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This study was aimed to compare two electroencephalogram (EEG) analysis methods, spectral asymmetry index (SASI) and
Higuchi’s fractal dimension (HFD), for detection of depression. Linear SASImethod is based on evaluation of the balance of powers
in two EEG frequency bands in one channel selected higher and lower than the alpha band spectrum maximum. Nonlinear HFD
method calculates fractal dimension directly in the time domain. The resting EEG signals of 17 depressive patients and 17 control
subjects were used as a database for calculations. SASI values were positive for depressive and negative for control group (𝑃 < 0.05).
SASI provided the true detection rate of 88% in the depressive and 82% in the control group.The calculated HFD values detected a
small (3%) increase with depression (𝑃 < 0.05). HFD provided the true detection rate of 94% in the depressive group and 76% in the
control group.The rate of correct indication in the both groups was 85% using SASI or HFD. Statistically significant variations were
not revealed between hemispheres (𝑃 > 0.05). The results indicated that the linear EEG analysis method SASI and the nonlinear
HFD method both demonstrated a good sensitivity for detection of characteristic features of depression in a single-channel EEG.

1. Introduction

Mental disorders are widespread in the population. Accord-
ing to statistics by National Institute of Mental Health,
approximately one quarter of adults are diagnosable for one
or more disorders in the United States [1]. Major depressive
disorder is one of the most common mental disorders: about
6.7% of population suffers from depression, and the rate is
increasing [2].

Nowadays, the diagnosis of depression is basedmainly on
evaluation of the intensity of subjective symptomsusing ques-
tionnaire and interview. On the other hand, any declinations
in the brain functioning are expected to be reflected in the
brain bioelectrical activity. Therefore, the electroencephalog-
raphy (EEG) is a valuable method for getting objective infor-
mation about the changes in brain physiology specific for
depression.

Brain behaves as a complex nonlinear system [3–5].
Therefore, nonlinear methods for analysis of EEG signal are
expected to providemore information about properties of the

brain compared to linearmethods. Various linear and nonlin-
ear methods have been used in EEG analysis, as higher order
spectra, recurrence quantification analysis, entropy and com-
plexity measures, cumulants, and so forth [5–8]. Nonlinear
methods of EEG analysis as fractal dimension, correlation
dimension, and detrended fluctuation analysis have been
demonstrated to be effective in detecting special EEG features
in brain related to epilepsy, schizophrenia and Alzheimer’s
disease by many authors [9–13].

In the analysis of depression EEG mostly linear methods
have been used. Specific features of resting EEG in depression
as changes in EEG bands powers and frontal interhemi-
spheric asymmetry have been reported by several authors
[14–16]. Discriminant analysis of quantitative EEG classified
correctly 91.3% of the patients and controls [14]. However, the
validity potential of frontal alpha asymmetry as a clinical
measure for depression still remains unclear [17].

In our previous study, a measure for evaluation of depres-
sion based on resting EEG spectral frequency features was
developed [18, 19]. The spectral asymmetry index (SASI) is
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based on evaluating balance of powers in two EEG frequency
bands in one EEG channel selected higher and lower than the
alpha band spectrum maximum [18, 19]. Compared to inter-
hemispheric asymmetry and coherence, SASI provided better
discrimination between depressive and healthy subjects [19].

Only few results have been reported on application of
nonlinear methods for detecting specific properties of EEG
related to depression [20, 21].The study by Hosseinifard et al.
shows that various methods of nonlinear EEG analysis,
including detrended fluctuation analysis (DFA), Higuchi’s
fractal dimension (HFD), correlation dimension (CD), and
Lyapunov exponent, each provide classification of depression.
Application of combined nonlinear features provides better
discrimination for depressed and normal subjects (90%)
compared to EEG bands power (76.6%) [20]. Ahmadlou et al.
concluded thatKatz’s fractal dimension revealed nomeaning-
ful difference in frontal EEG between depressive and control
subjects, whereas Higuchi’s fractal dimension was more
informative [21]. The machine learning techniques classifiers
withmultichannel EEGdata input were used for classification
in these studies [20, 21].

