
AUTOMATED FORCE FIELD PARAMETERIZATION FOR NON-
POLARIZABLE AND POLARIZABLE ATOMIC MODELS BASED
ON AB INITIO TARGET DATA

Lei Huang1 and Benoît Roux1,2,*

1Department of Biochemistry and Molecular Biology University of Chicago 929 East 57th Street,
Chicago, IL 60637
2Biosciences Division Argonne National Laboratory Argonne, IL 60439

Abstract
Classical molecular dynamics (MD) simulations based on atomistic models are increasingly used
to study a wide range of biological systems. A prerequisite for meaningful results from such
simulations is an accurate molecular mechanical force field. Most biomolecular simulations are
currently based on the widely used AMBER and CHARMM force fields, which were
parameterized and optimized to cover a small set of basic compounds corresponding to the natural
amino acids and nucleic acid bases. Atomic models of additional compounds are commonly
generated by analogy to the parameter set of a given force field. While this procedure yields
models that are internally consistent, the accuracy of the resulting models can be limited. In this
work, we propose a method, General Automated Atomic Model Parameterization (GAAMP), for
generating automatically the parameters of atomic models of small molecules using the results
from ab initio quantum mechanical (QM) calculations as target data. Force fields that were
previously developed for a wide range of model compounds serve as initial guess, although any of
the final parameter can be optimized. The electrostatic parameters (partial charges, polarizabilities
and shielding) are optimized on the basis of QM electrostatic potential (ESP) and, if applicable,
the interaction energies between the compound and water molecules. The soft dihedrals are
automatically identified and parameterized by targeting QM dihedral scans as well as the energies
of stable conformers. To validate the approach, the solvation free energy is calculated for more
than 200 small molecules and MD simulations of 3 different proteins are carried out.

Introduction
Molecular dynamics simulations based on classical molecular mechanical (MM) force fields
are increasingly used to provide atomic-level insights in studies of biological phenomena1-3.
However, accurate force fields are needed to obtain meaningful results from MD
simulations. The most widely used biomolecular force fields, such as CHARMM4-8,
AMBER9, OPLS10, and GROMOS11, were optimized to model basic biological
constituents, including proteins, nucleic acid and lipids. However, these force fields only
cover a fairly restricted set of small organic compounds, and although models of additional
compounds can be generated by analogy to the parameter set of a given force field, the
accuracy of the resulting models can be limited. The challenges are even greater when
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compounds that have no close analogs within the popular biomolecular force fields are
needed. This includes, for example, drug candidates, non-natural amino acids, and
spectroscopic probes. The best way to address this issue is to have an objective algorithmic
procedure to automatically parameterize an arbitrary molecule in a manner that is consistent
with a given force field.

The first program able to model arbitrary organic compounds based on the atom types
determined from local structure and pre-defined tabulated parameter sets was
MacroModel12. While it addressed many of the issues arising when developing a general
procedure, the models were not necessarily consistent with the most widely used force fields
in biomolecular simulations. In this regard, a great leap forward was achieved by the general
Amber force field (GAFF) presented by Wang et al.13, which automatically generates the
parameters for arbitrary organic molecules consistent with the AMBER force field. In
GAFF, atom types and internal parameters (bonds, angles, dihedrals and improper dihedrals)
of a given compound are assigned from tabulated values according to an AMBER-consistent
classification while atomic charges are fitted to match the results of quantum mechanical
(QM) or semi-empirical calculations14. The program Antechamber15 in AmberTools was
created to automatically parameterize small compounds in accord with GAFF. An
independent effort to produce models of arbitrary small compound consistent with the OPLS
force field was based on electrostatic partial charges determined using semi-empirical CM1
and CM3 calculations16. More recently, the CHARMM general force field (CGenFF) was
introduced by Mackerell et al.17 to provide CHARMM-consistent force field parameters for
small compounds and drug-like molecules. Two web portals, ParamChem
(www.paramchem.org) and MATCH (http://brooks.chem.lsa.umich.edu/index.php?
matchserver=submit), are available to automatically parameterize small compounds
according to CGenFF17.

These computational tools represent important advances that greatly broaden the range of
biomolecular systems that can be studied with simulations by enabling an objective and
automatic parameterization of novel molecules. More importantly, most procedures above
avoid the subjective manual adjustments of force field parameters, which ultimately
undermine the predictive value of computations based on atomic models. Nevertheless, it is
important to realize that despite the great advance that they represent, the accuracy of these
MM models is not explicitly assessed during the automatic parameterization and may be
limited. In particular, it is known that partial charges and dihedral parameters between
molecules have limited transferabilities17,18, implying that any knowledge-based rule is
necessarily an approximation to QM. Similarly, dihedral parameters are highly dependent on
context and local non-bonded interactions and partial charges. For this reason, an automated
method able to avoid tabulated values for these parameters is highly desirable.

Here we present an extension of these methods aiming at achieving an automatic
parameterization for small molecules using ab initio QM results as the primary target data.
Special efforts are made to optimize the electrostatic and dihedral parameters in a consistent
manner. Atomic partial charges are optimized according to simultaneously best match the
ESP from QM, as well as compound-water interactions with hydrogen-bonding donor or
acceptor groups. ESP fitting has been used for the development of AMBER9,19 force fields
and the fitting of water interactions has been used for the development of CHARMM6 force
fields. Here, the two perspectives are combined to yield more robustly accurate models.
Identifying automatically the dihedrals with low energy barriers that are most likely to
undergo conformational change, the so-called “soft” dihedrals, the parameterization
algorithm then proceeds from systematic one-dimensional (1D) dihedral scan and
determination of conformer energies from QM. There have been a few attempts to
parameterize MM models with QM target data recently; Ren et al. proposed a procedure to
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automatically generate a polarizable force field consistent with AMOEBA for small
compounds20, and Wang et al. presented an iterative scheme to develop a polarizable model
for water molecule targeting QM forces and energies of clusters of water molecules21.
Nevertheless, to our knowledge, this is the first automatic parameterization tool relying on
QM data that combines the information from ESP and water interactions together, and that
detects, scans and optimizes all soft dihedral parameters. The methodology presented here
has been implemented in a web server, General Automated Atomic Model Parameterization
(GAAMP, http://gaamp.lcrc.anl.gov/). Although this server is not open to public yet since
QM calculations are very expensive, we will release the source code for parameterization to
public then one can use the code to do parameterization on local computers. A gateway for
GAAMP will be set up based on XSEDE (www.xsede.org) for public access and the link
will be announced on GAAMP website.

