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Abstract
Mutual correlation and cooperativity are commonly used to describe residue-residue interactions
in protein folding/function. However, these metrics do not provide any information on the
causality relationships between residues. Such drive-response relationships are poorly studied in
protein folding/function and difficult to measure experimentally due to technical limitations. In
this study, using the information theory transfer entropy (TE) that provides a direct measurement
of causality between two times series, we have quantified the drive-response relationships between
residues in the folding/unfolding processes of four small proteins generated by molecular
dynamics simulations. Instead of using a time-averaged single TE value, the time-dependent TE is
measured with the Q-scores based on residue-residue contacts and with the statistical significance
analysis along the folding/unfolding processes. The TE analysis is able to identify the driving and
responding residues that are different from the highly correlated residues revealed by the mutual
information analysis. In general, the driving residues have more regular secondary structures, are
more buried, and show greater effects on the protein stability as well as folding and unfolding
rates. In addition, the dominant driving and responding residues from the TE analysis on the whole
trajectory agree with those on a single folding event, demonstrating that the drive-response
relationships are preserved in the non-equilibrium process. Our study provides detailed insights
into the protein folding process and has potential applications in protein engineering and
interpretation of time-dependent residue-based experimental observables for protein function.
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INTRODUCTION
Protein folding is one of the fundamental problems in biosciences. Different parts of a
protein may have long-range interactions and fold in a concerted way. Such cooperative
folding is considered to be essential to prevent the formation of partially unfolded structures
that leads to aggregation.1-2 In terms of specific residue-residue interactions, it is possible to
measure their correlations experimentally using NMR spectroscopy.3-5 Computational
methods such as molecular dynamics (MD) simulations and anisotropic network model also
provide valuable information about the intrinsic cooperativity in proteins’ folding.6-8
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Pearson correlation and mutual information (MI) are two common measures to quantify the
correlations. Specifically, MI incorporates both linear and nonlinear correlations and has
been used in studying correlated motions of proteins.9-12 However, one defect of these
measures is that they are symmetric and thus it is not possible to distinguish one residue
from another in a correlated pair. Knowing the directive interaction (i.e., the drive-response
relationship) between residues is not only of theoretical interest, but also can provide
guidance in protein engineering.

A theoretic metric that can determine the drive-response relationships between residues is
the information theory transfer entropy (TE) proposed by Schreiber.13 TE quantifies the
information flow from the past of one time series to the future of another time series. It has
been used in finance14 and mostly in neuroscience to deduce the connection between
neurons.15-16 Recently, TE has been used in MD simulation trajectory analysis to elucidate
the information flow in a transcription factor Ets-1.17 Through the analysis of the simulation
trajectories of the apo and holo states, the binding of DNA to H1 helix of Ets-1 appears to
drive the correlated motion of the inhibitory helix HI-1 via a relay helix. The same method
was applied to the autoactivation of extracellular signal-regulated kinases 1 and 2,18

revealing how the helix-C at N-domain drives the fluctuation of the activation lip that may
lead to activation. Another application of TE analysis is to identify important order
parameters from MD simulations,19-20 so that protein conformational changes can be better
described by the change of these order parameters compared to those based on principle
component analysis. These studies demonstrate that, when applied to MD simulation
trajectory analysis, TE can be a valuable method in understanding the functional motions of
proteins. However, statistical significance of calculated TE values is not clearly addressed in
these studies.17-20 Since the calculated TE values are often very small, it is critical to use
well-defined statistical significance analysis to warrant wide applications of the TE analysis
in both computational and experimental studies.