On the other hand, in some recent clinical applications,
correlation between EEG biomarkers and changes in depres-
sion mode throughout the treatment course was not revealed
[22–24]. The reported analysis of EEG data from the study of
transcranial magnetic stimulation (TMS) showed that EEG
power in multiple bands measured at baseline and through-
out the treatment course did not correlate with eventual res-
ponse to TMS treatment [22]. During a neurofeedback ses-
sion, it was tested if the balance between left and right frontal
alpha activity could be changed; however, no changes in
mood were observed [23]. Results of another study indicated
a negative association between parietal-occipital alpha power
in the eyes open resting state and depression severity esti-
mated by the brain-derived neurotrophic factor as one of the
important factors in the etiology ofmajor depressive disorder
[24]. The results reported in the cited above clinical studies
confirm that the linear EEG analysis, based on the absolute
level of EEG rhythms power, does not provide detecting alter-
ations in depression severity throughout the treatment course
[22–24]. Therefore, studies in selection of more sensitive
dependable EEGanalysismethods for detection of depression
are required.

Idea of this study was comparison of linear and nonlinear
EEG analysis methods for discrimination of depression. The
selection of methods for comparison was based firstly on the
previous results achieved with the method and secondly on
the simplicity of calculation algorithm.

Our previous results demonstrated that linear SASI
method provides higher sensitivity for detection of depres-
sion compared to other methods as interhemispheric asym-
metry or coherence at the comparable complicacy of comput-
ing algorithms [19].

HFD has been shown to provide better discrimination
(91.3%) compared to Katz’s fractal dimension [21]. Compar-
ison of CD, HFD and DFA for classification of depression
indicated CD showing the highest sensitivity (classification
83.3%), while HFD and DFA sensitivity was somewhat lower
(76.6%) [20]. However, HFD calculates fractal dimension of

time series directly in the time domain, and the HFD algo-
rithm is much more straightforward and faster compared to
CD (and also DFA) calculation algorithms [25]. Therefore,
SASI as a linear, andHFDas a nonlinear EEGanalysismethod
were selected for comparison in the analysis of depression
EEG in this study.

2. Materials and Methods

2.1. EEG Signals. The resting eyes closed EEG signals of 17
depressive patients and 17 control subjects were used as a
database for calculations of spectral asymmetry index and
Higuchi’s fractal dimension.The group of depressive patients
consisted of female subjects without antidepressant treat-
ment, average age 39 years, with standard deviation 12 years.
The control group included matched by age healthy female
subjects. The EEG recordings were performed in electrically
and acoustically shielded dim laboratory room to avoid exter-
nal disturbances. The subjects under investigation were lying
in relaxed position with closed eyes during the recordings.

The 5min EEG signals were recorded from 18 channels
according to the international 10-20-electrode position clas-
sification system. The Cadwell Easy II EEG measurement
equipment was used for recording raw EEG signals with a
frequency band of 0.3–70Hz. The EEG signals were further
filtered using Butterworth band-pass 0.5–48Hz filter with
an attenuation of 100 dB in the stopband and stored on a
computer at the sampling frequency of 400Hz. An example
of the recorded EEG signal is presented in Figure 1.

The study was conducted in accordance with the Dec-
laration of Helsinki and approved by the Tallinn Medical
Research Ethics Committee.

EEG analysis was performed offline using Matlab soft-
ware. SASI and HFD were calculated in frontal FP1 and FP2,
temporal T3 and T4, parietal P3 and P4, and occipital O1 and
O2 EEG channels using Cz as reference.

2.2. Spectral Asymmetry Index Method—SASI. The principle
of SASI is estimation of the spectral asymmetry of EEG spec-
trum regarding its maximum in alpha band [18]. For this
purpose, the relative difference of the powers in the frequency
bands selected higher and lower than alpha is calculated in
one EEG channel. To achieve the balance of two powers in
lower and higher EEG frequency bands, the width of the
selected bands must compensate the difference in the EEG
spectral density. The central (alpha) band frequencies are ex-
cluded from the analysis. The boundary frequencies selected
for calculation frequency bands were adjusted taking into ac-
count the individual alpha for a subject.