Parameterization Method
The functional form of the potential function used in the parameterization is compatible with
the non-polarizable CHARMM force field1,

(1)

With some small modification, the force field can be optimized in a manner compatible with
AMBER. The main difference is that the 1-4 non-bonded charge-charge interactions are
scaled by 0.833 in AMBER, but are fully accounted for in CHARMM (the E14FAC
parameter is 1.0). From this point on, three specific actions affect the final parameterization:
(1) verification and adjustment of equilibrium bond length and angle parameters, (2) charge
fitting using QM target data including ESP and specific interaction with water molecules
(Fig. 1b), and (3) dihedral parameter fitting using QM target data (Fig. 1c). A detailed
flowchart of the proposed scheme for automated parameter determination is depicted in Fig.
1. As input, the user must provide a structure file in the format of the protein data bank (pdb)
or mol2. The initial input structure file must contain all atoms, including hydrogens, and
ionizable groups must be correctly protonated. Since the initial structure is first refined by
geometry optimization at the AM1 level, it is important that the bond length and angle in the
initial structure be reasonably close to chemically realistic values. The refined atomic
structure can be ran through the program Antechamber15 or CGenFF17 to generate initial
topology and parameter files for the molecule in CHARMM format. A detailed flowchart is
shown in Fig. 1.

Verify equilibrium bond and angle parameters in GAFF
For some specific molecules, the equilibrium bond lengths or angles from GAFF or CGenFF
may be inaccurate. For this reason, the bond lengths and angles of the molecule in the
structure optimized at HF/6-31G* or higher level are compared with the values observed in
the structure optimized using the MM force field. If the deviations are too large, e.g., 0.05 Å
for bond length and 8° for angle, then the internal equilibrium values of the force field are
substituted by the values obtained in the optimized QM geometry.
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Charge fitting in non-polarizable model
The MM charges of a molecule of interest are fitted to best-reproduce target data obtained
by QM calculations. As is customarily done, the numerical problem is cast as the
optimization of an objective function constructed to account for all the target data19. The
target data includes the ESP calculated from a QM method at a large number of points
disposed around the molecule (illustrated in Fig. 2, left). In addition, the target data also
includes the interaction energy (Eint) and associated inter-molecular distances (Rint) with
explicit water molecules6 if the molecule has hydrogen bonding donors or acceptors
(illustrated in Fig. 2, right). Lastly, the objective function also includes weak restraints to
prevent unphysical values of the MM charges, which is particularly important in the case of
buried atoms. With these elements, the objective function used in the optimization procedure
of the MM charges is written as the sum of three terms: the objective function for the
electrostatic potential (Eq. 3), the objective function for compound-water interactions (Eq.
4) and the restraints on reference charges (Eq. 5).

(2)

The contribution to the objective function from the electrostatic potential is,

(3)

where ngrid is the number of grid points at which the ESP are calculated, and  and 
are the values of the ESP calculated at the i-th point from QM and MM, respectively. This
part essentially follows the procedure used in the development of the AMBER force field.19

In the present implementation, the points where the ESP is evaluated are organized into five
layers of grids that are 1.4, 1.6, 1.8, 2.0, and 2.2 times the van der Waals radii. 5To remain
consistent with the standard approaches used for the non-polarizable force fields CHARMM
and AMBER, the QM ESP calculations are carried out at the HF/6-31G* level.

The contribution to the objective function from compound-water interactions is,

(4)

where wEint and wRint are the weights set for Eint and Rint respectively. The standard output
of the program reports on how the various target data ϕi

QM, Eint
QM, and Rint

QM are
reproduced by MM model. Accounting explicitly for the interactions with water molecules
follows the procedure commonly used in the development of CHARMM force field6.
Following the protocol recommended by MacKerell et al.,6 the QM calculations are
performed at the HF/6-31G* level without basis set superposition error (BSSE) correction.
The QM interaction energy Eint is kept unchanged for charged molecules, while it is scaled
by 1.16 for neutral molecule. The QM optimal distance, Rint is shifted by −0.20 for neutral
molecule. For charged compounds, a shift of −0.05 Å has been used in this work considering
the average Rint from MM is often slightly smaller than the value in QM for a set of ion-
water interactions22. Different value for such a shift (e.g., −0.1 in ref23 and −0.2 Å in ref17)
have been previously suggested. Determining an optimal shift should be done in future
work. Partial charges are then re-optimized, now targeting simultaneously the ESP and the
compound-water interactions (Eint and Rint). The geometry of the molecule is taken from the
optimized QM structure and kept rigid during the calculation of Eint and Rint in MM. Only
relatively strong hydrogen bonds (Eint < −2kcal/mol) are included in the target data.
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Lastly, the objective function also includes weak restraints preventing the fitted MM charges
from deviating too far from reference values. The latter are taken as the AM1-BCC14

charges assigned by Antechamber. This contribution to the objective function is written as,

(5)

where wCG is the weight set for charge restraint, f(qi, qi
0) = 0 if ∣qi – qi

0∣<=0.02 , otherwise,
f(qi, qi

0) = (∣qi – qi
0∣–0.02)2). This form allows the MM charges to deviate slightly from the

reference values without penalty. It should be noted that the present choice of restraint and
reference values differs from the original RESP procedure19, where the MM charges were
weakly restrained to zero.

