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Abstract
Current methods of structure identification in mass spectrometry based non-targeted metabolomics
rely on matching experimentally determined features of an unknown compound to those of
candidate compounds contained in biochemical databases. A major limitation of this approach is
the relatively small number of compounds currently included in these databases. If the correct
structure is not present in a database it cannot be identified, and if it cannot be identified it cannot
be included in a database. Thus, there is an urgent need to augment metabolomics databases with
rationally designed biochemical structures using alternative means. In this study, we present a
database of in silico enzymatically synthesized metabolites (IIMDB) to partially address this
problem. The database, which is available from http://metabolomics.pharm.uconn.edu/iimdb/,
includes ~23,000 known compounds (mammalian metabolites, drugs, secondary plant metabolites
and glycerophospholipids) collected from existing biochemical databases plus more than 400,000
computationally generated human phase I and phase II metabolites of these known compounds.
The IIMDB database features a user-friendly web interface and a programmer-friendly RESTful
web service. Ninety-five percent of the computationally generated metabolites in IIMDB were not
found in any existing database. However, 21,640 were identical to compounds already listed in
PubChem, HMDB, KEGG or HumanCyc. Furthermore, a vast majority of these in silico
metabolites were scored as biological using BioSM, a software program that identifies
biochemical structures in chemical structure space. These results suggest that in silico biochemical
synthesis represents a viable approach for significantly augmenting biochemical databases for
non-targeted metabolomics applications.
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Introduction
Most non-targeted metabolomic studies use biochemical databases for structure
determination1–5. These studies typically report the identification of fewer than 10% of the
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total number of compounds detected2–4. This consistently low percentage suggests that
current biochemical databases do not contain most endogenous compounds routinely
detected in biological samples. Although it is not known how many compounds exist in the
human metabolome, one study has suggested that there are over 200,000 lipids alone6. This
number, however, is likely an underestimate considering that there are over 8×106 microbial
genes comprising the human microbiome7. Thus, with fewer than 70,000 compounds in
current biochemical databases, there is an obvious paradox that severely limits the utility of
non-targeted metabolomics research; if a structure is not included in a database it cannot be
identified, and if it cannot be identified it cannot be included in a database. Discovering,
purifying and identifying new biochemical compounds using classical analytical methods is
a time consuming, expensive and laborious process, especially using human samples. An
alternative approach is to supplement current databases with anticipated compounds
(compounds likely to be found in humans, but not yet identified). These anticipated
compounds may include compounds consumed by humans, compounds to which humans
are frequently exposed, and compounds that may be produced by biochemical pathways
(human and microbial) in the human body. Many metabolomics databases have recognized
the importance of including expected metabolites. Examples include computationally
generated di- and tri-peptide structures in the Metlin database8,9, computationally generated
lipid structures in Lipid Maps10,11 and expected compounds (e.g., foods, food additives,
environmental pollutants etc.) in HMDB12,13. Inclusion of anticipated metabolites is
especially important for mass spectrometry based metabolomics where structure
identification relies on all putative compounds being present in the database.

One approach to produce anticipated metabolites (unknown unknowns) would be to use in
silico enzymatic synthesis. For this approach to be successful, the selected in silico enzymes
would ideally have broad substrate specificity; as these would potentially catalyze the
metabolism of a variety of substrates (known and unknown) to produce novel products.
Indeed, it has been suggested that broad enzyme specificity and/or side reactions might
explain our incomplete knowledge of the human metabolome14. It is well known that phase
I and phase II enzymes are non-selective and are found in nearly all cells and tissues; having
evolved from promiscuous ancestral enzymes15–17. Since these enzymes typically
metabolize multiple drugs to give a variety of metabolites, we reasoned they might also
metabolize multiple endogenous compounds to produce a variety of previously unknown
products. Indeed, other investigators have identified multiple phase I and phase II
metabolites of endogenous biochemicals in mammalian serum18.