The principal scheme of the SASI method is presented in
Figure 2. The boundary frequencies of the lower and higher
frequency bands are related to the central frequency of the
spectrum𝑓

𝑐
, located in alpha band.The lower frequency band

was selected from 𝑓
1
to 𝑓
2
, where

𝑓
1
= (𝑓
𝑐
− 6) Hz, 𝑓

2
= (𝑓
𝑐
− 2) Hz. (1)
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Figure 1: An example of the recorded depression EEG signal in
channel P3.
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Figure 2: The scheme of SASI method: an EEG spectrum (black
line) and a parabolic approximation (green line); 𝑓

𝑐
—themaximum

of parabolic approximation; 𝑓
1
and 𝑓

2
—lower and higher boundary

frequencies of the lower EEG frequency band;𝑓
3
and𝑓

4
—lower and

higher boundary frequencies of the higher EEG frequency band.

The higher frequency band was selected from 𝑓
3
to 𝑓
4
, where

𝑓
3
= (𝑓
𝑐
+ 2) Hz, 𝑓

4
= (𝑓
𝑐
+ 26) Hz. (2)

In this selection, the alpha-band width is presumed to be
equal 4Hz. The width of the lower frequency band is also
selected as 4Hz, close to traditional theta band. The higher
frequency band is selected of 24Hz covering EEG beta band
frequencies. The selected bands are not necessarily matched
to traditional EEG bands frequencies. The bandwidths were
selected empirically during our previous studies [19].

The values of EEGpowers in the frequency bands of inter-
est, selected higher and lower of the spectrum maximum,
were calculated for each EEG channel 𝑚 and subject 𝑛. The
power in the lower frequency band 𝑃

𝐿𝑚𝑛
was calculated as

𝑃
𝐿𝑚𝑛
=

𝑓
2

∑

𝑓=𝑓
1

𝑆(𝑓)
𝑚𝑛
, (3)

where frequencies𝑓
1
and𝑓
2
are determined by conditions (1)

and 𝑆(𝑓)
𝑚𝑛

is power spectral density of the recorded EEG
signal. The power in the higher frequency band 𝑃

𝐻𝑚𝑛
was

calculated as

𝑃
𝐻𝑚𝑛
=

𝑓
4

∑

𝑓=𝑓
3

𝑆(𝑓)
𝑚𝑛
, (4)

where frequencies 𝑓
3
and 𝑓

4
are determined by conditions

(2). The power spectral density of the signal 𝑆(𝑓)
𝑚𝑛

was

calculated using Welch’s averaged periodogram method. The
signal was divided into series of overlapped segments (50%
overlapping) with the length of 1024 samples. Every segment
was multiplied by Hanning window function:

𝑤 (𝑛) = 0.5 (1 − cos 2𝜋𝑖
𝑁 − 1
) , (5)

where 𝑖 is a sample index and𝑁 is the number of samples in
a segment. The periodogram was calculated by applying fast
fourier transform to awindowed segment and time-averaging
of the result.

The general algorithm for calculation of SASI presents
relative difference of EEG powers in the frequency bands
selected higher and lower than alpha band frequencies:

SASI
𝑚𝑛
=
𝑃
𝐻𝑚𝑛
− 𝑃
𝐿𝑚𝑛

𝑃
𝐻𝑚𝑛
+ 𝑃
𝐿𝑚𝑛

, (6)

where 𝑃
𝐻𝑚𝑛

is determined by (3) and 𝑃
𝐿𝑚𝑛

by (4).
The formula (6) provides differentiation between depres-

sive and control subjects using zero level for decisionmaking:
a subject is identified as depressive by positive and nonde-
pressive by negative SASI value.

The adjustment of the SASI calculation algorithm to indi-
vidual subject was performed taking into account individual
alpha frequencies of the patients (Figure 2). Central fre-
quency of the spectrum was calculated employing parabolic
approximation of the spectrum in the alpha band.The reason
of such approach was that the real EEG spectrum is not
smooth and various side peaks can affect power distribution.
At first, the frequencywith themaximum spectral power𝑓max
in the region of alpha band (8–13Hz) of the recorded EEG
signal was estimated.Thereafter, the parabolic approximation
was applied to the spectrum of the EEG frequency band
(𝑓max± 2Hz).Theparabolic approximationwasmade by find-
ing the coefficients of a polynomial function that fits the data
in a least squares sense. The calculations were performed
applying the Matlab POLYFIT tool. The maximum point of
the fitted parabola𝑓

𝑐
was taken as the central frequency of the

spectrum for an individual subject.

