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Abstract
Within-survey multiple imputation (MI) methods are adapted to pooled-survey regression
estimation where one survey has more regressors, but typically fewer observations, than the other.
This adaptation is achieved through: (1) larger numbers of imputations to compensate for the
higher fraction of missing values; (2) model-fit statistics to check the assumption that the two
surveys sample from a common universe; and (3) specificying the analysis model completely from
variables present in the survey with the larger set of regressors, thereby excluding variables never
jointly observed. In contrast to the typical within-survey MI context, cross-survey missingness is
monotonic and easily satisfies the Missing At Random (MAR) assumption needed for unbiased
MI. Large efficiency gains and substantial reduction in omitted variable bias are demonstrated in
an application to sociodemographic differences in the risk of child obesity estimated from two
nationally-representative cohort surveys.

I. INTRODUCTION
Frequently a social scientist has a choice of more than one survey that he or she could use to
analyze a given social phenomenon occurring at a given time. The survey with the best set
of predictor variables will typically be chosen, as to do otherwise would risk introducing
omitted variable bias. This survey may suffer, however, from a sample size that is too small
to detect true relationships between variables of interest to the researcher. For a recent
review of studies facing this type of trade-off, see Rendall et al (2011). Standard methods for
multivariate analysis rely on “rectangular” datasets (all predictor variables are present for all
observations), thereby preventing analyses that pool observations across surveys without the
same, complete set of predictor variables. The problem of missing predictor variables and
consequent non-rectangular datasets, however, is not unique to analysis with pooled surveys.
It also frequently confronts a researcher using a single survey, due to survey item non-
response (Allison 2002; Little and Rubin 2002). Standard analysis methods for rectangular
datasets require the discarding of entire observations if item non-response occurs for even
one variable that belongs in the regression model, a practice sometimes referred to as
“complete case analysis.” In response to this apparently wasteful treatment of survey
information, “missing data” methods of analysis that combine incomplete observations with
complete observations have been developed and are now used widely in the social and
health sciences (Schafer and Graham 2002; Raghunathan 2004). The goal of the present
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study is to show that missing data methods developed for handling non-response in single
surveys can be profitably applied to pooled analysis of surveys in which predictor variables
are “missing” from one or more surveys.

Among missing-data methods, multiple imputation (MI, Rubin 1987) offers a flexible and
statistically rigorous option. Little and Rubin (1989) argued for social scientists to consider
the efficiency advantages of MI over complete-case analysis, and to consider the
implementation advantages of MI over “direct methods” that combine separate likelihoods
for incomplete observations and complete observations within a single survey. These
implementation advantages arise primarily from the separation of the imputation step from
the target, post-imputation analysis. We refer to this standard use of MI as “within-survey
MI.” Successful early adoptions of within-survey MI in sociology and demography include
studies by Freedman and Wolf (1995), Goldscheider et al (1999), and Sassler and McNally
(2003). Within-survey MI is now used frequently in the social sciences to handle item non-
response, and MI software is available in the major statistical packages (Johnson and Young
2011).

A quite different context for the potential application of MI is to impute values from one
survey to a second survey in which that variable is not present by design ---- that is, no
question was asked and no other form of assessment was undertaken in the second survey.
The value is then missing for every case in the second survey. We refer to MI undertaken in
this circumstance as “cross-survey MI.” When additionally the observations from both
surveys are pooled for the post-imputation analysis, we refer to this as “pooled cross-survey
MI.” In the social sciences, we know of only one study that has implemented cross-survey
MI ---- that of Gelman, King, and Liu’s (1998a) development of a Bayesian hierarchical
model for MI across multiple public opinion surveys in a political science analysis. The two-
survey context we address in the present study is crucially different from Gelman et al’s
multiple-survey context, as only a multiple-survey context admits as a solution the
parameterized hierarchical model they propose to account for survey design differences. We
address the challenge of accounting for differences in survey design in the two-survey
context with a model-fitting approach that compares pooled-survey models respectively with
and without regressors that indicate in which survey the observation is found.

We also address explicitly the “variables never jointly observed problem” of cross-survey
MI. The cross-survey MI method was first proposed by Rubin (1986), but in the context of
the “statistical matching” of surveys, each survey with one or more variables not present in
the other. The resulting problems of post-imputation analysis with variables never jointly
observed have discredited the statistical matching approach in the social sciences (Rodgers
1984, Ridder and Moffitt 2007), and have left it largely on the margins of statistics (Judkins
1998; but see also Rässler 2002 and Moriarity and Scheuren 2003). By insisting that the
post-MI analysis be specified from variables completely present in one of the two surveys
(the “impute-from” survey), and imputing variables only to the survey that we designate to
be incomplete (the “impute-to” survey), we propose a form of cross-survey MI that avoids
the “variables never jointly observed” problem.

The remainder of the paper is structured as follows. In section II immediately below, we
describe the relationship of cross-survey MI to both within-survey MI and to direct methods
for combining data sources using Maximum Likelihood and Generalized Method of
Moments estimators. We then describe our proposed adaptations of procedures and
principles from both within-survey MI and direct data-combining methods to implement
cross-survey MI most effectively. To assess the suitability of the two surveys for combined
analysis, we propose a model-fitting approach using an analysis model specified from
variables in common between the two surveys. In section III, we demonstrate cross-survey
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MI in an application to sociodemographic differences in the risk of early childhood obesity
estimated from two nationally-representative cohort surveys. Our model-fit statistics largely
support the assumption that the two surveys sample from a common universe, though we
also illustrate the use of a restriction on the target population to handle the circumstance in
which that support is equivocal. Compared to estimation using only the smaller survey, we
show empirically that large efficiency gains in estimates of coefficients are achieved for
variables in common between the surveys and that a reduction in overall sampling bias is
also achieved. Compared to estimation using only the larger survey, we show that notable
reductions in omitted variable bias are achieved by our having imputed a key predictor
variable available only in the smaller survey. Discussion follows in section IV.