Electrostatic parameter fitting for the Drude model
The method described above can easily be generalized with minor modifications to
automatically generate the electrostatic parameters of a polarizable model based on the
classical Drude oscillators24-34. In the Drude polarizable force field24,25, a charged auxiliary
particle attached to an atom via a harmonic spring is introduced to mimic the electronic
response and account for induced polarization effects. As such, all the Drude particles can
be treated as part of the MM force field and minimizing the energy over the position of the
Drude particles recovers the familiar induced polarization self-consistent field (SCF)
treatment. The fitting procedure for the electrostatic parameters of a model is essentially the
same, except that more QM data are needed to evaluate how a polarizable molecule
responds to an applied external electric field. As described in Anisimove et al.25, this is
accomplished by placing a test charge of +0.5e at various positions around the molecule and
re-calculating the perturbed ESP from QM to determine the polarizability of the different
atoms in the molecule. The same situation with a test charge is reproduced in the MM model
during the charge fitting procedure. In addition, the potential function comprises a few
contributions that are specific to the Drude model, including anisotropic polarization and
screened induced dipole interactions26. Lastly, as in the case of the non-polarizable force
field, some restraints are introduce to prevent large unphysical deviations of all the
parameters. The objective function is written as,

(6)

The contribution from ESP is,

(7)

where ϕi and ϕij, p represents the unperturbed and perturbed ESP respectively. There are
npert configurations used to calculate perturbed ESP and ngrid grid points where ESP are
calculated. The contribution from the restraint on target charges assigned by antechamber
(AM1-BCC14) is,

(8)

where f(qi, qi
0) = 0 if ∣qi – qi

0∣<=0.03 , otherwise, f(qi, qi
0) = (∣qi – qi

0∣–0.03)2). Generally,
smaller weight (wCG) on the charge restraint than that in non-polarizable model should be

Huang and Roux Page 5

J Chem Theory Comput. Author manuscript; available in PMC 2014 August 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



used since AM1-BCC14 charges were specifically parameterized for non-polarizable model.
The restraint on the atomic polarizabilities takes the form,

(9)

where  represents the default polarizability and wα represents the weight of the restraint
on target polarizabilities. Atomic polarizabilities from Miller35 scaled by a factor of 0.7

serve as the target value, . The restraint on the shielding parameters takes the form,

(10)

where  represents the default “Thole” parameters that controls the electrostatic screening
of induced dipole interactions within 1-2 and 1-3 pairs. The fitted parameters are restrained

to avoid large deviations from the original values . In current development of Drude force

field in CHARMM, a starting value of 1.3 is used as for . However, some molecules can
be unstable with this value, especially those with hetero-cycles bonded with atoms with high
electronegativity. A smaller value, e.g., 0.2 was used for such cases. It is possible that such
instabilities may be circumvented with alternative treatments of the 1-2, 1-3, and 1-4
intramolecular non-bonded interactions within the MM model in the future. The anisotropic
contribution is an energy term introduced to improve the induced polarization in response to
applied electric field in the case of specific groups such as the backbone carbonyl in
proteins26. The restraint on the anisotropic term is written as,

(11)

f(K11,i, K11
0)=0 if ∣K11,i – K11

0∣<=200 kcal/Å2 where K11
0 is set 50 kcal/Å2, otherwise,

f(K11,i, K11
0)=(∣K11,i – K11

0∣–200)2. F(K22,i, K22
0) and f(K33,i, K33

0) have the same form as
f (K11,i, K11

0). Such restraints are necessary to make sure that the effective spring constant
for the Drude particle will not be too small (which may allow the Drude go far away from
nucleus and lead to issues of instabilities) or too large (which would require an inefficiently
small integration time step). The definition of χ2wat_int is same as that in non-polarizable
model. In practice, the starting topology and parameter file will be automatically generated
by introducing the entries of default polarizability, anisotropy and shielding parameters into
the GAFF topology and parameter files generated by Antechamber.

Dihedral parameter fitting
Once the electrostatic parameters are determined, it is necessary to obtain accurate
parameters for the dihedral angles. Of particular importance for the force field are those
dihedrals with small energy barriers because they largely control the accessible rotameric
states and the overall flexibility of the molecule. Once such “soft” dihedrals have been
identified, the parameterization uses information from QM calculations as target data for
both a series of 1D dihedral energy profile as well as the energy of conformers. An
important first step concerns the automatic identification of all the soft dihedrals within a
molecule. There are several possible ways to carry out this task. The simple protocol that is
adopted in the current algorithm consists in constructing a list of all dihedrals in the
molecule, and then excluding those involved in cycles. Also excluded are the dihedral
associated with the trivial rotation of methyl groups considering that the QM energy profile
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of such dihedrals generally can be reproduced reasonably by the GAFF or CGenFF, which
also decreases the overall computational cost.

The second step consists in determining all the putatively stable local minima based on
isomerization of the pre-identified soft dihedrals in the following way. All possible
combinations of soft dihedrals are enumerated and local geometry optimizations are carried
out for all putative conformers. This is followed by a clustering of the dihedral value to
detect redundancies and obtain an estimate of all possible minima for each soft dihedral. As
a first pass, this initial task relies on the dihedral potential from the MM force field obtained
directly from GAFF or CGenFF. If the number of soft dihedrals is too large, the initial
configurations for geometry optimization can be randomly generated and special care is
taken to make sure all soft dihedrals are sampled thoroughly. Once this is done, an optimal
structure is selected for each soft dihedral to carry out a 1D dihedral scan at the QM level.
During this 1D scan, all other soft dihedrals are kept fixed at their local minima to avoid
abrupt changes of configurations in the molecule, which also allow us to fit soft dihedrals
independently. The configuration used to carry out the QM scan along a given dihedral
angle must be selected carefully to decrease the possibility of non-bonded steric clashes that
would obscure the data. For this purpose, corresponding 1D scans are first carried out using
the MM force field and only the configuration producing the lowest torsion energy barrier is
retained. The 1D scans from QM determine all local minima of each soft dihedral. Once this
is done, the information is then used to carry out a first optimization of the dihedral
parameters for all the soft dihedrals in which they are all considered separately. The
objective function is,

(12)

where wi represents the weight set for configurations in 1D torsion scan,

 with n=1,2,3,4,6; σn=0/π, kn and E0 can be
determined efficiently by solving a set of linear equations or other quasi-Newton method
like L-BFGS36,37. The implementation of L-BFGS in NLopt38 is adopted. Eothers is defined
as the total MM energy without the contribution from the dihedral energy of the soft
dihedral selected for parameter fitting. Configurations with very high energies, e.g., 20 kcal/
mol higher than the lowest energy along the 1D scan are not included in the optimization.
During optimization, the force constants kn are constrained to remain positive for the sake of
simplicity.