2.3. Higuchi’s Fractal Dimension Method—HFD. HFD algo-
rithm calculates fractal dimension of time series directly in
the time domain [25]. It is based on a measure of length 𝐿(𝑘)
of the curve that represents the considered time series while
using a segment of 𝑘 samples as a unit if 𝐿(𝑘) scales like

𝐿 (𝑘) ∼ 𝑘
−FD
. (7)

The value of fractal dimension FD was calculated according
to the following algorithm [25]. From given time series𝑋(1),
𝑋(2), 𝑋(3), . . . , 𝑋(𝑁), a new series𝑋𝑚

𝑘
is constructed as:

𝑋
𝑚

𝑘
: 𝑋 (𝑚) , 𝑋 (𝑚 + 𝑘) , 𝑋 (𝑚 + 2k) , . . . ,

𝑋 (𝑚 + int(𝑁 − 𝑚
𝑘
) ⋅ 𝑘) , 𝑚 = 1, 2, . . . , 𝑘.

(8)
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The length 𝐿
𝑚
(𝑘) of every curve is calculated according to the

formula:

𝐿
𝑚
(𝑘) =
1

𝑘
[(

int((𝑁−𝑚)/𝑘)
∑

𝑖=1

|𝑋 (𝑚 + 𝑖𝑘) − 𝑋 (𝑚 + (𝑖 − 1) 𝑘)|)

×
𝑁 − 1

int ((𝑁 − 𝑚) /𝑘) ⋅ 𝑘
] .

(9)

The length 𝐿(𝑘) of the curve for time interval 𝑘 is defined as
average over 𝑘 values of 𝐿

𝑚
(𝑘), 𝑚 = 1, 2, . . . , 𝑘. If 𝐿(𝑘) scales

like 𝐿(𝑘) ∼ 𝑘−FD, the curve has fractal dimension FD, which
is calculated using linear regression of graph:

ln (𝐿 (𝑘)) ∼ ln(1
𝑘
) (10)

according to the following formula:

FD =
𝑛∑ (𝑥

𝑘
𝑦
𝑘
) − ∑𝑥

𝑘
∑𝑦
𝑘

𝑛∑ (𝑥
2

𝑘
) − (∑𝑥

𝑘
)
2
, (11)

where 𝑥
𝑘
= ln(1/𝑘), 𝑦

𝑘
= ln 𝐿(𝑘), 𝑘 = 𝑘

1
, . . . , 𝑘max, and 𝑛

denotes the number of 𝑘-values for which the linear regres-
sion is calculated (2 ≤ 𝑛 ≤ 𝑘max).

FD was calculated in 2000 samples (5 s) window, and the
window was shifted by 200 samples (0.5 s) with parameter
𝑘max = 50. The length of each EEG signal was 5 minutes, giv-
ing 591 FD values for a signal. FD for a subject and channel
was achieved using averaging over all FD values for a signal.

To the best of our knowledge, there is no presumed deci-
sion making criteria for HFD value differentiating depressive
andhealthy subjects.Therefore, we selected the decisionmak-
ing level for differentiating depressive and nondepressive sub-
jects as an averageHFDvalue plus standard deviation for con-
trol group: the subjects with HFD values higher than the
selected limit were identified as depressive and vice versa.

2.4. Statistics. Probability of differentiation between depres-
sive and control subjects on the bases of calculated SASI or
HFDvalueswas evaluated using Student’s 𝑡-test for two-tailed
distribution with two-sample unequal variance. The confid-
ence level of 𝑃 < 0.05 was considered statistically significant.

3. Results

3.1. SASI Method. Figure 3 presents calculated SASI values
averaged over the groups of depressive and control subjects.
The graphs indicate clearly positive average SASI values for
depressive andnegative for control group in all EEG channels.
The most evident difference between depressive and control
group appears in parietal channels.