Previous studies using in silico enzymatically synthesized databases include the University
of Minnesota Biocatalysis/Biodegradation database19 (UM-BBD), the enzyme-catalyzed
metabolic pathway predictor: PathPred20 and the evidence-based metabolome library:
MyCompoundID21. The UM-BBD system uses a collection of microbial biodegradation
pathways to predict one or more reaction steps. The PathPred server uses KEGG
biochemical structure transformation patterns called RDM patterns22. This system focuses
on predicting pathways for microbial biodegradation (based on 947 RDM patterns) and plant
secondary metabolite biosynthesis (based on 1397 RDM patterns). The MyCompoundID
database uses 76 literature-derived common metabolic transformations in the form of
accurate mass transformations to identify unknown metabolites. This database includes 8021
known human endogenous compounds and their predicted metabolic products using one
(375809 metabolites) or two (10583901 metabolites) reaction steps.

Here we present an easily searchable database (IIMDB) comprised of a non-redundant set of
known biochemical “parents” collected from existing databases and their in silico phase I
and phase II metabolites. The known parent compounds were obtained from HMDB12,13,
KEGG23, HumanCyc24, PlantCyc25, Phenol Explorer26, Lipid Maps10,11, Drug Bank27 and
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the 1989 USAN and the USP dictionary of drug names28. In silico metabolites were
generated using phase I and phase II human biotransformation rules as implemented in the
program Meteor 1429,30. Interestingly, greater than 21,000 of these in silico generated
metabolites are already included in current databases suggesting that this general approach is
reasonable. The database features a user-friendly web interface and a programmer friendly
RESTful web service.

Methods
Parent Datasets

Mammalian Compounds—A dataset of mammalian compounds was compiled by
combining selected chemical structures in KEGG, HMDB and HumanCyc. Compounds that
contained any element other than C, H, N, O, P and S were eliminated. The dataset was
further limited to the 50–1000 Da molecular weight range. KEGG data was downloaded on
23rd of April 2011. Compounds that belong to at least one of the 63 known KEGG
mammalian pathways were selected31. HMDB data (Version 2.5) was downloaded on 15th

of July 2012. HumanCyc data (Version 16.0) was downloaded on 24th of May 2012.
Duplicate compounds were eliminated by comparing unique SMILES of the chemical
structures. The final mammalian dataset contained 1,579 KEGG compounds, 5,267 HMDB
compounds and 262 HumanCyc compounds.

Plant Metabolites—A dataset of plant metabolites was compiled by combining plant
metabolites from the KEGG database with polyphenols found in the Phenol Explorer
database (downloaded on 22nd of October 2012). The plant dataset was curated similarly to
that of the mammalian dataset. Any compound already contained in the mammalian dataset
was eliminated. The final dataset contained 2,765 KEGG compounds and 190 polyphenols.

Drugs—A dataset of drugs was compiled by combining approved, illicit and withdrawn
drugs in Drug Bank 3.0 (downloaded on 18th January 2012) and drugs listed in the 1989
USAN and the USP dictionary of drug names. Polymers, mixtures, single element drugs
(e.g. Fe) and compounds already contained in the mammalian and plant datasets were
eliminated. The final dataset contained 1,412 compounds from Drug Bank and 4,646
compounds from the 1989 USAN and the USP dictionary of drug names.

Glycerophospholipids—Glycerophospholipid compounds were downloaded from the
Lipid Maps database on 23rd of April 2012. The dataset was curated similarly to that of the
mammalian and plant datasets. Compounds already contained in other datasets were
eliminated. The final dataset contained 6,914 glycerophospholipids.