II. RELATIONSHIPS OF CROSS-SURVEY MI TO WITHIN-SURVEY MI AND
TO DIRECT METHODS FOR COMBINING DATA SOURCES

As noted by Hellerstein and Imbens (1999), multiple imputation (MI) may be viewed as an
alternative method to the imposing of moment restrictions from a larger data source with
fewer predictor variables to an equation estimated entirely from observations from a smaller
data source but with more predictor variables. Although the analysis may be conducted from
the smaller sample survey alone, more efficient estimation can be achieved by additionally
exploiting information in the larger data source. The adverse effects of any sampling biases
in the smaller sample survey may also be mitigated by anchoring estimates from the richer
covariance structure of the smaller data source to the more population-representative larger
data source.

Imbens and Lancaster (1994) reported large gains in efficiency by incorporating marginal
moments from census data with sample-survey joint distributions using a Generalized
Method of Moments estimator. Handcock, Huovilainen, and Rendall (2000) developed a
Constrained Maximum Likelihood estimator (MLE) to impose restrictions from birth-
registration and population-estimate data on a model estimated from sample-survey data and
similarly reported large efficiency gains. Rendall et al (2008) showed that efficiency gains
on a greater range of coefficients can be obtained by augmenting a small survey with both
population-level data about bivariate relationships and additional surveys with data on a
limited set of multivariate relationships. Hellerstein and Imbens (1999) considered the
circumstance in which the data providing the moment restrictions are not from a population-
level data source but instead from a large sample survey, and derived an expression for
efficiency loss due to sampling error in the large survey.

Hellerstein and Imbens also considered in some detail the case in which the smaller and
larger data sources do not sample from exactly the same population. They described the
larger source (the cross-sectional Current Population Survey, CPS) as being a probability
sample of the “target population” and the smaller source (the panel survey National
Longitudinal Survey, Young Men’s Cohort, NLS) as being subject to attrition bias and
describing it as being from the “sampled population” remaining after attrition. By weighting
the NLS data to the CPS joint distribution of a dependent variable (log wages) and limited
set of predictor variables, they showed that an unbiased larger data source can be used to
partially correct for bias in the smaller data source. Handcock, Rendall, and Cheadle (2005)
extended this approach to a constrained MLE estimator of differences in marital fertility
between black and white women in which the smaller, panel survey (the Panel Survey of
Income Dynamics, PSID) was similarly subject to non-response bias, whereas the data on
the target population (registered U.S. births compiled by the National Center for Health
Statistics, NCHS, matched to Census Bureau population estimates by marital status) were
considered to be unbiased. Rendall, Handcock, and Jonsson (2009) considered the case in
which the larger data source was also biased and, using a subjective Bayesian prior for the
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magnitude of that bias, showed that large reductions in mean square error can nevertheless
be achieved by combining information from the larger data source in a regression using
observations from the smaller data source.

Data-combining methods that impose moment restrictions or constraints, however, quickly
become computationally unwieldy as successively more covariate information is included
from the larger data source. Moreover, it is often the case that more covariate information
may be added only when the larger data source is no longer very large. In this case there
may be no clear designation of one of the two surveys as being the large, unbiased survey
against which the other survey should be calibrated. More general methods that allow for
more equal contributions to the model estimates from the observations of the two data
sources are then needed. This argues for consideration of data-combining methods in which
observations from the first survey, and not merely aggregate moments computed from it, are
pooled with the observations from the second survey.

We argue for the extension of within-survey MI methods to the treatment of the
observations from one survey as the “complete cases” and the observations from the other
survey as the “incomplete cases.” Compared to within-survey imputation, this cross-survey
imputation requires larger numbers of imputations to compensate for the higher fraction of
missing values for variables missing entirely in the larger survey. It also needs to address
sample design and measurement differences between surveys. Cross-survey MI, however,
has three desirable features not found in within-survey MI. Most obviously, major efficiency
gains can be realized by pooling observations across surveys. This is analogous, but
additional to, efficiency gains obtained by combining incomplete and complete observations
from the same survey in within-survey MI. Second, in cross-survey MI the variables to be
imputed are “missing-by-design” (Raghunathan and Grizzle 1995), meaning that the reason
an individual is “missing” a value for a variable of interest is that the survey did not ask the
question. This is very different from values that are selectively missing due to item non-
response, or to dropout in a panel survey. It has the statistically important consequence that
the “Missing at Random” (MAR) assumption will be more easily met in cross-survey MI
than in within-survey MI. Third, the missing-by-design structure of the pooled observations
used in cross-survey MI implies that missingness has a monotone rather than arbitrary
pattern (Rubin 1987). An individual’s being sampled in one survey and not the other means
he or she will have missing values for all variables derived from questions not asked in that
survey (but asked in the other). The resulting “monotone” missing pattern allows for
sequential imputation with separate models for categorical and continuous variables
(Raghunathan et al 2001). In within-survey MI the pattern of missingness is generally
“arbitrary” (missing values on one variable does not invariably imply missing values on a
second variable and vice versa). Consequently a convenient parametric multivariate model
such as the multivariate normal (Schafer 1997) is assumed for joint-distribution imputation.