Numerical values of calculated parameters and statistical
analysis of the results are presented in Table 1.The SASI value
averaged over all EEG channels is 0.200 in the depressive and
−0.136 in the control group. Standard deviation values are
comparable with the values of average and even higher.
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Figure 3: SASI values averaged over a group of depressive (DEPR)
and control (CONT) subjects (𝑛 = 17) in various EEG channels.
Vertical bars denote standard error.

Despite that, SASI method clearly differentiates depressive
and healthy subjects, and statistically significant differences
between the groups were revealed in all EEG channels.

The SASI values in P3 and P4 EEG channels for depressive
individual subjects are presented in Figure 4 and control sub-
jects in Figure 5. Individual SASI values varied from −0.32 to
0.76 in depressive and from −0.47 to 0.28 in control group.
Remarkable variations between individual subjects explain
high values of standard deviation in Table 1. SASI values are
positive for 15 depressive subjects (88%) and negative only for
2 subjects. For control group, SASI was negative for 14 (82%)
and positive for 3 subjects. The rate of the subjects correctly
indicated in both groups is 85%.

SASI values, as presented in Figures 3, 4, and 5 and in
Table 1, are comparable in right and left hemispheres; statisti-
cally significant difference between symmetric channels was
not revealed (𝑃 > 0.05).

3.2. HFD Method. Calculated HFD values averaged over all
subjects are presented in Figure 6. The increase of HFD with
depression is evident in all EEG channels. Numerical values
of calculated HFD parameters and the results of statistical
analysis are presented in Table 2. The value of depression
HFD averaged over all EEG channels (1.709) is higher
than in control group (1.659). The average increase of HFD
values with depression is 0.05 (3%). The average standard
deviations in depressive (0.0487) and control groups (0.0462)
are comparable with HFD average difference between the
groups (0.05). However, clear trend of increase with depres-
sion results in statistically significant differences between
depressive and control groups in temporal, parietal, and
occipital channels (Table 2).

TheHFDvalues in P3 and P4EEG channels for individual
subjects in depressive group are presented in Figure 7 and in
control group in Figure 8. HFD values varied from 1.64 to 1.78
in depressive and from 1.61 to 1.715 in control group. Vari-
ability between individual subjects reaches 22%. High vari-
ability between individual subjects prevails alterations of
HFD related to depression (average 3%).
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Table 1: Calculated parameters for SASI in various EEG channels: group averaged values, standard deviations, and 𝑃 values differentiating
depressive and control group.

EEG channel FP1 FP2 T3 T4 P3 P4 O1 O2
Depressive group

Average 0.0180 0.0573 0.2331 0.2536 0.2712 0.2951 0.2373 0.2371
St. dev. 0.2790 0.2546 0.2902 0.2143 0.2802 0.2564 0.2887 0.2132

Control group
Average −0.2181 −0.1949 −0.0726 −0.1038 -0.1370 −0.1136 −0.1257 −0.1236
St. dev. 0.1905 0.2754 0.2282 0.2397 0.2141 0.1977 0.2401 0.2573
𝑃 values 0.0074 0.0082 0.0071 0.0032 8.04 × 10

−5

6.99 × 10
−5 0.0038 0.0034

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17SA
SI

 v
al

ue
s

−0.4

−0.6

−0.2

SASI: depressive subjects

P3
P4

Figure 4: SASI values in P3 and P4 channels for individual depres-
sive subjects.

0
0.1
0.2
0.3
0.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

SA
SI

 v
al

ue
s

SASI: control subjects

P3
P4

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1
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controls.

The decision making level for differentiating individual
subjects, determined as a mean HFD value plus standard
deviation is 1.6960 in channel P3 and 1.6989 in channel P4.
According to the differentiation level, 16 (94%) subjects are
revealed as depressive and 1 subject as nondepressive in
depressive group employing signals in channel P3.The signals
in channel P4 show exactly the same result. In control group,
13 (76%) subjects are indicated as nondepressive using signals
in channel P3. The signals from channel P4 indicated also 13
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Figure 6: HFD values averaged over a group of depressive (DEPR)
and control (CONT) subjects (𝑛 = 17) in various EEG channels.
Vertical bars denote standard error.