Structure Generation
In silico metabolites of parent compounds were generated with Meteor 14 (knowledge base
version 14.0.0_09_02_2012) from Lhasa Ltd. Meteor is a knowledge-based expert system
for predicting likely metabolites of a query chemical structure29,30,32. The Meteor system
consists of a knowledge base of phase I and phase II biotransformation rules and a reasoning
engine to determine the most likely metabolites. The list of phase I and phase II
biotransformation types included in Meteor is given in supplemental Table 1. The Meteor
reasoning engine uses two types of rules: absolute and relative to determine the more likely
metabolites out of many possibilities32–34. Absolute reasoning rules include 5 levels of
uncertainty from most likely to least likely as “probable” “plausible,” “equivocal,”
“doubted,” and “improbable.” Relative reasoning rules are used to determine the more likely
reaction out of two competing biotransformations. The Meteor processing constraints listed
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in Table 1 were chosen to strike a balance between likelihood of occurrence and
combinatorial explosion29,35,36 of results.

Database Implementation and Access
OrientDB (Version 1.3.0)37 from Orient Technologies was used for the construction of the
database. OrientDB is an open source Java based database management system (DBMS)
with both the features of document and graph DBMSs. All chemical structures and
associated data fields are stored in a single cluster (similar to a table in a relational database)
named “UniqueCompound”. The database is hosted on a Linux-based server running
OpenSuse 12.1. The database server is equipped with a 3.4 GHz Intel core i7 processor and
12 GB of RAM. The IIMDB database is available at http://metabolomics.pharm.uconn.edu/
iimdb/. Access to IIMDB is provided via a password protected web interface (Figure 1) and
a web service. The Meteor generated structures in the database are not freely available due
to the licensing restrictions (clause 6.1) in the Meteor licensing agreement. The end user is
required to have a valid licensed copy (purchasable from http://www.lhasalimited.org) of
Meteor to access IIMDB. However, all parent compounds that were used for this work are
freely available as a supplementary data file in xlsx format. The web interface is built using
HTML5, JavaScript and JQuery. This web interface will operate on most HTML5
compatible web browsers such as Mozilla Firefox (recommended), Google Chrome and
Internet Explorer 9 or later. JavaScript must be enabled in the user’s web browser.

Access to all data fields and most commonly used queries is provided through the web user
interface. The actual database querying is done using OrientDB’s own SQL like query
language. The end user’s interaction with the checkboxes and drop down menus on the
interface is converted into an SQL expression and shown in the large text area to the right.
This web interface can also be used as a tool to learn the underlying query language. The
predefined queries generated with the web interface can be modified or extended by
manually editing the text area. The query results are shown on a paginated data table. The
data table includes options to sort, full text search and export data to CSV and PDF file
formats. A step-by-step guide to viewing and converting structures is included in the
supplementary information. The programmatic access to IIMDB is provided via a RESTful
web service. IIMDB allows read only access to database records via OrientDB’s built in web
service. The query URI has the following general format: http://
metabolomics.pharm.uconn.edu/iimdb/query/iimdb/sql/ “SQL COMMAND” For example,
the command line input for listing compound IDs, mono isotopic molecular weights and
SMILES of compounds that have mono isotopic molecular weights between 500.2450 and
500.4580 is: http://metabolomics.pharm.uconn.edu/iimdb/query/iimdb/sql/
selectcompoundID,MIMW,smilesString from UniqueCompound where MIMW between
500.2450 and 500.4580

ALogP Calculations
Three random samples of parent compounds (each containing 100 compounds) per dataset
were drawn from the mammalian, plant, drug and glycerophospholipid datasets using the
Knuth shuffle algorithm38. Duplicate structures in datasets were removed after combining
random samples. The combined random samples comprised 298 mammalian parent
compounds, 294 parent drugs, 288 parent plant compounds, and 295 parent
glycerophospholipid compounds. AlogP values of parent compounds and their associated in
silico metabolites in random samples were calculated using web based ALOGPS 2.1
algorithm39.
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PubChem Search
All in silico generated chemical structures were searched on the National Center for
Biotechnology Information’s (NCBI) PubChem40 database (the largest freely accessible
compound database). The PubChem database searches were done between 10/01/2012 –
10/31/2012. The structure search was done with an in house program that was built around
PubChem’s power user gateway (PUG). Any PubChem compound that had the same
connectivity as the query compound or a tautomer of the query compound was considered a
match.