A cross-survey MI setup that allows for the application of methods and results both from
within-survey MI and from direct methods of combining data

We describe data-combining in the typical case of a “smaller survey” (Survey 1) that has
fewer observations but more regressors and a “larger survey” (Survey 2) that has more
observations but fewer regressors. More generally, however, we can and do refer to Survey
1 as the “impute-from” survey and Survey 2 as the “impute-to” survey, and nothing in our
results requires that Survey 1 actually be smaller than Survey 2. We assume that Survey 1
has outcome variable Y and predictor variables X1 and X2 for a sample of size N1, and that
Survey 2 has outcome variable Y and predictor variable X2 for a sample of size N2. We
assume that no values of Y, X1, or X2 are missing in Survey 1 and that no values of Y or X2
are missing, but all values of X1 are missing, in Survey 2. The goal of the analysis is to
estimate the parameters and standard errors of a multivariate regression model that includes
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observations from both surveys and that is specified from the survey with the fullest set of
available regressors. We consider the special case of a binary outcome variable Y and the
logit model, LOGIT [p] =ln[p/(1 − p)], for the regression:

(1)

Although X1 and X2 are predictor variables that will be assumed first to be scalar (single
regressors), they may easily be generalized to vectors of regressors.

We first make the assumption that the surveys randomly sample from a common universe
using equivalent survey instruments and sampling designs. This is the context examined by
Raghunathan and Grizzle (1995) in which sample components of a single survey are
assigned survey questions according to a “missing-by-design” plan. Under these conditions,
it is clear that the methods of within-survey MI with complete and incomplete cases apply

equivalently to cross-survey MI. Survey 1 provides the complete cases  and

Survey 2 provides the incomplete cases . Standard within-survey imputation
methods (Rubin 1987) may then be applied to derive estimates of the parameters and
standard errors of Model (1), as follows. An imputation model for E [X1 | X2, Y] is first
estimated as a regression of X1 on X2 and Y using Survey 1 observations only. Second,
using the parameters estimated in the imputation model from the data of Survey 1, together
with the values of X2 and Y in Survey 2, a value for X1 is imputed by randomly drawing m
times for each of the N2 observations in Survey 2. Third, each of these versions of Survey 2
observations containing a different randomly imputed value for X1 is concatenated with the
N1 (‘complete’) observations in Survey 1 to create m ‘completed’ datasets each of size N1 +
N2. Fourth, the analysis model (1) is estimated on each of the m completed datasets.
Indexing the m datasets by k, the analysis model produces m unique realizations β̂k = {β̂1k,
β̂2k} of parameter vector β ={β1, β2}. Standard multiple imputation algorithms (Schafer

1997, p. 109) are used to combine  to derive the final parameter estimates and their
standard errors. The final parameter estimates are derived as simple averages over all m

estimates . Let Ū represent the mean within-imputation

variance  and B represent the between-imputation variance

. The final standard error estimates about the parameters are then

derived as . The last term (1+1/m)B represents the
upward adjustment to the standard errors to account for the imputation of X1 in the N2 cases
among the N1+N2 cases pooled over Surveys 1 and 2 for the analysis.

Note that in the case that X2 is a vector, sometimes in the practice of MI an imputation
model to predict X1 will be specified with regressors Y and a subset only of the variables in
the X2 vector. This is called an “uncongenial” method of imputation (Meng 1994) because
variables in the analysis model are omitted from the imputation model. Uncongenial
imputation has two theoretical drawbacks relevant to implementing and evaluating the
performance of cross-survey MI. First, analytical expressions of variance reduction of
Maximum Likelihood (ML) methods do not then apply directly to variance reduction in MI.
Second, uncongenial imputation increases bias, as leaving out variables in the imputation
model that are present in the analysis model may attenuate the analysis model regression
coefficients (Schenker, Raghunathan, and Bondarenko 2010). Imputation may also be

Rendall et al. Page 5

Sociol Methods Res. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



described as uncongenial when variables are not used in the imputation model estimated
from Survey 1 because they were not in Survey 1, but are in Survey 2 and are included in
the analysis model on that basis. We discuss this below as the problem of having variables in
the analysis model that are “never jointly observed” in either Survey 1 or in Survey 2. This
is a circumstance in which we advise against the use of cross-survey MI.

Theoretical results for variance reduction when combining complete and incomplete
observations over estimation with only the complete observations were derived in the linear
regression case by Little (1992), subsequently extended by White and Carlin (2010). A key
parameter in evaluating gains to cross-survey MI is the “fraction missing.” Following the
terminology developed for within-survey MI in White and Carlin, we define the fraction
with missing values of X1 by π =N2/(N1 +N2). This fraction missing can be considered
either to be the fraction of incomplete cases in a single survey, or in our case to be the
fraction of cases that come from the second of the two surveys.

The principal, or possibly only, variance reductions will then be in Var(β2), the parameter
for which the regressor variable (X2) is observed in both Survey 1 and Survey 2. Variance
reduction about Var(β2) will depend not only on the fraction missing π but also on the

correlation  between X2 and X1, and on the partial correlation of Y and X1 given X2,

. The expression for the proportion by which Var(β2) is reduced by adding observations
from Survey 2 in the linear regression case is given by (White and Carlin 2010, p. 2922):

(2)

In the special case of no correlation between X2 and X1 and when X1 has no association
with of Y independent of variation in X2, then Var(β2) reduces by the maximum amount,
equal to the fraction of observations in Survey 2, π. In this case, however, we could estimate
β2 without the need for MI. Instead we would simply pool Survey 1 and Survey 2
observations and estimate LOGIT [Pr{Y | X1, X2)] = β0 + β2 X2. In the more relevant case

of  and , cross-survey MI will always result in a reduction in Var(β2) in

the linear regression case because both ( ) and [ ] will always be less
than 1.