The above optimization procedure based on the 1D scans leads to improved dihedral
parameters, but it is not guarantied to yield accurate energy ranking of the accessible
conformers of the molecule. To this end, an additional step is taken in which the dihedral
parameters are fitted again, this time using simultaneously the information from the 1D
scans and the conformer energies, with

(13)

and

(14)
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where Erot
0 is a constant to be fitted and

. The weights of
conformers in this form are chosen to enhance the contribution from configurations with low
MM and QM energies. Optimization of the parameters using the conformer energies as
target data is helpful to obtain a final model able to accurately reproduce the relative
energies of the accessible conformations with lowest energies. A maximum of 200
conformers are selected based on the MM energy for further geometry optimization using
QM. For very large molecules (more than 8 soft dihedrals), it becomes very challenging to
select meaningful conformers among numerous possible conformers. In this case, the
energies of conformers are not included in our target data and dihedral parameter fitting only
relies on 1D dihedral scans.

Parameterization of unnatural amino acids side chains
With minor adjustments, the current algorithm can be used to parameterize any amino acids,
including unnatural amino acids (UAAs), in a manner that is consistent with the backbone
from the rest of the MM force field. Here the procedure was used to produce UAAs models
consistent with the backbone of the CHARMM force field, although models consistent with
the AMBER force field could be produced in a similar fashion. First, the program
determines the partial charges of the side-chain compound (the side-chain plus one hydrogen
atom) using the procedure of charge fitting described above under the constraint that the
charge of the hydrogen atom added is fixed at zero. As a second step, the program generates
CHARMM format topology, parameter and coordinate files for the full molecule,
comprising the side-chain molecule and the backbone of an alanine dipeptide. As a third
step, the program identifies the soft dihedrals within the side-chain and the parameters are
optimized according to the procedure described above. During the side-chain dihedral
fitting, the backbone atoms are fixed with the ϕ and ψ backbone dihedrals in an α=helical
conformation (−60 and −45 for ϕ and ψ). For the sake of simplicity, only 1D dihedral scans
from QM are used for dihedral parameter fitting to avoid considering the multiple
conformers of the dipeptide. The parameters of the resulting model has the Param27
CHARMM (CHARMM27) force field6,7 for the backbone, and the current optimization for
the side-chain.

Computational details
The library of NLOpt38 was used for parameter optimizations. L-BFGS36,37 algorithm was
used for charge and dihedral parameter optimization as well as the molecular geometry
optimization without constraints. Augmented Lagrangian algorithm39,40 conjugated with L-
BFGS36,37 was used for the geometry optimization with constraints on selected soft
dihedrals. Numerical gradients by central differences are used for L-BFGS optimizer. Our
programs were written in C++, bash shell script and Python.

Solvation free energy calculations
The absolute solvation free energy of small compounds was calculated and decomposed into
three components (repulsive, dispersive and charge term) following a FEP simulation
protocol developed in our group41-43. Replica exchange method42,44 was used to enhance
the sampling to get better convergence. We recently ported the implementation of FEP/
REMD42 in CHARMM into NAMD45. The simulations of non-polarizable models were
performed in NAMD and the simulations of polarizable model were performed in
CHARMM1. In non-polarizable models, the compound was solvated in a cubic water box of
TIP3P water molecules46 with dimension ~20 Å and periodic boundary condition (PBC)
was imposed. Long-range electrostatic interactions were computed using particle mesh
Ewald summation47,48 with a Ewald splitting parameter 0.34 Å−1, a grid spacing of ~0.6 Å,
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and a sixth-order interpolation of the charge to the grid. Non-bonded van der Waals
interactions were smoothly switched to zero between 10 and 12 Å. The isothermal-isobaric
ensemble was simulated using Langevin thermostat49 and Langevin piston50. The SETTLE
algorithm51 was used to keep TIP3P water molecules rigid and RATTLE algorithm52 was
used to fix the length of those bonds connecting heavy atoms and hydrogen atoms in the
compound. The multiple time step, RESPA algorithm53 implemented in NAMD45, was used
for 4fs integration time step for non-bonded interactions and 2fs time step for bonded
interactions. For each value of the thermodynamic coupling parameter, λ, equilibrium
properties were averaged over a 500 ps molecular dynamics simulation after an initial
equilibration of 300 ps. Exchanges of neighboring replica were attempted every 200 fs.
Weighted histogram analysis method (WHAM)54 was used in data processing. A long-range
correction for Lennard-Jones interactions55 beyond the cutoff was added to the calculated
solvation free energy in post-analysis. MD simulations of the polarizable Drude models
were carried out according to a similar approach, with a few differences: the CHARMM
program was used with the SWM4 water model27, and the VV2 integrator56 and Nosé-
Hoover thermostat were used with no multiple time step algorithm to sample isothermal-
isobaric ensemble28.

Ab initio calculations
All the ab initio calculations were performed with the program Gaussian 0957. AM1 was
used for the pre-optimization for the initial structure (step 2 in Fig. 1b) before calling
Antechamber to generate the initial force field (step 3 in Fig. 1b). HF/6-31G* was used for
geometry optimization (step 5 in Fig. 1b) as well as ESP calculation (step 7 in Fig. 1b) in the
non-polarizable force field parameterization. B3LYP/aug-cc-pVDZ was used in the
unperturbed and perturbed ESP calculation in the Drude force field parameterization25. The
interactions between the molecule to be parameterized and water were calculated at the HF/
6-31G* level without BSSE (step 9 in Fig. 1b), following the recommended prescription6.
Calculation at the HF/6-31G* or MP2/6-31G* level were used to perform the 1D dihedral
scan (step 13 in Fig. 1c), and the geometry optimization of the various conformer states (step
15 in Fig. 1c). 6-31+G* basis set was used for anions. Ultimately, the choice of basis set and
QM level depends on the size of the molecule and the accuracy desired. Any reasonable
combinations of theory level and basis set can be applied with the current parameterization
procedure.