BioSM Predictions
Biological Structure Matcher (BioSM) is a computational tool that uses graph matching and
known mammalian metabolite structures to identify the biological likeness of a given
structure31. Previous studies have shown that BioSM identifies endogenous metabolites with
high accuracy. The BioSM algorithm was used to identify biological molecules in parent
and in silico-generated structures. Since BioSM was trained to predict the biological likeness
of chemical structures with molecular weights 50–700, only this range was considered.

Results and Discussion
Table 2 lists the number of Meteor generated metabolites for each of the 4 different classes
of parent compounds. The fourth column in Table 2 lists the fold increase in the number of
database compounds for each class of metabolite (i.e. number of in silico compounds/
number of parent compounds). Plant compounds produced the largest number of unique
metabolites per parent compound, whereas mammalian compounds produced the fewest. On
average 18 metabolite structures were generated for each parent compound using the Meteor
processing constraints given in Table 1.

Figure 2 shows the monoisotopic molecular weight (MIMW) distributions for mammalian,
drug, plant and glycerophospholipid parents and metabolites. Each individual plot in Figure
2 depicts MIMWs of parents, and probable and plausible metabolites as overlapping
histograms. The MIMWs of mammalian parents were spread over a range of approximately
54–999 Da with a mean MIMW of 537 Da. The MIMWs of in silico mammalian
metabolites span a range of approximately 31–1201 Da with a mean MIMW of 675 Da.
Thus, phase I and phase II metabolic transformations resulted in an expansion of the MIMW
range by −23 Da in the lower end and +202 Da in the upper end. The average MIMW of
mammalian compounds was increased by approximately 138 Da upon metabolism.
Similarly, the MIMW range of drugs was increased by approximately +32 Da with an
average MIMW gain of 111 Da. The MIMW range of plant compounds was increased by
−37 and +202 Da with an average gain of 142 Da. The glycerophospholipid metabolites
showed the largest increase in the lower end of the MIMW range with an increase of
approximately −225 Da. The upper end of the glycerophospholipids MIMW range showed a
negative shift of 132 Da (i.e. in silico metabolism of higher molecular weight parents
resulted in smaller metabolites), but on average, the MIMWs of glycerophospholipids were
increased by 34 Da.

Figure 3 shows AlogP values for parents and metabolites in 4 random samples of
approximately 300 compounds collected from the mammalian, drug, plant, and
glycerophospholipid datasets. In most cases, the computationally generated metabolites were
more polar (lower ALogP) than the parent compounds. These results are consistent with
established dogma that phase I and especially phase II biotransformation reactions produce
metabolites with increased polarity and thus are more easily eliminated. However, in some
cases less polar (higher ALogP) compounds are also observed. Kirchmair et al. reported a
similar observation in a recent study41. They found an increase in computational logP values
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of 4–9% for phase I and 8–13% for phase II metabolic transformation products. These
authors also suggested that metabolic reactions leading to more lipophilic molecules might
be related to metabolism in skin where an increase in logP allows metabolites to stay
attached to lipids and be excreted through desquamation of skin cells. A closer inspection of
the chemical structures in Figure 3 reveals that the large majority of in silico metabolites
with increased logP are either lipids or lipid related molecules. In the IIMDB the calculated
AlogP values can be used to restrict search results. This is especially useful when searching
for metabolites in a certain ALogP range (e.g. more polar metabolites that might be found in
urine).