In the general case, reductions in Var(β1) will be negligible unless X1 and X2 are very highly
correlated, given that the observations from Survey 2, in which X1 is always missing,
contribute no direct information about the relationship of X1 to Y. This result of negligible
reductions in coefficients about non-common variables between the two data sources was
also found empirically by Imbens and Lancaster (1994), and by Handcock et al (2005) who
referred to these β1-type coefficients as being “indirectly constrained” only. White and
Carlin (2010, p. 2930) claim, moreover, that in the specific case of binary Y there is never
any reduction in Var(β1) achieved through adding the observations from Survey 2. It is not
clear, however, if this claim applies to the logistic model only or to all binary outcome
models.

In addition to a “congenial” specification of the imputation equation, the number of
imputations, m, needs to be sufficiently large for the MI variances Var(β) to approach the
variances of the Maximum Likelihood (ML) estimator. This approximation of the MI
variances to those of ML as the number of imputations m becomes large follows from the
expression for the ratio of the variance of the MI estimator to a corresponding ML estimator
as 1+ f/m, where f is “the fraction of missing information” for the parameter (Schafer 1997,
p. 110). The larger is f, the higher is the number of imputations needed to make MI nearly as
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efficient as ML, but given that f has an upper bound of 1 then f/m will always quickly
converge to 0.

Cross-Survey MI with Differences in Survey Designs
We next relax the assumption that the surveys randomly sample from a common universe
using equivalent survey instruments and sampling designs. Incorporating complex survey
design features can be important for both within-survey MI for non-response (Reiter,
Raghunathan, and Kinney 2006) and therefore potentially even more so for cross-survey MI
in which clustering and strata designs will differ between the imputed-from and imputed-to
surveys. No agreed-upon set of methods has been developed, however, for incorporating
design effects into imputation modeling. von Hippel (2007, p. 88) notes that standard MI
software does not allow for survey sample design effects to be taken into account in the
imputation model, and that Rubin’s (1986) recommended approach of including fixed
effects for clusters can be problematic when clusters are small. He found in a practical
example that failure to model clusters had little biasing effect. Reiter et al (2006) showed
that including fixed effects for clusters reduced otherwise substantial imputation bias in an
analysis of data generated for their simulation study but had a negligible effect in their real-
data example. Concerning the incorporation of strata in the imputation equation, Reiter et al
proposed a random effects model for sampling strata but cautioned that it is both more
difficult to estimate computationally and is easier to mis-specify than is a fixed effect model
for cluster effects. They described the fitting of hierarchical models for sequential MI in
which there is a series of imputation equations as “…an area for future research” (p. 148).
Schenker et al (2010) similarly deferred a comprehensive treatment of the differences in
clusters and strata across surveys for future research, and noted that cluster and strata
identifiers are frequently not available to researchers in public-use versions of survey data.
Gelman et al (1998a) and Schenker et al (2010), also in a cross-survey imputation context,
incorporated as many variables associated with cluster and strata identifiers as possible
among their imputation predictor variables. This appears to be a reasonable compromise
strategy, and is adopted in the present study.

Additional to differences in survey sample design are differences across surveys in variable
definition, measurement instrument differences, and survey operations differences. When
multiple surveys are combined, these differences in survey ‘context’ can be handled through
a hierarchical modeling framework in which the effects of differences across surveys on the
estimated model relationships can be parameterized. This is the circumstance of Gelman et
al’s (1998a) cross-survey MI development for estimation of a model jointly from 51 cross-
sectional surveys in which some questions were not asked in some of the 51 surveys and
were consequently multiply imputed by the researchers. They proposed a Bayesian
hierarchical model with random effects in which survey is a level in the hierarchy. Tighe et
al (2010) similarly used a hierarchical approach in their pooled-survey analysis with
variables common across all surveys that they pooled. This is analogous to the pooling of
data across countries in cross-national analyses in which each country has the same model
variables but a different social and institutional context in which the relationships between
the variables are played out (Western 1998). A hierarchical modeling approach, however,
depends on pooling a sufficient number of surveys to allow for a parameterization of model-
parameter variability across the surveys. In both the Gelman et al and Tighe et al cases, there
were approximately 50 surveys whose observations were pooled, and for which
hyperparameters for a distribution of variability across surveys could be estimated from the
empirical variability across the 50 surveys. When only two surveys are combined, no
parameterization of cross-survey variability is possible and therefore the Bayesian
hierarchical model is not an option.
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To address survey differences in a cross-survey MI analysis with only two surveys,
Schenker, Raghunathan, and Bondarenko (2010) subdivided their two surveys’ samples into
subgroups that were identified through propensity-score analysis to have similar covariate
distributions across the two surveys. A disadvantage of this method is that smaller
subsamples were then used to estimate the imputation models. Simpler imputation models
had to be specified, which the authors suggested may have caused attenuation of the
coefficients subsequently estimated in their analysis model. Only the observations of their
“impute-to” survey were used in that model.

For our general social-science context of two surveys, we propose instead a pooled cross-
survey MI method, preceded by a model-fitting approach (e.g., Burnham and Anderson
2002; Weakliem 2004) to evaluate the reasonableness of the assumption that two surveys are
independent realizations of the same superpopulation. We also allow for this assumption to
hold only up to a possibly non-zero scale factor allowing for difference in overall level of
the outcome variable. The relevant statistical theory here is that two surveys whose samples
were drawn in approximately the same period and geographical area are candidates for being
treated as independent draws from either: (1) the same finite population, under a design-
based paradigm; or (2) from the same superpopulation, under a model-based paradigm. The
model-based paradigm is more flexible, as it allows for the comparability of the surveys to
depend on the particular model being estimated. It therefore provides the more relevant
criterion for determining whether observations from two surveys may reasonably be pooled.