Result and discussion
Electrostatic parameters

Coulomb interactions play an important role in intra- and inter-molecular interactions. As a
consequence, carefully optimized partial charges are essential for an accurate MM force
field. There is a wide variety of methods to determine partial charges58. The electrostatic
potential (ESP) on the surface of a given molecule, calculated using QM or semi-empirical
methods as illustrated in the left plot of Fig. 2, serves as the target data for the charge fitting
in AMBER force field development9,19. Methods based on ESP fitting are easy to
implement and carry the important advantage that the resulting charges are not coupled with
Lennard-Jones parameters during fitting. Alternatively, matching the interactions between
the compound and water molecule calculated by QM as illustrated in the right plot of Fig. 2
is the common approach used in the development of the CHARMM6 force field. For polar
molecules, the hydrogen bonds between the compound and water molecules are very
important, and including these interactions directly in the optimization can help to generate
models that are more accurate.
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Combining ESP and compound-water interactions together in the charge optimization makes
it possible to take advantage of both perspectives. Because the strength of the hydrogen
bonding interaction in a MM model is primarily determined by the charges of a small
number of atoms close to the hydrogen bond donor/acceptor in the compound, a reasonable
assumption is that a model based on ESP partial charges can be improved if QM data of
compound-water interactions is included in the target data during parameter optimization.
First, charges are optimized based on QM ESP data (step 8 in Fig. 1b). Then, the charges are
further optimized with the QM data of compound-water interactions together with QM ESP
(step 10 in Fig. 1b). For the sake of internal consistency, the compound-water interactions
within the MM force field should preferably be evaluated using the geometry of the
compound energy-minimized within the MM force field. However, as the initial MM model
is either incomplete or perhaps grossly inaccurate, it is not possible to rely on the optimized
geometry based on the initial MM model. To circumvent this problem, an iterative
procedure is used to optimize all the parameters of the force field. First, a cycle of charge
optimization (steps 8-10 in Fig. 1b) is carried out using the fixed QM geometry of the
compound. Then, using the resulting charges, a first optimization of the dihedral parameters
is carried out using the 1D dihedral scan profiles from QM (step 14 in Fig 1c). Once this
done, the charges of the model are re-optimized (step 10 in Fig. 1b) but this time using the
energy-minimized geometry of the compound based on the MM force field. Using this new
set of partial charges, the dihedral parameters are then re-optimized once more using the 1D
dihedral scan profiles from QM (step 14 in Fig 1c). Finally, this is followed by a global
optimization targeting both the 1D scan and conformer energies from QM (step 16 in Fig
1c). This iterative procedure, where charges and dihedral parameters are completely re-
optimized twice, helps increase the stability of the optimization and the accuracy of the final
model.

Dihedral parameter
Dihedral parameters often correspond to some of the softest degrees of freedom in a
molecule and an accurate parameterization is critical to sample correct configurations in
simulations. With the increase of the number of soft dihedrals, the number of accessible
configurations increases exponentially. Both GAFF13 and CGenFF17 use lookup tables to
assign dihedral parameters for given dihedral types. However, this method does not always
give reasonable parameters, especially when the assigned partial charges in the compound to
be parameterized are significantly changed from those charges assigned in the analog used
in the development of the force field.

The results of two small compounds are presented to demonstrate the performance of the
algorithm of dihedral parameter fitting. The 1D dihedral energy profiles for butyric acid
methyl ester are shown in Fig. 3. GAFF/AM1-BCC works reasonably for this molecule. The
1D dihedral energy profiles calculated by the parameters fitted by GAAMP perfectly match
QM results as shown in Fig. 3b. Fig. 3c shows that the QM conformer energies also can be
reproduced reasonably well.

The results for a slightly larger compound, N-phenylbenzamide, are shown in Fig. 4. The
model with the optimized GAAMP dihedral parameters can reproduce the 1D dihedral
energy profiles from QM reasonably well. In contrast, the torsion potential from GAFF/
AM1-BCC encounters some difficulties with this molecule. For instance, the energy profile
along the ϕ1 dihedral, particularly the energy basin around 180°, is not described accurately.
Moreover, the energy profile of the ϕ3 dihedral significantly deviates from the QM result.
The origin of these inaccuracies seems due to the improper parameters for four dihedrals in
GAFF, “X-C-CA-X 3.625 2 180.0”. Although HF/6-31G* was used for the 1D dihedral scan
in the present example, it would be straightforward to generate QM target data using other
affordable high-level QM methods and larger basis sets.
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As an illustrative example of a large molecule, the present procedure was used to
parameterize Imatinib (or Gleevec), a commercial drug used in the treatment of certain
cancers59. As shown in Fig. 5, this molecule contains 69 atoms and 8 soft dihedrals. The 1D
dihedral energy profiles for the fitted parameters and GAFF/AM1-BCC are compared with
QM in Fig. 5. GAFF/AM1-BCC does not perform well for ϕ4 and ϕ6, although the dihedral
energy profiles for other dihedrals are reproduced correctly. The dihedral ϕ6 in Imatinib is
similar to ϕ3 in N-phenylbenzamide studied above. The deviation also comes from improper
dihedral parameters in GAFF, X-C-CA-X. In contrast, the optimized dihedral parameters
from GAAMP can reproduce QM energy profiles reasonably well for all dihedrals. This
parameterization took ~40 hours on 12 cores of Intel Xeon 2.67GHz using only the 1D
dihedral scan QM profiles at the HF/6-31G* level (no conformer energies fitting). Starting
from the optimized structure in QM, the optimized structure using the GAAMP optimized
parameters deviates from the initial structure by 0.33 Å.

