benzoate metabolism Hippurate 1.13 1.52
Chemical Dimethyl sulfoxide (DMSO) 1.33 1.54

Glycerol 2-phosphate 1.04 0.96
Methyl-α-glucopyranoside 1.27 0.94
Isobar: 2-propylpentanoate, 2-ethylhexanoate 0.83 1.14
Phenol red 1.16 1.42

Food component/plant Ergothioneine 0.91 0.85
Sugar, sugar substitute,
starch

Erythritol 1.00 1.01



Table W2. A Full List of the NSLCC Cell Lines Used in Figure 4A.
Cell Line
 Average EC50 (nM)
 SD (n = 3)
NCI-H2030
 0.9
 0.3

NCI-H661
 1.2
 0.2

NCI-H1355
 2.4
 0.3

NCI-H2405
 2.5
 2.1

LXFL-529
 2.6
 0.1

NCI-H322T
 2.6
 0.3

ABC-1
 2.8
 0.6

ChaGo-K-1
 3.5
 0.1

NCI-H2106
 3.7
 0.3

NCI-H522
 3.8
 0.2

SW1573
 4.2
 0.2

NCI-H838
 4.7
 1.6

NCI-H1650
 4.7
 3.2

VWRC-LCD
 4.8
 4.5

NCI-H1155
 5.3
 2.5

NCI-H1568
 6.1
 1.7

NCI-H23
 6.5
 0.1

NCI-H1770
 7.3
 0.1

A-427
 7.6
 0.8

NCI-H727
 8.3
 0.8

RERF-LC-MS
 9.1
 1.8

HOP-62
 9.8
 5.5

NCI-H1563
 10.3
 0.8

NCI-H1838
 10.6
 3.0

RERF-LC-OK
 10.6
 0.6

EKVX
 11.0
 3.7

SK-MES-1
 11.2
 0.4

NCI-H1299
 11.8
 1.0

NCI-H292
 13.4
 3.1

NCI-H1781
 13.9
 1.7

NCI-H520
 14.2
 8.1

NCI-H2126
 15.2
 3.8

NCI-H1703
 15.4
 3.2

NCI-H1435
 15.4
 4.6

NCI-H1651
 16.9
 3.5

Calu-6
 20.3
 3.0

HCC2279
 22.9
 7.2

NCI-H1975
 23.3
 2.8
Figure W2. (A) Calculated EC obtained with CellTiter-Glo assay
HOP-18
 24.4
 4.6

50
A549
 27.2
 9.8
and CyQUANT Direct assay for each cell line following exposure
KNS-62
 41.2
 11.5

to GNE-618 for a total of 96 hours. (B) Western blot analysis of a
HOP-92
 42.7
 9.8

select set of NSCLC cell lines evaluated in Figure 4A and probed
HCC827
 43.9
 20.1
for NAMPT, NAPRT1, or ACTIN.
NCI-H226
 50.0
 11.9

NCI-H1793
 55.1
 4.6

UMC-11
 58.9
 3.3

NCI-H441
 75.1
 25.9

NCI-H650
 75.6
 30.4

NCI-H647
 81.9
 51.2

EBC-1
 99.0
 69.6

NCI-H460
 143.0
 52.9

NCI-H2122
 431.3
 24.6

RERF-LC-KJ
 2845.0
 3047.7
The average EC50 and the associated SD (n = 3) are shown.



Figure W3. Overexpression of NAMPT protein reduces sensitivity to GNE-618. A 293Trex cell line with an inducible GFP-NAMPT was
generated. Induction of GFP-NAMPT, but not GFP alone, reduced the effectiveness of GNE-618 when viability was assessed after
96 hours (CellTiter-Glo readout). The associated EC50 values are shown (average ± SD, n = 2). Western blot analysis reveals that the
GFP-NAMPT fusion protein is only expressed in the presence of Dox (asterisk indicates a cross-reactive band).

Figure W4. Body weight changes associated with GNE-618 treat-
ment in the (A) A549 (NSCLC) and (B) STO#81 (gastric)models. Body
weights were recorded twice weekly over the course of the study.
Mice with losses in bodyweight≥20% from their weight at the start
of treatment were promptly killed.