In this study, we apply the TE analysis to quantify the drive-response relationships between
residues in the folding/unfolding processes of four small proteins generated by MD
simulations. While it is well recognized that hydrophobic interactions are the driving force
in protein folding,21 to the best of our knowledge, to what extent each residue drives/
responds to each other has not been studied before. In addition, the identified driving and
responding residues are compared with those correlated residues identified by mutual
information analysis; examined by the general properties such as secondary structure and
solvent accessible surface area; and characterized by their effects on the protein stability as
well as folding and unfolding rates. In terms of the computational and theoretical point of
view, our study establishes statistical significance analysis of calculated TE values using
simulation trajectories and determines if the stationary drive-response relationship is
preserved in local, non-equilibrium events. Our understanding of protein function and
underlying mechanisms of biologically important processes can be enriched by identifying
residue-residue drive-response relationships through wide applications of TE analysis to MD
simulations as well as time-dependent residue-based experimental observables.

MATERIALS AND METHODS
Theory

The all-atom folding trajectories were obtained from D. E. Shaw Research for their recent
protein folding simulation study; the trajectories were saved every 200 ps and contained the
coordinates of Cα atoms22. Of the 12 proteins simulated, Trp-cage, BBL, Villin, and BBA
were selected for this study because these proteins had multiple folding/unfolding events. To
obtain a time series for each residue, we used a residue-based Q-score, i.e., the fraction of

Qi and Im Page 2

J Chem Theory Comput. Author manuscript; available in PMC 2014 August 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



native contacts formed for a specific residue. A native contact is counted when two Cα
atoms are closer than 1.2 times their distance in the native structure.

TE is a measure that quantifies the information flow from the past of one time series y(t) to
the future of another time series x(t) (Figure 1). It was formally described by Schreiber13 as

(1)

where k and l are the embedding dimensions that are the number of steps to be included
from the past, p() is the probability of one state, p(∣) is the conditional probability, and the
summation is over all possible combinations of states. By simple manipulation, TE can also
be written in terms of Shannon entropy, H (x) = −Σp(xt) log p(xt), which is the actual form
used in the present calculations,

(2)

where H(∣) is conditional Shannon entropy. Due to finite sample size of the time series, two
independent series can have (statistically insignificant) non-zero TE. To remove this bias,
the shuffling method was used to calculate the effective TE (TEeff),14, 17 which is given by

(3)

where N is the number of shuffling, and should be set to a sufficiently large number.23 We
used 500 for all calculations in this study. Using TEeff, a normalized directional index can be
derived as

(4)

where  and  are the maximal TE. A positive D value indicates
information flow from y(t) to x(t), and vice versa for a negative value. For two completely
independent time series, Dy→x and TEeff are 0. Our implementation of TE was verified with
three numerical systems (SI Section S1).

MI quantifies the difference of information between two time series. For x(t) and y(t), MI is

(5)

We used a normalized MI as

(6)

which ranges between 0 and 1.24

Practical computational considerations
From the practical computational point of view, several parameters affect the calculated TE
values and must be determined carefully. The first one is symbolization, which is to map the
time series to a finite set of symbols (i.e., discrete values or states) so that one can calculate
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the probability of having each symbol. Too many symbols result in poor estimation of
probability density, while too few symbols usually fail to capture the dynamics of the
system. One method of symbolization is using the relative rank of each data point.25 This
method may reduce the state space under certain circumstances. A more intuitive method is
to partition the data to several ranges and use the range index as symbol. As the residue Q-
score has finite discrete states in nature, we directly used the number of native contacts
formed for each residue as the symbol, which resulted in 5 symbols per residue on average.

The second crucial parameter is the embedding dimension k and l in Equation (1) and Figure
1. The optimal dimension is system-dependent and difficult to be generalized. Although the
false nearest-neighbors method has been used by others,17, 26 it does not guarantee the best
solution and converges to (unrealistic) high dimensions in the semi-stationary series studied
here. High dimensions cause problems in probability estimation as the state space is
proportional to nk+l+1 in Equation (2), where n is the average number of symbols per
residue. With this in mind, we used low dimensions from 1 to 4 to examine if two window
lengths 20,000 (4 μs simulation time) and 50,000 (10 μs) were sufficient to obtain
meaningful time-dependent TE values. For each window size, we used the half of its length
to slide over the whole trajectory. As TE can only be applied to stationary process, for each
window along the simulation time, we used the augmented Dickey–Fuller method27 to test
its stationarity. The final results are based on embedding dimension 1 for both k and l
because different dimension from 1 to 4 does not change the dominant driving and
responding residues (data not shown). The time-dependent TE values were calculated with
the window size of 10 μs (for Trp-cage, BBL and BBA) and 4 μs (for Villin) as these
window sizes showed 0 percent non-stationary windows along the simulation time. In the
single folding (non-equilibrium) events, it is more difficult to use a window that is small
enough to be stationary while large enough to contain statistically meaningful data points.
We finally used a window size of 2 μs (i.e., 10,000 data points), which has 1.4% and 2.6%
non-stationary windows for the two single folding events of BBL.