Dihedral parameters are coupled to the underlying non-bonded parameters. For this reason,
it can be very challenging to automatically fit dihedral parameters when 1-4 bonded pair of
atoms carry large partial charges. Hydrazine is used as an example to demonstrate this issue
in Fig. 6. The partial charges on hydrogen atoms 3, 4, 5 and 6 are 0.379 e. The energy
barriers between local minima cannot be captured correctly neither by GAAMP nor GAFF
although the positions of the local minima are closely reproduced. Coulomb interactions in
the MM force field are very strong and the model cannot reproduce the QM dihedral energy
profile, even when trying to adjust the dihedral parameters. In this case, scaling down the
non-bonded interactions between two atoms with short distance might be helpful, showing
that the electrostatic parameters cannot always be determined without considering the
internal energy of the molecules.

Solvation free energies of amino acid side-chain analogs
Examining the hydration free energies of amino acid side-chain analogs is of interest as it
reflects the accuracy of protein force field60. To assess the performance of GAAMP, the
solvation free energies of 15 neutral amino acid side-chain analogs was calculated and
compared with GAFF and other force fields in literature60. The results are given in Table 1.
For small non-polar molecules, e.g., alkanes like Ala, Val, Leu and Ile, the results from
GAAMP are almost the same as the values using GAFF. This is expected since the Lennard-
Jones parameters from GAFF are used, and the electrostatic contribution is minor in these
molecules. For other molecules with hydrogen donors/acceptors, such as Ser, Thr and Hid,
noticeable improvements are observed in terms of solvation free energies when using
GAAMP. Other than GAFF, CHARMM Param27 (CHARMM27) was also used to provide
the initial parameters. The results of the optimized parameters, CHARMM27-GAAMP, lead
to reasonably good solvation free energies compared with GAFF/AM1-BCC, although the
results are a little better for the original CHARMM27. Most errors in CHARMM27-
GAAMP come from polar molecules, Gln, Hid and Hie. Based on the average unsigned
error (AUE), the three best models are, CHARMM27, OPLS and GAFF-GAAMP, in this
order. A systematic shift of ~−0.4 kcal/mol in solvation free energies were found in
CHARMM27 compared with CHARMM22. Possible discrepancies may be attributed to
different TIP3P models between Shirts’60 and this work. Unlike the TIP3P model used by
Shirts, Lennard-Jones parameters on the hydrogen atoms were added in the TIP3P model
used in CHARMM, which makes the solvation free energies in present work more negative.
Differences in the free energy schemes may also be the cause of these small discrepancies.

Solvation free energies of 217 compounds in the non-polarizable models
To further test the current procedure, we parameterized 217 small neutral compounds and
calculated the solvation free energies. For those molecules without hydrogen bonding donor/
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acceptor, the partial charges were fitted only on the basis of ESP data. The calculated values
for 98 compounds without hydrogen-bonding donor/acceptor using GAFF/AM1-BCC and
GAAMP fitted parameters are compared with experimental values in Fig. 7a and 7b. Higher
correlation coefficient and smaller AUE can be achieved using our RESP fitting compared
with using GAFF/AM1-BCC. For the remaining 119 molecules having H-bond donor/
acceptor, the partial charges were fitted with RESP and RESP combined with molecule-
water interactions. The solvation free energies calculated with three sets of parameters,
GAFF/AM1-BCC, GAAMP/RESP and GAAMP (RESP combined with molecule-water
interactions), are compared with experimental values in Fig. 8a, 8b and 8c respectively.

It is important to note that models based on RESP alone do not lead to good correlation
between calculated and experimental solvation free energies for the compounds including
hydrogen-bond donor/acceptor, although such method works reasonable well in deriving
partial charges for the compounds without hydrogen-bond donor/acceptor. For the partial
charges derived with the original RESP19, the same behavior is observed and a low
correlation coefficient with experimental data (0.60) is found for the solvation free energy of
the compounds with hydrogen-bond donor/acceptor by analyzing the data in literature43.
The results in this work suggest that including compound-water interactions as target data
can substantially improve the quality of partial charges derived from RESP when a
compound has hydrogen-bond donor/acceptor.

To gain more insights about how including compound-water interactions improves the fitted
charges in solvation free energy calculations, the AUE of the solvation free energies have
been compared within the compounds with same functional groups for GAAMP/RESP and
GAAMP models. In several categories, such as aliphatic amines, aromatic amines, esters,
ethers and nitro compounds, the AUE using GAAMP models are 0.5~1.1 kcal/mol smaller
compared with the AUE using GAAMP/RESP models. On the other hand, the AUE using
GAAMP models are 0.4~0.7 kcal/mol larger compared with the AUE using GAAMP/RESP
models for amides, carboxylic acids and ketones. More information is provided in
supplemental material.

The data used in both Fig. 7 and 8 can be plotted together as shown in Fig. 9. The parameter
sets fitted by GAAMP lead to comparable correlation coefficient between the calculated and
experimental solvation free energies for 217 small compounds compared with GAFF/AM1-
BCC. The average unassigned error using the parameters from GAFF/AM1-BCC and
GAAMP are 0.85 and 0.81 kcal/mol respectively.

Solvation free energies of 217 compounds in the Drude polarizable models
The method for automated parameterization is general and also applicable for polarizable
model based on classic Drude oscillator24,25. A polarizable force field is expected to be
more accurate since more details are added to account for induced electronic polarization
effect24. However, this is only true if all the parameters in the Drude model have been
optimized carefully. During the parameterization, we rely on the bond, angle, improper
dihedral and Lennard-Jones parameters from GAFF, which may limit the accuracy of the
Drude models generated here. Ultimately, we would need to generate a basis set of Lennard-
Jones parameters suitable for the Drude models. Here some preliminary results on the
calculations of solvation free energies of 217 small compounds using the automatically
generated Drude models are reported in Fig. 10. The correlation coefficient is 0.87, which is
comparable with the value using GAFF/AM1-BCC report by Shivakumar43. Although the
polarizable models do not yield a significant improvement over the non-polarizable models
in the present case, they may be more accurate with further refinement of the Lennard-Jones
parameters of the different atom types. Ren et al. calculated the solvation free energy for 25
small compounds parameterized automatically within the AMOEBA polarizable force
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field20. For these 25 compounds, they reported an AUE of 0.65 kcal/mol. This is slightly
smaller than the AUE reported in this work for 217 compounds, which is 0.81 and 0.92 kcal/
mol with non-polarizable and Drude models respectively. However, the set of compounds
considered in the present work is considerably larger and more diverse than theirs.