A recommended set of procedures for cross-survey multiple imputation
In light of the preceding discussion, we propose three conditions and procedures to adapt
within-survey MI methods successfully to cross-survey MI involving two surveys: (1)
including in the analysis model only variables observed entirely within one of the two
surveys; (2) use of sequential multiple imputation; and (3) testing for survey sampling and
instrument differences using model-fit statistics calculated for an analysis model specified
entirely from variables in common between the two surveys.

(1) Exclusion of Variables Never Jointly Observed—Special care must be taken in
the specification of the variables to be included in the analysis and imputation models of a
cross-survey MI study. We argue that a cross-survey imputation study should be designed
such that the analysis model can be estimated with one of the surveys alone. This guarantees
that “variables never jointly observed” (Rubin 1987) will be excluded. Violations of this
exclusion condition discredited earlier attempts at cross-survey imputation and estimation
conducted under the methodological heading of “statistical matching” (Rodgers 1984). A
recent review and extension of that literature is found in D’Orazio, Di Zio, and Scanu
(2006). The problem for the credibility of statistical matching techniques is in their handling
of the variables not observed in common across the data sources. To give a simple
illustration of the problem of variables never jointly observed, assume Survey 1 has outcome
variable Y and predictor variable X1 and Survey 2 has outcome variable Y and predictor
variable X2. The goal is to estimate E[Y | X1, X2], for example in a multivariate regression
model Y = f (X1, X2). Without additional information on the joint distribution of Y, X1, and
X2, estimation that combines observations across the two surveys leads to no additional
knowledge about Y | X1 that cannot be derived from estimation using observations from
Survey 1 alone, and no additional knowledge about Y | X2 that cannot be derived from
estimation using observations from Survey 2 alone (Ridder and Moffitt 2007, pp. 5491–
5494).

Additional information may come from an auxiliary data source in which Y, X1, and X2 are
all observed, though this auxiliary data source will often be for a sample drawn from a
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different universe such as a segment only of the population (Singh et al 1993). This
difference in universe may be handled by Bayesian methods that attach probability
distributions to represent the degree of similarity of the joint distribution of Y, X1, and X2 in
the auxiliary data to the true joint distribution in the target population. Such an approach was
proposed by Rubin (1986) and was explored by Rässler (2002). No accepted methodology
for implementing this, however, has taken hold in the social sciences.

The analysis of Gelman et al (1998a) is an extension of within-survey MI to a cross-survey
context, but is not free of the “variables never jointly observed” problem. We consider their
approach now in more detail. The setup of their problem is of 51 cross-sectional surveys
(public opinion polls) conducted at various times preceding an election, and an analysis
model predicting voter preference. They drew both on MI for within-survey non-response
and on MI for split-survey “missing-by-design” data structures (Raghunathan and Grizzle
1995). Gelman et al developed and estimated a cross-survey multiple imputation model that
combined the surveys and that introduced an additional diagnostic layer to understand any
unique “survey” effects though a Bayesian hierarchical model. Although they noted that 5 of
the 51 surveys included all the questions used to construct their model variables (Gelman et
al 1998b, p. 870), a critical motivator of their study concerned variables not derived from the
survey questions but instead from the period at which the poll was conducted. They handled
this by including a variable for the date at which the survey was conducted (Gelman et al
1998a, p. 850), representing time until the election. They noted also, however, that particular
events such as a party convention were likely to affect voter intentions separately from any
overall time trend. A survey question for a key variable for their model, self-reported
political ideology (liberal, moderate, or conservative), was not asked in the poll conducted
around the time of the party convention. Therefore party convention, political ideology, and
voter intention were never jointly observed. The authors argued that this was not
problematic for their analysis because “…public opinion shifts are generally uniform across
the population…” (Gelman et al 1998a, p. 855). This is a type of conditional independence
assumption. The nature of this assumption, informed by previous studies and theory (see
also Gelman et al 1998b), is no stronger than those commonly used to identify statistical
models in the social sciences. Nevertheless, given the history of skepticism about cross-
survey imputation approach used in the statistical matching literature due to its invoking of
conditional independence assumptions about variables never jointly observed, it seems
useful to propose a context in which to evaluate and illustrate the utility of the cross-survey
multiple imputation approach that does not include variables never jointly observed.

(2) Use of sequential imputation—Both continuous multivariate normal joint
imputation methods and chained sequential imputation methods for deriving the joint
distribution have been used in multiple imputation (Lee and Carlin 2010). We recommend
that cross-survey MI take advantage of the monotone missing pattern (Rubin 1987) that
comes with the “missing-by-design” structure of the incomplete data in the cross-survey
context to conduct sequential imputation. In our example application below, only one
variable has missing values. This can be considered the simplest case of monotone
missingness. If X1 is instead a vector of regressors, they are assumed still to be missing only
in Survey 2, and therefore missing values for any one of the elements of X1 implies missing
values for all other elements of X1, a monotone missingness pattern. If the missingness
pattern were instead “arbitrary,” for example if in Survey 1 some cases had missing values
for X1 and other cases had missing values for X2, then a model for the joint imputation of
X1 and X2 would be needed. This requires that the relationships between Y, X1, and X2 be
estimated jointly through a parameterized multivariate distribution, and in the practice of
multiple imputation this has meant imposing a multivariate normal distribution (Schafer
1997). If either or both X1 and X2 are categorical or count, the standard procedure is to first
transform these variables using a continuous normal approximation.
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Considerable work has been conducted on evaluating the biases induced by imposing a
continuous normal approximation on partly categorical or count data (Raghunathan et al
2001; Allison 2009; Lee and Carlin 2010; White and Carlin 2010). When the categorical
variable values have close to equal probabilities, the approximation is very good and results
in almost no bias. When the categorical variable values have very disparate probabilities
(e.g., a probability of less than .05 for a binary variable), the approximation is much worse
and substantial bias may be introduced. This has led to the development of sequential
regression methods of multiple imputation (Raghunathan et al 2001) that allow for
categorical regression equations for categorical variables and linear regression equations for
continuous variables. A theoretical concern with sequential imputation is that the
distribution resulting from a sequence of imputations may not converge to a true joint
distribution. Simulation studies, however, have found this not to be a problem in practice
(Raghunathan et al 2001; Lee and Carlin 2010). Moreover, the monotone missingness
pattern of the cross-survey MI structure allows the joint distribution to be specified as a
series of conditional distributions, whereas arbitrary missingness patterns typically used in
simulation studies do not. For these reasons, we recommend that cross-survey MI take
advantage of the monotone missingness pattern of the missing-by-design structure of the
data and use the sequential regression method of multiple imputation.