Finally, for each Dy→x value in Equation (4), it is highly desirable to assess its significance
using statistical test. This is particularly important because Dy→x is generally very small in
magnitude (below 0.1), so that it is difficult to evaluate its statistical significance even with
the shuffling method in Equation (3). Therefore, we calculated the p-value using z-test
against the random distributions of Dy→x from shuffling. A cutoff of 0.1 was first applied to
Dy→x values to remove residue pairs that had small drive-response interactions, and then a
p-value cutoff of 0.05 was used to filter out a considerable number of pairs that were not
significant (Table 1).

RESULTS AND DISUCSSION
We applied the TE analysis to folding processes of four small proteins (Trp-cage, BBL,
Villin, and BBA), whose trajectories were obtained from the recent protein folding
simulations by Lindorff-Larsen et al. in D. E. Shaw Research,22 and the simulation lengths
were between 100 and 200 μs. Briefly, a residue Q-score was calculated for each residue
along simulation time, and TE were calculated between every residue pair in a time-
dependent manner. The normalized directional index Dy→x in Equation (4), after a threshold
cutoff and significance test (see Materials and Methods), indicates whether residue y drives
(Dy→x >0) or responds to (Dy→x <0) residue x. The correspondence between the Q-score
and Dy→x values is remarkable (Figure 2), indicating that transfer of information entropy
generally happens upon folding and unfolding events.

To elucidate the drive-response relationships between residues, we calculated the time-
average Dy→x of each residue pair. Figure 3A (lower diagonal) shows the results of Trp-
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cage. Trp-cage is a small protein with only 20 amino acids that consists of an α-helix, a 310-
helix, and a polyproline region at the C terminal (Figure 3B). Our results indicate that the
folding of the polyproline region responds to the residues in the α-helix. The rationalization
of this behavior is clear in terms of the Trp-cage structure (Figure 3B). The N terminal helix
forms first and then drives the formation of tertiary contacts of the polyproline region. It has
been suggested that the folding of local structure followed by tertiary contact formation is a
general mechanism of protein folding,22 although the drive-response relationship can only
be revealed by information analysis such as TE in this study. Notably, Trp-6, which is the
most important residue in Trp-cage, is the dominant driver in our analysis as it drives 6
residues. The interactions between Trp-6 and 310-helix group as well as between Trp-6 and
the polyproline region, which proved to be important in experimental and computational
studies,28-29 are also captured in the TE analysis.

MI is a measure that quantifies the difference of information between two time series. To
compare TE with MI, we also calculated MI for each residue pair of Trp-cage (Figure 3A
upper diagonal). The residue-residue correlations from MI are quite different from TE. In
TE, the helical residues and the polyproline residues are correlated, while in MI, the
correlation exists between N and C terminals, between residue 9-11 and 15-16, and between
the helical residues. The differences between MI and TE also exist in BBL, BBA, and Villin
(Figure S2). Such differences arise from the fact that our MI calculation only takes into
account concurrent events. In other words, MI only calculates the correlations for the events
at the same time, while TE is able to incorporate the information from the past. A variation
of MI, the time-delayed MI, which introduces a time lag to one of the series, is also able to
capture causality in dynamic systems.30-32 We applied time-delayed MI to the test proteins,
but it did not reveal any drive/response interactions (SI Section S3).