(76%) subjects as nondepressive; however, two subjects (10
and 13 in Figure 8) have been indicated differently using sig-
nals in channel P3 or P4. The rate of subjects correctly indi-
cated in both groups is 85% based on analysis of signals in a
single channel P3 or P4.

Symmetry for HFD values in symmetric EEG channels
of right and left hemisphere is evident at the group level
(Figure 6). Some interhemispheric asymmetry ofHFD values
is noticeable for individuals in depressive and control groups
(Figures 7 and 8). However, the difference of interhemispher-
ic asymmetry between depressive and control group appeared
statistically not significant (𝑃 > 0.05).

4. Discussion

The results presented in Figures 3 and 6 and Tables 1 and 2
demonstrate that both EEG analysismethods, SASI andHFD,
clearly differentiate specific depression features in EEG. Both
methods demonstrated the best results in parietal EEG chan-
nels. SASI and HFD both increased in depression.

SASI demonstrated a remarkable increase causing change
of the polarity of the parameter, while calculated HFD indi-
cated only small increase (3%) with depression. Despite rela-
tively small increase of HFD, the alterations were statistically
significant in all EEG channels (𝑃 < 0.05), except frontal
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Table 2: Calculated parameters for HFD in various EEG channels: group averaged values, standard deviations, and 𝑃 values differentiating
depressive and control group.

EEG channel FP1 FP2 T3 T4 P3 P4 O1 O2
Depressive group

Average 1.6690 1.6715 1.7171 1.7164 1.7229 1.7310 1.7268 1.7291
St. dev. 0.0670 0.0752 0.0525 0.0645 0.0329 0.0341 0.0322 0.0309

Control group
Average 1.6272 1.6316 1.6677 1.6565 1.6647 1.6728 1.6767 1.6781
St. dev. 0.0505 0.0402 0.0723 0.0600 0.0313 0.0261 0.0421 0.0426
𝑃 values 0.1295 0.0658 0.0354 0.0086 9.05 × 10

−6

9.56 × 10
−6 0.0005 0.0004

1.55

1.6

1.65

1.7

1.75

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

H
FD

 v
al

ue
s

HFD: depressive subjects

P3
P4

Figure 7: HFD values in P3 and P4 channels for individual depres-
sive subjects.
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Figure 8: Calculated HFD values in P3 and P4 channels for indi-
vidual control subjects.

area. Similar relatively small but significant alteration of HFD
values has been reported also in the case of other mental dis-
eases as schizophrenia [11]. Even smaller increase in the HFD
(1.3%) indicated statistically significant changes in the EEG
caused by microwave exposure [26]. Different behaviour of
the SASI, and HFD methods demonstrated in detection of
depression can be explained by different nature of the linear
and nonlinear EEG analysis.

SASI indicated 15 (88%) subjects as depressive and HFD
indicated 16 (94%) subjects as depressive in depressive group.
The subject not indicated as depressive by HFD was not indi-
cated as depressive also by SASI. SASI indicated 14 (82%)
subjects as nondepressive, and HFD indicated 13 (76%) sub-
jects as nondepressive in control group. SASI and HFD both
identified the same 12 subjects as nondepressive in control
group. Two subjects were identified differently by SASI and
HFD. Total number of subjects 29 (85%) identified correctly
in depressive and control groups was the same for SASI and
HFD. The same numbers for HFD and EEG power features
have been also reported for accuracy of classification (76.6%)
by other authors [20]. HFD as nonlinearmethod demonstrat-
ed somewhat higher sensitivity for the detection of depres-
sion (94%) compared to SASI (88%).

Very high variability of SASI (Figures 4 and 5) and HFD
(Figures 7 and 8) values for individual subjects (HFD varies
about 22%) exceeds the difference of the measures between
depressive and control groups (3% forHFD).High inter-indi-
vidual variability is evident in the majority of physiological
processes and measures. This factor can be considered as the
disadvantage neither for SASI nor for HFD EEG analysis
methods.