(3) A model-fitting approach to testing for sampling from the same universe—
Recommendations (1) and (2) above follow the method of Raghunathan and Grizzle’s
(1995) simpler case in which values are missing-by-design for sample components within a
single survey. In practice, different surveys will almost never sample from (or be designed
to generalize to) exactly the same finite population. Moreover, there will often be variations
in variable definitions and in survey operations between the two surveys. To handle this, we
recommend a model-fitting diagnostic approach with three sets of models: the first with no
“survey” covariate; the second with a “survey” main effect only (the scale factor); and the
third with a “survey” main effect plus full interactions between “survey” and the model
covariates. For each of the three models, a penalized model-fit statistic is estimated. Weden,
Brownell, and Rendall (forthcoming) demonstrated this model-fitting approach applied to
two surveys in which the same variables were present in both surveys.

Returning to the simple example above, and using S2 as an indicator variable for the
observation’s being from Survey 2 (S2 =1) versus in Survey 1 (S2 =0), the models whose fit
should be compared exclude X1 because this is missing for every observation in Survey 2.
The three models to be compared are:

(1a)

(1b)

(1c)

If Model (1b) has a smaller model-fit statistic than Model (1a), then the “survey” main-
effect variable S2 should be added to the analysis model (1). If Model (1c) has a smaller
model-fit statistic than Model (1b), then we would conclude that the surveys differ also with
respect to the relationship between the covariate and outcome variable. In that situation,
although a hierarchical, objective Bayesian approach of the type used by Gelman et al
(1998a) to handle more general survey differences is not feasible with only two surveys, a
subjective Bayesian approach to the construction of priors about the survey differences,
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similar to that developed by Rendall et al (2009) to combine population and survey data,
may be considered. Alternatively, defining a less broad target population, for which the
sampling designs across the two surveys are more similar, may be considered. We illustrate
the latter strategy in the example application described below.

Among model-fit statistics, the BIC, given by BIC = −2log L + p log(N) where is the
number of free parameters and N is the number of observations, is the standard statistic used
by sociologists, whereas both the BIC and AIC, given by AIC = −2log L +2 p, are frequently
used by economists (Weakliem 2004: and see Burnham and Anderson 2002, chapter 6,
comparing the BIC and AIC). A smaller model-fit statistic indicates a better-fitting model.
The BIC and AIC differ only by their penalty term, with the BIC penalizing both an increase
in the number of model parameters and an increase in the number of observations, whereas
the AIC penalizes only an increase in the number of model parameters. Because the penalty
term in the BIC is multiplicative with respect to and log(N), for a given pooled-survey
sample size an increase in the number of parameters will increase the model-fit statistic
more than will the AIC. Since the penalty for adding variables is less when using the AIC,
use of this criterion makes it more likely that a pooled-survey model with a survey indicator
and survey indicator and covariate interactions will have the better fit than a pooled-survey
model without a survey indicator or survey indicator and covariate interactions. Weakliem
(2004, p. 183) concludes that the BIC criterion is preferred when there is “a real chance”
that the hypothesis that the simpler model is true. This suggests that the BIC criterion should
be preferred for pooled cross-survey MI evaluation, since the hypothesis in question is that
the two samples really do sample from the same target population. If we didn’t have an a
priori belief that there was “a real chance” that this were at least approximately true, we
would likely not initiate a combined-survey analysis.

III. APPLICATION TO SOCIODEMOGRAPHIC DETERMINANTS OF EARLY
CHILDHOOD OBESITY
Overview

We illustrate the use of pooled cross-survey MI in an application to sociodemographic
differences in the likelihood of obesity in kindergarten. We consider race/ethnicity,
household income, and maternal education and marital status as markers of these
sociodemographic differences. Our estimation combines two nationally representative,
longitudinal surveys that we provisionally assume to sample from a common universe,
defined in a model-based sense. We conduct diagnostics under a model-fitting framework to
test this assumption. Sociodemographic and some biosocial variables are present in both
surveys. Maternal height and weight, from which body mass index (BMI) are derived, are
present in only one of the surveys. We use pooled cross-survey MI first to impute maternal
BMI to the other survey and second to account for the additional variability of the parameter
in the pooled-survey child obesity model due to their being estimated with multiply-imputed
maternal BMI data.