Are there any general features of the driving and responding residues in folding and
unfolding of proteins studied in this work? First, we check if a driving-responding
relationship of a residue pair changes in time. A residue may drive another residue at one
time and respond to the same residue at a later time. We counted the number of times Dy→x
changes its sign in the four proteins and found that none of the residue pairs changed their
driving-responding relationships. This result not only justifies the use of time-average Dy→x
value to classify the drive-response relationship in Figure 3, but also suggests that residues
play a constant role in the folding process. Second, we examine the relationship between the
driving and responding residues and their locations in the context of protein structure. In
Trp-cage, the driving residues are mostly in the buried helical region (Figure 3B). To
examine whether this is a general feature, we calculated the secondary structures and
relative solvent accessibility to each residue in the proteins. More than 70% of the driving
residues are located in helix and sheet, but for the responding residues, the percentage of
forming regular secondary structures is only 25% (Figure 4). For relative solvent
accessibility to each residue, which is calculated as the percentage of the solvent accessible
surface area (SASA) of a residue in the protein structure compared to that of a free residue,
the driving residues have an average value of 38.2 ± 26.7%, while the responding residues
have an average of 80.6 ± 31.1%. Thus, the driving residues are mostly buried at the
hydrophobic core and have more regular secondary structures.

Is there any experimental support for the driving and responding residues identified by the
TE analysis? Trp-6 in Trp-cage, which is the dominant driver, is already known to be of
crucial importance to Trp-cage folding. For another protein BBL, a small protein with down-
hill folding behavior under certain conditions, some experimental mutation data are
available.33-35 We compared the transition temperature (Tm), the folding rate (kf), and the
unfolding rate (ku) before and after the driving and responding residues are mutated (Table
2). Mutations to driving residues V163, T159, D162, and I135 decrease Tm and kf by
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6.54-12.3% and 50.6-81.6%, and increase ku by 181.8-1016.9%, respectively. Mutation to
the responding residue A148 has much smaller effects. No point-mutation experimental data
are available for Villin and BBA, but we found almost every residue has been mutated for
protein L, and ku and kf were also measured.36-37 As protein L has 61 residues and the
folding process is not easy to simulate with all-atom simulations, we used coarse-grained
GO-type model38-39 to generate folding/unfolding trajectories (Figure S5). Using the same
analysis, we identified the driving and responding residues and compared how kf and ku
changed after mutations (Figure 5). Similar to BBL, mutations to driving residues have
greater effects on kf and ku.

So far, we focus on the whole folding trajectories with multiple folding events as a
stationary process. To see if the drive-response relationships are preserved in single folding
events (i.e., non-equilibrium process), we extracted two folding events from the trajectory of
BBL (Figure 6): one from 60 to 90 μs and the other from 125 to 150 μs. It should be noted
that the TE analysis can only be applied to a stationary process,13 so it is necessary to use
windowing method to partition the original single folding event to several stationary
windows (see Materials and Methods). The Dy→x profiles have correspondence with Q-
score, but are less evident. In terms of driving and responding residues, compared to the
results from the whole trajectory (Figure 7A), the two single folding events are noisier and
thus have more drive-response pairs (Figure 7B, C). However, when considering the pairs
shared by the two single folding events, it is clear that the dominant responding residue
A148 from the whole trajectory is still preserved (Figure 7D; red in lower-half triangle).
Thus, the main characters of the drive-response relationships from the whole trajectories are
still captured in the single folding events.

CONCLUDING REMARKS
In this study, we applied the TE analysis to the folding simulation trajectories of four small
proteins, with the aim of identifying the drive-response relationship between residues and
extending the TE analysis in a time-dependent manner with test of statistical significance.
Deciphering such relationships is interesting in a theoretical point of view and can only be
carried out with information analysis such as TE. We find excellent correspondence between
the folding process and the TE values between residues. Upon folding and unfolding, a large
amount of information entropies is transferred between residues. Compared to responding
residues, the driving residues are mostly buried at the hydrophobic core and form more
regular secondary structures. They also have greater impacts on the protein stability as well
as folding and unfolding rates. We also carried out the analysis on two single folding events
from BBL and illustrate that the dominant responding residues from the whole trajectory are
preserved in the single events.