The data in Figure 3 suggest that multiple mammalian and glycerophospholipid parent
compounds were being metabolized to form the same final product, since multiple in silico
metabolites appear to have the same or very similar AlogP values. Indeed, a closer
examination of the four datasets revealed that these metabolites were in fact identical, but
were being produced from different parents. Figure 4 shows the number in silico metabolites
produced from multiple parents as histograms. For example, 11 in silico metabolites (last bin
in the Figure 4-a) were produced from 500–1000 different mammalian parent structures.
Interestingly, all of these 11 in silico metabolites were found in PubChem (accessed between
10/01/2012 – 10/31/2012); 72% of them were also found in HMDB 2.5, KEGG
(downloaded on 23rd of April 2011) or HumanCyc 16.0. Similarly, 100% of the drug
metabolites in the 101–500 bin, 73% of glycerophospholipid metabolites in the 101–500 bin
and 61% of plant metabolites in the 11–100 bin were found in PubChem. Acetic acid was
produced from 196 different parent plant compounds (Figure 4d). These results suggest that
metabolites in IIMDB that are generated from multiple parents are more likely to be present
in current database and/or previously found in vivo.

Figure 5 (top panel) gives an example of a parent mammalian metabolite (2-
aminoethoxy(2R)-2,3-bis(tetradecanoyloxy)propoxyphosphinic acid: HMDB08821)
metabolized by Meteor. Meteor predicted 50 metabolites of HMDB08821; 35 were not
found in any database, 8 were found in HMDB, and 15 were found in PubChem. Figure 5
(bottom panel) shows three of the 50 metabolites. Metabolite-1 (2-aminoethoxy(2S)-2,3-
dihydroxypropoxyphosphinic acid: HMDB59660) was found in HMDB and has been
identified in vivo42, while the other two compounds were not found in any database even
though they are similar to Metabolite-1. Metabolite-1 was produced from HMDB08821 and
753 other parents (most are probably also glycerophospholipids). Metabolites 2 and 3 were
produced from HMDB08821 and 80 other parent metabolites. This result is consistent with
what is shown in Figure 4; that metabolites produced by multiple parents are more likely to
be found in vivo and included in current databases. Selected Meteor generated metabolites
for 3 more examples (HMDB06335, HMDB12490, and HMDB00413) can be found in the
supplementary information.

As shown in Figure 6, most Meteor generated metabolites are not found in PubChem or any
other existing database. Out of 92693 Meteor generated mammalian metabolites, 4578
(~5%) are found in PubChem. Approximately 10% of drug metabolites, 7% of plant
metabolites and 2% of glycerophospholipid metabolites are found in PubChem.

Of the 4578 Meteor generated mammalian metabolites found in PubChem, 1682 (1.81%) are
also found in HMDB. Approximately 2% (1756) of Meteor generated mammalian
metabolites matched a mammalian parent found in HMDB, KEGG or HumanCyc. Thus, of
the 7108 mammalian parent compounds, we found that approximately 25% of these were
produced by phase I and phase II in silico enzymatic metabolism of other parents. These
results confirm that this method produces authentic biochemical metabolites.
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The biological structure matching algorithm BioSM was also used to assess the potential
biological relevance of augmenting current databases with computationally generated
compounds. Both parent and in silico metabolites were classified as either biological or non-
biological (Figure 7). The results indicate that the biological likeness of the mammalian set
of compounds compare closely with their in silico metabolites (94.7% vs. 92%). If in silico
metabolites of only those parents that are predicted to be biological are considered, they are
nearly identical (94.7% vs. 94.4%). Interestingly, 47.1% of in silico metabolites generated
from non-biological mammalian parents (i.e. mammalian parents predicted to be non-
biological by BioSM) were predicted to be biological. The same trend is observed for all
classes of compounds. A greater portion of in silico metabolites of both drugs and plant
compounds were predicted to be biological than their parents. In the case of drugs, the
number of compounds predicted to be biological increased by 22.5% upon metabolism. As
shown in Figure 7 (lower panel), the biological drug metabolites (35.2%) generated from
non-biological drug parents (60.8%) account for the observed increase. In most cases, in
silico metabolism increased the probability that a compound was scored as biological by
BioSM. This seems especially likely when added functional groups are relatively large
compared to the parent compound (e.g. glucuronidation).