The prevalence of child obesity in the U.S. is higher among Hispanic and black children
than among white children, and these racial/ethnic disparities have widened with the
development of the child-obesity epidemic (Freedman et al. 2006). Similarly, the prevalence
of child obesity is higher among children living in families with lower household income,
lower parental education, or with unmarried mothers, and disparities by these and other
socioeconomic indicators have also been widening over the last several decades (Miech et
al. 2006; Singh et al. 2010). Markers of children’s socioeconomic status like household
income, maternal education and maternal marital status are important to assess not only
because they describe differences in family circumstances, but also because they may be
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associated with proximate environmental conditions amenable to policy intervention, such
as underfinanced schools attended by children from low-income households (Anderson and
Butcher 2006). High maternal body mass index (BMI) is one of the strongest risk factors for
obesity in early childhood (Classen and Hoykayem 2005; Salsberry and Reagan 2005;), with
both genetic and social factors figuring prominently in inter-generational correlations in
obesity (Martin 2008). Because racial/ethnic minority children and children with poorer
sociodemographic circumstances are disproportionately exposed to the risks of high
maternal overweight and obesity (Kimbro et al. 2007; Weden et al. forthcoming), maternal
weight status represents an important factor through which socio-demographic variables
influence children’s weight.

Data
Our two surveys are the Early Childhood Longitudinal Study 1998 Kindergarten cohort
(ECLS-K) and the Early Childhood Longitudinal Study 2001 Birth cohort (ECLS-B). Both
surveys were directed by the National Center for Educational Statistics (NCES) to assess
children’s early learning environments, health, and development (see, for example, Downey,
von Hippel, and Broh 2004; and Mollborn and Morningstar 2009). Both surveys included
observations of the child’s height and weight in kindergarten, and these were measured by
trained interviewers and not parent-reported. The ECLS-B and ECLS-K have many
variables in common, measured using similar survey instruments. They are therefore good
candidates for combined-survey analysis. Only one of the surveys, the ECLS-B, however,
collected mother’s height and weight. These are needed to calculate maternal BMI, which is
strongly predictive of the child’s obesity. This makes the use of pooled cross-survey MI
potentially very valuable for analysis of other determinants of child obesity, controlling for
maternal BMI. In the terminology of Section II above, the ECLS-B would serve as the
“impute-from” survey and the ECLS-K as the “impute-to” survey.

The ECLS-K followed a nationally-representative cohort of children attending kindergarten
in the U.S. in 1998 and assessed children periodically through eighth grade (U.S.
Department of Education 2009a). The baseline kindergarten sample was selected using a
three-stage probability-sampling design. Counties or groups of contiguous counties were
first sampled as primary sampling units (PSUs), then schools within these PSUs, and finally
students within schools. The ECLS-K used Census population estimates of five-year-olds in
the PSUs by race/ethnicity to oversample Asians and Pacific Islanders. Additionally, during
the selection of schools within PSUs, private schools were oversampled. An overall
unweighted response rate of 61.9% was achieved for the baseline fall kindergarten child
assessment. This overall response rate is a product of the cooperation rate by the 1,280
sampled schools nation-wide (68.8%), and the completion rate for children attending
cooperating schools (89.9%)( U.S. Department of Education 2009b). Our analysis is of
obesity measured at the fall kindergarten wave of the ECLS-K. Our analytical sample is
restricted to U.S. born children whose biological mothers responded to the parent survey
(89.2% of the fall kindergarten sample). This restriction excludes children who were born
outside the U.S. (540 cases) to achieve comparability between the ECLS-K and the ECLS-
B. An additional 10.9% of cases are excluded due to their missing information on one or
more of the other study variables, for a final sample of 15,240 children. All ECLS-K counts
are rounded to the nearest 10 to comply with NCES confidentially requirements.

The ECLS-B was designed as a nationally-representative sample of the cohort of children
born in the U.S. in 2001 who survived to nine months, were not adopted from birth to nine
months, and did not leave the country (Snow et al. 2009). Births were sampled within
primary sampling units (96 counties or contiguous counties) using a sampling frame
consisting of registered births obtained from the NCHS Vital Statistics system and from two
hospitals. Additionally, a supplementary sample of 18 primary sampling units was selected
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from a frame consisting of areas with a greater number of American Indian/Alaskan native
births. Assessments were conducted at 9 months, 2 years, 4 years, and at kindergarten in
either the 2006–2007 or 2007–2008 school year. Children who had not yet entered
kindergarten when assessed during the 2006–2007 school year were re-contacted for
assessment in the 2007–2008 school year. Using data recorded in the birth certificates, the
ECLS-B oversampled children with low birth weights, twins, and children in the following
racial/ethnic categories: American Indian/Alaskan Native, Chinese, and Other Asian/Pacific
Islanders. Mothers younger than 15 years old when they gave birth to their child were
excluded from the ECLS-B by sample design. Our analysis is of obesity measured at the
kindergarten assessment. By the kindergarten wave, cumulative unit non-response was just
over half the original sample. Specifically, an unweighted 47.0% of the children originally
sampled from the birth certificates were assessed as kindergarteners. This overall
unweighted response rate is a product of the baseline unweighted response rate at the 9
month wave (76.8%) and the unweighted retention rate for successful follow-up from the 9
month wave through the assessment upon entry into kindergarten in either the 2006–2007 or
2007–2008 school years (61.2%). We excluded ECLS-B cases where the child was
homeschooled (2.0%), went straight to first grade (0.5%), or where the grade they were
enrolled in was unknown or ungraded (1.7%). We excluded an additional 6.4% for whom
the responding parent was not the biological mother. From this ‘eligible children’ sample,
11.7% of cases were excluded due to their missing information on one or more of the other
study variables, for a final sample of 5,200 children. All ECLS-B counts are rounded to the
nearest 50 to comply with NCES confidentially requirements.

Variables—The dependent variable in our study is child obesity in kindergarten, defined as
a BMI at or above the 95th percentile using the U.S. Centers for Disease Control reference
population and procedures (Kuczmarski et al. 2002) that account for developmental
differences in growth by age and gender. The ECLS-K and ECLS-B used comparable
measurement protocols for assessing child height and weight, using a Shorr board for height,
a digital bathroom scale for weight, and requiring that children were wearing light clothing
when weighed.

