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Abstract
The development and increasing sophistication of electronic medical record (EMR) systems hold
the promise of not only improving patient care but also providing unprecedented opportunities for
discovery in the fields of basic, translational, and implementation sciences. Clinical pharmacology
research in the EMR environment has only recently started to become a reality, with EMRs
becoming increasingly populated, methods to mine drug response and other phenotypes becoming
more sophisticated, and links being established with DNA repositories.

EMR CAPABILITIES
The 2009 Health Information Technology for Economic and Clinical Health (HITECH) Act
is providing substantial economic incentives for health practitioners to adopt EMR systems,
by offering incentive payments for “meaningful use” of EMRs and (scheduled to begin in
2015) decreasing Medicare payments to practitioners who do not adopt such standards.1 As
these capabilities become more widely embedded across the health-care system, there is an
increasing opportunity for generating very large sets by developing collaborations among
health care systems with EMRs, e.g., the HMO Research Network, the Agency for
Healthcare Research and Quality–funded Scalable Partnering Network (SPAN), and the
electronic Medical Records and Genomic (eMERGE) Network of the National Human
Genome Research Institute.2–4

EMRs can include a range of capabilities that in turn affect how useful they can be in
medical practice. At the simplest level, an EMR is a longitudinal record of the health status
of an individual patient, leading to increased efficiencies through simple changes in practice,
such as more rapid and simultaneous access to medical information and reducing costs
associated with paper storage and retrieval. EMR systems receive patient data directly from
users and also from diverse subsystems (such as pharmacies and radiology records) through
common protocol languages (typically Health Language 7) and serve as an information
repository for more advanced patient-specific guidance through computerized provider order
entry and electronic prescribing systems as practitioners execute orders for individual
patients. Such capabilities can provide reminders of the required preventive medicine alerts,5
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potential drug–drug interactions,6 and guidance for situations in which laboratory testing can
be avoided.7 EMRs can provide tools to aggregate outcomes for many patients and thereby
provide practices with metrics such as drug utilization, adherence to guidelines, and real-
time surveillance of at-risk populations.8 An extension of this concept is to aggregate
information across EMR systems; for example, the implementation of a Regional Health
Information Exchange across emergency rooms in Memphis, Tennessee, decreased
utilization of computed tomography scans and laboratory tests and resulted in fewer hospital
admissions.9 Ultimately, EMR systems can become central elements in large-scale public
health surveillance. For example, a retrospective examination of myocardial infarction after
the introduction of rofecoxib and celecoxib revealed an ~30% increase in myocardial
infarction rates that returned to baseline after the removal of rofecoxib from the market in
2004.10 The idea that automated surveillance systems can provide an early warning of such
events is one rationale for the Sentinel initiative of the US Food and Drug Administration.11

Notably, EMRs can be used for discoveries of this type, in parallel with other sources of
such information: tracking Google searches allowed investigators to detect the onset of the
2008 influenza epidemic with a one-day time lag, far shorter than could be achieved with
conventional surveillance.12 Another database that has been analyzed in parallel with EMR
data is the FDA’s Adverse Event Reporting System. Tatonetti and colleagues13 developed
methods to identify a profile (often involving drug exposures or diagnoses) of patients with
abnormalities of glucose homeostasis and deployed these in the Adverse Event Reporting
System. They used their definition to screen for pairs of drugs that individually had no effect
on glucose homeostasis but in combination exerted a strong effect. This approach implicated
the combination of pravastatin and paroxetine in promoting hyperglycemia, and the same
signal was then sought in three EMR systems. Neither drug by itself affected blood glucose
levels. However, in 104 patients with diabetes and 135 without diabetes who had received
the combination, blood glucose concentration increased 19 mg/dl overall, and in those with
diabetes the change was even larger, 48 mg/dl. Further study indicated that this is not a
general effect of combined therapy with selective serotonin reuptake inhibitors and statins.

The idea of coupling DNA repositories to EMR systems14,15 raises the possibility, now
validated across multiple studies as described below, that the EMR can be used in genomic
and pharmacogenomic research, e.g., to replicate or discover genotype–phenotype
associations. One common model is to seek out and prospectively obtain consent from
volunteers for such projects.14 An advantage of such repositories is the ability to recontact
patients (e.g., to obtain further phenotypic information). An alternative approach is to extract
DNA from discarded tissue and couple information on genomic variation to de-identified
EMR information.15 Natural-language text de-identification systems16 are used to suppress
personal health information while retaining the richness of clinical content necessary to
determine whether an individual meets the required criteria. The advantage of this approach,
which can be coupled to an “opt-out” capability,15,17 is that large cohorts can be accrued
relatively quickly and inexpensively. A disadvantage is that it does not allow recontacting
patients, so that whatever analysis is proposed must rely exclusively on information
contained in the EMR.