IIMDB’s imbedded RESTful web service allows easy integration with third-party
applications. Any existing database dependent metabolomics program can use IIMDB as an
additional compound source. Obviously, in silico metabolites such as these cannot be
annotated with experimental data such as MS/MS spectra or experimental retention times.
However, quantitative structure-property relationships (QSPR) based predictive models can
be used to efficiently filter out irrelevant metabolites and retain candidates that match
experimental values. In this method, in silico generated candidate compounds whose
predicted features lie outside the range of values allowed by the QSPR models are removed
from consideration. Three such QSPR models (retention index, ECOM50, and drift time)
that can be used to filter out IIMDB metabolites are discussed in our previous work43–48 and
are implemented within the MolFind46 software. The remaining candidate compounds can
then be computationally fragmented and matched with experimental mass spectra to identify
unknowns.

Meteor and other in silico metabolism programs are known to over predict the number of
possible metabolites if less restrictive constraints are used35,49. However, having a certain
number of false positives (i.e. a larger biochemical database) is not a disadvantage if these
can be filtered out efficiently. Our previous studies46,48 have shown that predictive models
such as those in MolFind can filter out ~87% of candidate compounds in a PubChem bin
(monoisotopic molecular weight ± 10 ppm). The remaining candidates are ranked by
comparing their predicted properties (retention index, ECOM50, drift index and simulated
CID spectrum) with experimental data.

With the inclusion of computationally generated metabolites of additional structures in Lipid
Maps and HMDB 3.0, the IIMDB could grow to approximately 2 million structures. Our
previous work using BioSM showed that approximately 3 million compounds in PubChem
are biological31. Since the majority of compounds in IIMDB (~95%) are not found in
PubChem, IIMDB will significantly augment these 3 million biological candidate structures
to provide a useful resource for non-targeted metabolomics research.

Summary and Outlook
In summary, IIMDB provides a web accessible, user and programmer friendly metabolite
database for mass spectrometry based structure identification. IIMDB is also the largest
small molecule database of its kind comprising 23035 known and 400414 computationally
generated metabolites. The large majority of in silico compounds are not found in existing
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databases such as PubChem. Furthermore, most of these compounds are predicted to be
biological by BioSM. This article describes the status of the first version of IIMDB. We plan
to significantly expand IIMDB by computationally metabolizing additional compounds
found in HMDB 3.0 and other classes of lipids in the Lipid Maps Structure Database.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
IIMDB Web User Interface
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Figure 2.
MIMWs for Mammalian, Drug, Plant and Glycerophospholipid Compounds. The
histograms were generated with a bin size of 10 Da. Color blending is used to illustrate the
MIMW bins shared by different types of compounds. For example, in Figure 2, dark green
represents MIMW bins common to probable and plausible metabolites.
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Figure 3.
AlogP Values for Random Samples. Each orange point on the x-axis represents a parent
compound. In silico metabolites of each parent compound are shown either below (more
polar) or above (less polar) the parent that produced it.
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Figure 4.
In Silico Metabolites Produced by Multiple Parents
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Figure 5.
Three Meteor Generated Metabolites of HMDB08821 (Metabolite-1 matched HMDB
compound HMDB59660)
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Figure 6.
Meteor Generated Metabolites Found in PubChem. Any PubChem compound that had the
same connectivity as the query compound or a tautomer of the query compound was
considered a match.
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Figure 7.
Biological Structure Matching with BioSM. Biological Parents refer to parent structures
predicted to be biological by BioSM.
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Table 1

Meteor Processing Constraints Used in the Structure Generation

Processing Constraint Value

Absolute reasoning level Plausible

Relative reasoning level Top levels (2)

Maximum number of steps in a pathway 4

Species Human

Phase option Do not grow from phase II products

Maximum total number of metabolites 100
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