Parameterization of unnatural amino acid side-chains
Site directed incorporation of unnatural amino acids (UAAs) by exploiting the so-called
nonsense suppression approach is a powerful experimental technique that considerably
expands the chemical space of available perturbations for biochemical and biophysical
studies61-63. In principle, simulation studies of any of these chemically modified systems
could be carried out to complement the experimental information. However, the implication
is that accurate MM models will be needed for an ever-growing number of possible UAAs.
To test how the amino acid parameters obtained by GAAMP perform, we re-parameterize de
novo all amino acids except glycine and proline to be consistent with the CHARMM27
force field. Three proteins with diverse topology, shown in Fig. 11, are used to compare the
resulting FF (denoted as GAAMP) with CHARMM27: 1ctf (mixed α-helices and β-sheets),
1mjc (all β-sheets) and 1r69 (all α-helices). Four independent 100 ns MD simulations were
conducted starting from the crystal structure of each protein. These three proteins are stable
in 100 ns simulations both in CHARMM27 and GAAMP with conformational fluctuations.
The simulations may suggest that the parameters of amino acids generated by GAAMP are
consistent with existing CHARMM27. The automated algorithm is expected to serve as an
efficient method to parameterize UAAs. As an example, MM models were generated for a
set of 17 UAAs, which are commonly used in studies of membrane proteins. The residue
topology and parameter files are provided in Supplementary Information.

Database of force fields for small molecules
Currently there is no efficient way to retrieve the existing FF generated previously for an
arbitrary molecule. Searching through literatures for molecule FF parameters is time
consuming and difficult due to the lack of complete information. To solve this problem, we
compile our parameterized molecule into a database, which allow users to search and
download previously generated FF conveniently at our website, http://gaamp.lcrc.anl.gov/
mol-search.html. All molecules parameterized by the web server including QM data used
during parameterization will be added into the FF database and users can search and
download any FF freely. Future users could choose to parameterize their molecules using
our code locally and upload their parameterized molecules to our database if desired. This
could be a convenient way to share FF with the community. Nonetheless, quality control
could become an issue if there exist several variants for the same molecule using different
initial configurations or different QM methods/basis sets during parameterization.

Limitation of the present method and possible improvements
GAAMP targets ab initio calculations, which could be extremely expensive depending on
the size of the molecule or the level of the QM methods used. Limited by available
computing resource, the present method may be only applicable to a molecule with less than
100 atoms. For larger molecules, one may need to consider smaller fragments, parameterize
them separately, then join them together. Proper fragments also need to be selected for
fitting the dihedral parameters at the junction. Currently, these operation must be carried out
manually to generate the FF for the whole large molecule. There are a number of empirical
parameters, e.g., the weights in charge fitting and dihedral fitting, which could affect the
behavior and performance of the current method. Different value leads to slightly different
models. More work is under way to tune the present method with the aim of accurately
reproducing experimental data, including liquid densities, heat of evaporation, and solvation
free energies, etc.
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More fundamentally, the accuracy of the methods for charge fitting and dihedral parameter
fitting is unknown when applied for large molecules. Both RESP19 and compound-water
interactions6 for charge fitting have only been extensively tested with relatively small
molecules (e.g., smaller than 40 atoms). The dihedral fitting also replies on QM calculations
in vacuum. However, the intra-molecular charge-charge interactions within a large
compound could be substantially screened out if the environment is taken into account.
Consequently, considering QM calculations with implicit solvent might be necessary.
Alternatively, breaking a large compound into several small fragments for separate
parameterizations could partially avoid having the torsional energy component to
compensate for long-range electrostatics contributions.

The geometry optimizations of QM have been performed in vacuum in present work.
Recently, MacKerell et al.64 reported that the bond length in charged alkyl-phosphate in the
optimized structure with QM can deviate the X-ray experimental value by as much as
0.1~0.2 Å. As pointed out by one anonymous reviewer, a QM geometry optimization with a
continuum solvent method prior to the QM energy evaluations with desired method could
help when large deviations are observed between QM optimized structure and experimental
value, such as bond length and angle.

Most of the present tests were carried out using GAFF to provide the initial parameters for
GAAMP. Only charge and dihedral parameters are currently optimized, while the remaining
parameters are essentially unchanged. Equivalently, the optimization could rely on CGenFF.
For this reason, the quality of the resulting models relies on the accuracy of the initial force
field. For those molecules inherently not supported by GAFF13 or CGenFF, including metal
complexes, inorganic compounds, or unstable species such as radicals, one needs to
manually prepare a reasonable initial FF, then use GAAMP to optimize charge and dihedral
parameters. The whole parameterization could be done automatically for those special cases
mentioned above if the process of fitting bonded parameters (including bond, angle,
improper dihedral, dihedral) is incorporated into GAAMP.

Conclusion
A fully general and automatic method to parameterize non-polarizable or Drude polarizable
atomic models of small molecules based on QM target data was implemented. The
parameterization can start with GAFF or CGenFF as initial model, then verifies bond and
angle parameters followed by charge and dihedral parameter fitting. Both ESP and the
compound-water interactions from QM are used as target data in the optimization of
electrostatic parameters. The dihedral parameters are optimized on the basis of 1D dihedral
scans and the energy of conformers from QM.