EMR-BASED DISCOVERY IN CLINICAL PHARMACOLOGY
Approach to EMR-based phenotyping

A common experimental design starts with construction of a cohort of cases and controls for
a specific phenotype (e.g., a disease or exposure status to a medication) from EMR data. A
manual chart review—the traditional approach for phenotyping— has been successfully
used in an EMR environment, but it is cumbersome and time-consuming and generally
cannot generate very large cohorts.18 More recent efforts have been focused on developing

Roden et al. Page 2

Clin Pharmacol Ther. Author manuscript; available in PMC 2013 November 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



electronic algorithms for determining specific phenotypes from EMRs.19,20 The criterion
that we and others have adopted2 is that algorithms should have very high positive
predictive values (PPVs, generally >90–95%) to be able to identify cohorts for case–control
studies. The general approach has been to develop an algorithm and deploy it in an EMR
system until a set of cases (generally 50–100) is identified for manual review. This manual
review then determines the PPV and deficiencies in the electronic phenotyping algorithm.
The algorithm is then refined and the process iterated until the threshold PPV is attained.
Especially with respect to common diseases, a similar process of algorithm development
with validation and iterative refinement is undertaken to select control cohorts.

In general, the use of simple coded data such as International Classification of Disease
(ICD-9) codes alone generates PPVs that do not approach the >95% PPV criterion.20

Accordingly, phenotype algorithms often consider both structured (e.g., ICD-9 codes or lab
results) and narrative (e.g., various types of clinical notes, text messages between patients
and care providers) data in EMRs.19 Natural-language processing technologies that can
extract structured information (e.g., smoker: yes or no) from unstructured narrative clinical
text have been used in such algorithms.21 The use of natural-language processing is
especially important to detect diseases and events occurring at facilities outside the
recording center and entered as part of the patient’s past medical history and for discovery of
rare events that may not be represented in typical coding systems. As described below, well-
defined electronic phenotyping algorithms have been successfully developed and employed
in EMR-based studies of variability in disease presentations and genetic associations.19,22,23

One appealing feature of EMRs is that their inclusion of longitudinal data should enable
studies of variability in phenotype such as those associated with disease complications, the
tempo of disease progression, and response to drug exposures. Accurate identification of
drug exposures from longitudinal observational EMR data is a key example of the
challenges in implementing this idea. Although various types of structured medication data
(e.g., physician order entries and drug administration records) may be available in inpatient
settings, much of the information related to outpatient drug exposures resides in the
narrative text of clinic notes or interoffice communications (e.g., phone call records with
patients) and may therefore not be readily available for data analysis. Drug exposures
change frequently over time because of intolerance, insurance status, patient/provider
preferences, and the desire to reach clinical targets. Compliance is another important issue in
drug-related studies. The manual method, in which a domain expert reviews all the different
sources to compile a longitudinal history of drug uses for identifying drug exposure, is
cumbersome and costly and often results in study cohorts with limited sample size.18 As
with disease definitions, advanced informatics methods that combine multiple sources of
data have been developed.24 These methods have successfully exploited the longitudinal
nature of the EMR to identify drug–response phenotypes such as those associated with
cardiovascular events during clopidogrel therapy after coronary stenting.25 More
sophisticated drug–response phenotype definitions, such as international normalized ratio
prolongation during warfarin therapy26 and the development of dose–response curves by
analysis of low-density lipoprotein responses to multiple statin doses,27 have been
successfully developed. Through the rigorous characterization of phenotype,
misclassification bias is minimized, thereby yielding greater insights into the true genetic
architecture underlying treatment response.

A key lesson in these efforts is that high-quality phenotypes are best generated by
collaboration among investigators with expertise in multiple disciplines, including
biomedical informatics, epidemiology, and clinical pharmacology. It is especially important
to engage practitioners in the specific disease domains being studied: these individuals have
specific expertise on how diseases are represented in areas such as coding, laboratory values,
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and free text and how diseases with similar presentations (e.g., rheumatoid arthritis vs.
systemic lupus erythematosus) are distinguished in the EMR environment. Indeed, one
advantage of the inclusion of longitudinal data in EMR-based phenotyping is the ability to
distinguish among related diagnoses such as these on the basis of data from the multiple
visits represented in an EMR. Preliminary data indicate that phenotype definitions
developed in one EMR can be successfully deployed in others.28,29

Gene–disease associations
The genome-wide association study (GWAS) paradigm has been successfully applied to
hundreds of human traits, and common single-nucleotide polymorphisms (SNPs) associated
with these phenotypes have been identified and often replicated in large community-based
or research-purposed cohorts. One of the first studies19 to demonstrate that these
associations can be replicated in an EMR environment analyzed 21 SNPs that had
previously been implicated as common variants predisposing to atrial fibrillation, Crohn’s
disease, multiple sclerosis, rheumatoid arthritis, or type 2 diabetes. For each phenotype,
natural-language processing techniques and billing code queries were applied to a set of
9,483 samples to identify cases (n = 70–698) and controls (n = 808–3,818). Each of the 21
tests of association yielded point estimates in the same direction as reported in the literature,
and a majority of genotype–phenotype associations with reported odds ratios >1.25 were
replicated at the P < 0.05 level.