The results of SASImethod varies from the results of other
linear methods used for detection of depression [14–16]. First
of all, SASI detects themost remarkable alterations in parietal
not in frontal brain region as in the case of frontal inter-
hemispheric asymmetry [14–16]. It is also remarkable that the
calculated SASI is highly similar for all symmetric channels
of right and left hemispheres, whereas interhemispheric
asymmetry has been reported to be a most specific feature of
depressive EEG [14–16]. To explain this symmetry, we have to
keep in mind that SASI bases on relative difference of powers
of two EEG frequency bands in the same EEG channel. The
relative difference does not depend on the absolute power lev-
els. Therefore, a possible asymmetry of EEG powers in dif-
ferent hemispheres does not affect the relative distribution of
powers between two frequency bands in one channel. Con-
sequently, the interhemispheric symmetry of SASI does not
contradict possible interhemispheric asymmetry of EEG
power.

The result achieved with HFD method is not directly
comparable to studies in depression EEG reported by other
authors [20, 21].The authors reported only the results of clas-
sification of EEG in depression by genetic algorithm [20].
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HFD calculations were used only as an input to classification
technique, and information about HFD values themselves
was not provided [20]. In another study, Ahmadlou et al. cal-
culated HFD only in frontal area and revealed significant dif-
ference between depressive and control groups only in EEG
beta and gammabands [21].TheHFD is known to be sensitive
to noise and frequency band [9]. Therefore, the results of
studies performed on signals of different frequency bands are
not comparable. Our results can be most likely compared
to full-band EEG results in the study by Ahmadlou et al.,
where discrimination between depressive and control group
was also not successful in the frontal area. Unfortunately,
Ahmadlou et al. did not consider HFD in the parietooccipital
area, where the best discrimination occurred in this study.

The SASI method revealed significant difference between
depression and normal EEG in all EEG channels (Table 1),
whereas the HFD method detected significant difference in
temporal, parietal, and occipital channels (Table 2).The SASI
appears also less sensitive in frontal area (Figure 3, Table 1).
The reason of lower sensitivity of the methods in frontal area
is most probably related to higher variability of the frontal
EEG.The elevated variability of the frontal signals behaves as
an additional noise. Higuchi’s algorithm is known to be sen-
sitive to the noise level [6]. Therefore, HFD method, as more
sensitive to noise loses its sensitivity in frontal EEG channels.
The sensitivity of SASI method, as a more simple and robust
approach, appears to be not so strongly affected by the noise.
On the other hand, in the parietal area where the signals are
more stable, the HFD method demonstrated better discrim-
ination 𝑃 = 9.05 × 10−6 (Table 2) compared to SASI 𝑃 =
8.04 × 10

−5 (Table 1).
Both methods, the SASI and HFD, have some common

features in detecting depression. First, the methods discrim-
inate depression most effectively in parietal brain area. Sec-
ond, the methods do not indicate statistically significant dif-
ference in hemispheres’ asymmetry between depressive and
control groups, as neither of the methods depends on abso-
lute level of the EEG signal. For that reason, the undiscovered
interhemispheric asymmetry using SASI and HFD methods
does not contradict possible interhemispheric asymmetry of
EEG power discovered using other EEG analysis methods.

5. Conclusions

Both methods, SASI and HFD, provide clear distinction of
depressive features in a single-channel EEG and reveal statis-
tically significant differences between depressive and control
groups. Advantages of both SASI and HFD methods, com-
pared to other EEG analysis methods, are

(i) detection of depression employing single-channel
EEG signal;

(ii) simple and fast algorithms for calculations.

The advantage of SASImethod, compared toHFD, is zero
level of decision making providing simple positive-negative
differentiation between depressive and control subjects. Ex-
pected advantage of HFD as a nonlinear method was higher

sensitivity, compared to SASI, demonstrated in the posterior
brain area with lower natural variability of the EEG signal.

The disadvantage of HFD, compared to SASI, is more
complicated discrimination between individual depressive
and control subjects due to relatively small difference between
the HFD values.

The main disadvantage of both methods, SASI and HFD,
is that various brain disorders other than depression can
cause similar alterations of the measures. Therefore, further
investigations of both methods on independent and larger
databases are highly required.
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