The TE analysis can only be applied to a stationary process, i.e., the average and standard
deviation of the time series do not change over time. For a non-stationary process, using
windowing method to cut the whole series into several segments could bypass this problem
in principle. In analyzing the whole trajectories, we used two window sizes of 4 and 10 μs,
and carried out the stationary test to make sure that each window was stationary. In the
single folding events, it is more difficult to use a window that is small enough to fulfill the
stationary requirement while large enough to contain sufficient data points. We ended up
with a window size of 2 μs, a compromise between the aforementioned two requirements,
which resulted in 1.4% and 2.6% non-stationary windows for the two single folding events.
The agreement of the dominant responding residues from the single folding events and the
whole trajectories suggests that this small percentage of non-stationary window might be
negligible. Another interesting observation is the time symmetric properties of the drive-
response relationship. In the whole folding trajectories, as the trajectories are time
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reversible, we do not expect any change between results calculated from the forward and
backward time series. In the single folding events, even if residue A drives residue B in the
forward (folding) process, residue B does not necessarily drive residue A in the backward
(unfolding) process. The causality relationship of two residues depends not only on the
sequential events, but also on the direction of information flow between them.

TE is applicable to any stationary time series in general. However, to get meaningful
insights from the TE analysis, statistical significance and stationary tests should be
performed carefully. The windowing method allows us to look at the causality in a time-
dependent manner when time evolution of the system is of interest; it also provides an
effective way to get around the stationary problem for non-stationary processes. As many
processes in biology are non-equilibrium in nature and the experimental observables are thus
mostly non-stationary, the wide applications of the TE analysis to such experimental
observables are expected to reveal the underlying mechanisms of biologically important
processes.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Schematic illustration of measuring TE. y(t) and x(t) are two time series. Let us assume that
we try to predict the future of x(t), xt+1, using the past k steps from x(t) and past l steps from
y(t). TE is the difference in such predictions between using the past of x(t) only :wqand
using the past of x(t) and y(t) together, and quantifies the information flow from y(t) to x(t).
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Figure 2.
Time-dependent Q-score and Dy→x profiles of the whole folding trajectory for (A) Trp-cage,
(B) BBL, (C) Villin, and (D) BBA. Different colors in the Dy→x profiles represent different
residue pairs.
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Figure 3.
Driving and responding residues in Trp-cage folding/unfolding. (A) A driver-responder plot
indicates a residue from x-axis drives (red) or responds to (blue) a residue from y-axis
(lower-half triangle). Since the C-terminal residues respond to N-terminal residues in Trp-
cage, no red color is shown. MI values, calculated from the whole trajectory, are colored
based on the color-coding bar (upper-half triangle). MI values smaller than 0.05 are colored
in white. (B) The structural view of the driving and responding residues. Arrows indicate
driving interactions. α-helix in cyan, 310-helix in yellow, and polyproline region in red.
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Figure 4.
Percentages of different secondary structures of driving (black) and responding residues
(red) from the test proteins
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Figure 5.
Effects of mutations to driving and responding residues in protein L. Mutations to driving
residues in red circles, to responding residues in blue circles, others in black dots, and the
wild type values in yellow square.

Qi and Im Page 14

J Chem Theory Comput. Author manuscript; available in PMC 2014 August 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Q-score and Dy→x profiles of two single folding events for BBL
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Figure 7.
Driving and responding residues for BBL determined from (A) the whole trajectory and (B
and C) two single folding events. (D) The shared drive-response residues and average MI
from (B) and (C). The color schemes are the same as in Figure 3.
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Table 1

Number of drive-response residue pairs with and without the p-value cutoff of 0.05 for the analysis of whole
trajectories of the test proteins.

p-value Cutoff Trp-cage BBL Villin BBA

Yes 36 17 16 8

No 82 149 133 42
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