Nodes in the eMERGE network have developed several algorithms to identify common
phenotypes and have deployed these across several EMR systems29 to replicate known
GWAS-derived associations and identify new ones.28,30,31 One report highlighted the
advantage of performing studies in EMRs by repurposing GWAS-level genotyping data
previously obtained for other phenotypes so as to identify a potential association between
SNPs near FOXE1, a transcription factor previously associated with thyroid cancer and
primary hypothyroidism.28

Application to pharmacogenomics
It is only in the past several years that EMRs have been coupled to DNA repositories and
methods developed to identify cases and controls for disease association studies. The use of
these resources for pharmacogenomics has lagged further behind, in part because the
phenotyping for drug response is, as discussed above, necessarily more complex, with the
numbers of cases being smaller. Nevertheless, studies have been conducted to examine
drug–response phenotypes that can be readily extracted from EMRs with respect to many
commonly used drugs.

HMG-CoA reductase inhibitors (statins) are the most commonly prescribed class of drugs in
developed countries, and much of the observed variability in the low-density lipoprotein
cholesterol–lowering efficacy of statins can be attributed to underlying genetic factors.32 Yet
GWAS published by our group and others have resolved very few loci associated with
statin-induced change in low-density lipoprotein cholesterol at a level reaching genome-
wide significance.33 This is in part because treatment trials often contain data for only a
single dose. By applying natural-language processing algorithms to data contained within
EMRs, mathematical parameters representing potency (ED50) and efficacy (Emax) can be
derived from full dose–response curves, thereby enabling the world’s growing biobanks to
overcome the initial obstacles faced during early statin GWAS.

Estrogen-receptor SNPs have been implicated as risk factors for venous thromboembolic
disease during tamoxifen treatment in an EMR environment.34 The association between
CYP2C19*2 and cardiovascular risk in patients receiving clopidogrel after coronary stenting
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was replicated in an EMR environment, and an association with a variant in ABCB1,
identified in some but not all previous studies, was also observed.25 Similarly, associations
between variants in CYP2C9, VKORC1, and CYP4F2 and steady-state warfarin dose
requirement in Caucasians were replicated in the EMRs, and new associations were
identified with different CYP2C9 variants as well as with variants in CALU in African
Americans.35 The clopidogrel and warfarin experiments leveraged significant human review
to refine extraction of dose and assess compliance; the warfarin association was later
replicated using only informatics techniques, yielding nearly the same results.26 EMRs
coupled to DNA repositories may also be a resource for studying the genomics of rare drug
responses, although this vision has not yet come to fruition.36

Phenome scanning
The inclusion of many and diverse diagnoses per record in EMR systems that also include
extensive genomic data opens up the possibility of phenome scanning.37,38 The concept can
be thought of as the inverse of the GWAS paradigm; a phenome- wide association study
(PheWAS) examines the relationship between a single genetic variant and a large range of
phenotypes,38 currently represented as a series of ICD-9 codes. Preliminary studies
demonstrated that the PheWAS method could replicate known phenotype–genotype
associations.38 The eMERGE hypothyroidism GWAS examined 1,317 cases and 5,053
controls; a parallel PheWAS in 13,617 patients readily replicated the association with
FOXE1 SNPs (with a P value <10−13) and identified additional associations with thyroiditis,
nodular and multinodular goiters, and thyrotoxicosis, but not with Graves’ disease.28

SUMMARY: CHALLENGES AND OPPORTUNITIES
This description should make clear that the potential is now being realized for EMRs to act
as a resource for discovery of new drug actions and of genomic influences on disease
phenotypes and drug responses. The need to develop large data sets to study variability in
human traits, including drug responses, can be met by single EMRs—in particular, by
coupling EMRs to networks. Phenotyping presents a challenge; although the EMR is, by its
nature, a “messy” (noisy) data set, methods to identify valid cases and controls are being
refined. In addition, these studies can point to new types of information that might be
desirable to include in the EMR. Examples include structured family histories and improved
methods to document drug exposures and to couple pharmacy records to EMRs. Charts may
be fragmented, and records of care delivered may be distributed across many EMR systems;
interestingly, the Veterans Affairs EMR is an example of an integrated system that can
deliver information at many nodes nationally. Although studies in the EMR environment
raise privacy concerns, the EMR also provides a platform for examining the extent to which
individual identities can be protected.39

A widely held vision is that information on genomic variation will be used to inform
decision making for prevention, prognosis, and treatment. The discipline of
pharmacogenomics is identifying an increasing number of variants associated with drug
responses; however, the very success of these efforts represents a barrier to implementation
because no human can be expected to keep track of this increasing data set and its
implications for drug prescribing. The capability of advanced EMR systems to archive large
amounts of individual data and deliver advice to providers at the point of care seems to offer
an obvious solution to this problem. Implementing this concept presents many challenges;
these are further outlined in our recent description of the Vanderbilt PREDICT project, a
program that deposits genomic variant data into EMRs on a preemptive basis and delivers
point-of-care electronic decision support if a drug with known pharmacogenomic variability
is prescribed.40
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