The method of automated parameterization was applied to develop non-polarizable FF for
small compounds including the analogs of the side-chain of neutral amino acid as well as
217 small molecules with diverse functional groups. The algorithm for dihedral fitting was
shown to work well for small molecules. The solvation free energies of those small
molecules parameterized with GAAMP show noticeable improvement over GAFF/AM1-
BCC and GAFF/RESP43. The possibilities for further improvement were discussed. We also
extended the method to automated UAA parameterization to be consistent with the
backbone from CHARMM 27. The parameters of side-chain are taken from GAFF and
GAAMP charge and dihedral parameters. MD simulations with side-chain parameterized
according to the present procedure showed the native structures for three proteins with
diverse structures are stable. Finally, the method was used to parameterize a set of 17 UAAs.
Lastly, the method was also applied to parameterize Drude polarizable models. The
preliminary results for solvation free energy calculations of 217 small molecules are
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promising compared with the results of using GAFF/AM1-BCC in literature43. More work
to improve Drude models is under way. A database featuring searching and downloading
force field for small molecule was also presented as a convenient platform for searching and
sharing force fields.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
a) This scheme shows the flowchart of GAAMP parameterization. b) This scheme shows the
flowchart of electrostatic parameters optimization. c) This scheme shows the flowchart of
dihedral parameters optimization.
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Fig. 2.
This figure illustrates the strategy of GAAMP used for charge fitting which combines ESP
fitting (shown in the left plot) and compound-water interaction fitting (shown in the right
plot).
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Fig. 3.
a) A snapshot of butyric acid methyl ester is shown. ϕ1, ϕ2 and ϕ3 are corresponding to
dihedrals, 1-2-3-4, 2-3-4-6 and 3-4-6-7 respectively. b) The comparison of QM, GAAMP
and GAFF/AM1-BCC dihedral energy profiles for three dihedrals. c) The energies of eight
conformers calculated in QM and MM are compared.
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Fig. 4.
a) A snapshot of N-phenylbenzamide is shown and three soft dihedrals are highlighted with
red eclipses. ϕ1, ϕ2 and ϕ3 are the three dihedrals highlighted from left to right in the
snapshot. b) The comparison of QM, GAAMP and GAFF/AM1-BCC dihedral energy
profiles for three dihedrals.

Huang and Roux Page 22

J Chem Theory Comput. Author manuscript; available in PMC 2014 August 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
a) A snapshot of Imatinib is shown and ϕ1, ϕ2,…,ϕ8 are the eight dihedrals highlighted from
left to right in the snapshot. b) The comparison of QM, GAAMP and GAFF/AM1-BCC
dihedral energy profiles for eight dihedrals.
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Fig. 6.
a) A snapshot of hydrazine is shown. b) The comparison of QM, GAAMP and GAFF/AM1-
BCC dihedral energy profiles for dihedrals 3-1-2-5.
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Fig. 7.
The calculated solvation free energies for 98 compounds without hydrogen-bond donor/
acceptor are compared with experimental value. a) Using GAFF/AM1-BCC. The AUE is
0.74 kcal/mol. b) Using GAAMP/RESP charges. The AUE is 0.58 kcal/mol.
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Fig. 8.
The calculated solvation free energies for 119 compounds with hydrogen-bond donor/
acceptor are compared with experimental value. a) Using GAFF/AM1-BCC. The AUE is
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0.94 kcal/mol. b) Using GAAMP/RESP charges. The AUE is 1.35 kcal/mol. c) Using
GAAMP charges (by fitting both RESP and compound-water interactions). The AUE is 1.00
kcal/mol.
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Fig. 9.
The calculated solvation free energies for 217 compounds, including both polar and non-
polar molecules, are compared with experimental value. a) Using GAFF/AM1-BCC. The
AUE is 0.85 kcal/mol. b) Using GAAMP parameters. The AUE is 0.81 kcal/mol.
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Fig. 10.
The calculated solvation free energies using GAAMP Drude model for 217 compounds are
compared with experimental value. The AUE is 0.92 kcal/mol.
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Fig. 11.
The snapshots of three proteins with diverse structures are shown at the left of this figure.
Their PDB IDs are 1ctf, 1mjc and 1r69 respectively. The plots are generated by PyMol65.
The traces of RMSD for all Cα atoms for four trajectories of 100 ns MD simulations are
compared between using CHARMM 27 (middle) and using GAAMP FF (right) for 1ctf,
1mjc and 1r69 respectively.
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Table 1

The solvation free energies of 15 amino acid side-chain analogs calculated with GAFF/AM1-BCC, GAFF-
GAAMP, CHARMM27 and CHARMM27-GAAMP, other force fields (AMBER, CHARMM22 and OPLS-
AA)60 as well as experiment data are shown. Unit is in kcal/mol.

Mol GAFF/
AM1-BCC

GAFF-
GAAMP CHARMM27 CHARMM27-

GAAMP AMBER CHARMM22 OPLS-AA exp

Ala 2.49 2.51 2.31 2.33 2.57 2.44 2.31 1.94

Val 2.42 2.36 1.98 2.06 2.69 2.52 2.59 1.99

Leu 2.42 2.28 2.37 2.40 2.72 2.94 2.69 2.28

Ile 2.43 2.35 2.04 2.13 2.84 2.67 2.73 2.15

Ser −3.60 −3.74 −4.96 −3.48 −4.37 −4.59 −4.36 −5.06

Thr −3.62 −3.88 −4.86 −3.53 −3.83 −4.22 −4.11 −4.88

Phe −1.29 −0.87 −0.53 −1.14 0.10 0.09 −0.54 −0.76

Tyr −5.86 −6.17 −5.16 −5.82 −4.23 −4.46 −5.25 −6.11

Cys −0.45 −0.06 −0.52 −1.30 0.11 0.02 −1.59 −1.24

Met 0.04 0.19 0.27 −1.00 0.91 1.08 −1.27 −1.48

Asn −8.99 −7.96 −8.15 −7.66 −7.80 −7.89 −8.53 −9.68

Gln −9.03 −7.01 −7.82 −6.77 −7.69 −7.51 −8.4 −9.38

Trp −7.34 −5.72 −4.57 −5.43 −4.88 −3.57 −4.44 −5.88

Hid −8.01 −9.47 −10.44 −8.89 −8.43 −10 −8.87 −10.27

Hie −8.46 −9.03 −10.77 −8.11 −8.98 −10.27 −9.05 −10.27

AUE 0.92 0.85 0.63 0.89 1.22 1.06 0.75
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