We include both sociodemographic and biosocial predictor variables in our analysis.
Mother’s race/ethnicity is self-identified and coded for our analysis into the five categories
of Hispanic and (non-Hispanic) white, black, Asian, and Other (which includes the self-
reported categories of Native Hawaiian/Pacific Islander, Native American/Native Alaskan,
and multi-racial). Maternal education, marital status, and household income are all measured
in the child’s kindergarten year. Education and marital status are assessed using identical
survey protocols in the ECLS-B and ECLS-K. Household income is a continuous measure in
the ECLS-K but it is measured using a 13 category variable in the ECLS-B ($5,000 or less;
$5,001 to 10,000; etc., up to $200,001 or more). In order to harmonize across the two
datasets, we coded each of the categories of the ECLS-B to the middle of the range (with the
open ended category coded to $408,500). We adjusted these values for inflation by
measuring income in 1998 dollars (U.S. Department of Labor 2012), and transformed this
inflation-adjusted income into the log of household income. Additional demographic
variables are child’s age, child’s gender, and number of siblings. Child’s age is measured in
months and corresponds to the age they were when the height and weight measurements
were taken.

Biosocial variables include mother’s age at birth, whether the child was a singleton birth or
part of a twin or higher order birth, child’s birth weight, and mother’s BMI. Mother’s age at
birth is a continuous measure of the mother’s age in years when she gave birth to the study
child. Birth weight is obtained from birth certificates in ECLS-B and parental reports in
ECLS-K. We coded this into low birth weight (less than 2,500 grams, reference), average
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birth weight (2,500 to 3,999 grams), and high birth weight (4,000 grams or heavier). In the
ECLS-B, mothers reported their own weight at the time of the child’s kindergarten
assessment. We combined this with their height, self-reported in the 9 month wave, to
calculate maternal BMI as weight (kg)/height (m)2. No maternal weight or height measures
are present in the ECLS-K and so maternal BMI is “missing” for all ECLS-K children.

Evaluation of comparability of the two surveys on outcome and predictor
variables—Comparison of sample-weighted estimates of children’s obesity and predictor
variables in the two surveys allows for a first opportunity to assess their comparability, and
therefore also their suitability for pooled analysis. The ECLS-K and ECLS-B are designed to
be nationally representative with respect to the cohorts they sample from, respectively
children who entered kindergarten in 1998 and children who entered kindergarten in 2006 or
2007. We know from previous analyses of National Health and Nutrition Examination
Survey (NHANES) data, considered the ‘gold standard’ for U.S. prevalence estimates, that
the prevalence of child obesity changed little between 1998 and 2007 (Ogden et al. 2010).
We also conducted a direct comparison of the ECLS-B and ECLS-K to microdata from the
NHANES (National Center for Health Statistics, no date), allowing us to match age and
period from the ECLS-B and ECLS-K to the NHANES (see Table 1). We found that the
ECLS-B kindergarten obesity prevalence of 16.4% (95% Confidence Interval (CI): 14.9,
17,9) was substantially and statistically higher than the 12.1% for children aged 4 to 6 in
NHANES 2005–2008 (95% CI: 9.4, 14.7). In contrast, the ECLS-K kindergarten obesity
prevalence of 11.6% (95% CI: 11.0, 12.2) was not statistically different from the 11.4% for
children aged 4 to 6 in NHANES 1999–2000 (95% CI: 7.6, 15.2). Given the strength of both
the ECLS-B’s and ECLS-K’s height and weight measurement protocols, we speculate that
the higher cumulative non-response by kindergarten in the ECLS-B is in part responsible for
the higher obesity prevalence than in the NHANES (also seen at the pre-school wave
(Anderson and Whitaker 2009)), and therefore also higher than in the ECLS-K.

We next assessed whether there were survey differences between the ECLS-B and ECLS-K
on observed predictor variables included in our regression model (see Table 2). Despite
weighting for differences in sample design and non-response, and likely in part due to
changing sociodemographic circumstances of children between 1998 and 2006/07, there
were differences between the two surveys on sociodemographic predictor variables and on
two of the biosocial variables. Although in both samples, a weighted 14% approximately of
children were black and about 3% were Asian, a lower percentage of non-Hispanic white
children (57.7%) and higher percentage of Hispanic children (23.2%) were estimated from
the ECLS-B than from the ECLS-K (64.4% and 16.5%, respectively). Maternal education
and household income were lower, and the prevalence of never-married mothers higher,
when estimated from the ECLS-B than from the ECLS-K. There were no statistically-
significant survey differences in mother’s age at the child’s birth or the child’s gender, age,
or number of siblings. Twin or multiple births, however, were estimated to be more
prevalent, and high birth weight less prevalent, in the ECLS-B than in the ECLS-K.

The weighted percentages in Table 2 also provide the first opportunity to evaluate racial/
ethnic differences in child obesity in both surveys and in maternal BMI in the ECLS-B.
Racial/ethnic differences in the prevalence of child obesity are statistically significant at
p<0.001 in both the ECLS-B and ECLS-K. The highest rates of child obesity are observed
among Hispanic children (26.4% in ECLS-B and 16.2% in ECLS-K), followed by non-
Hispanic black children (19.4% in ECLS-B and 12.3% in ECLS-K), while non-Hispanic
Asian children have rates similar to non-Hispanic white children of about 10–12%.
Differences in mean maternal BMI by race/ethnicity are also statistically significant in the
ECLS-B at p<0.001. Maternal BMI was respectively just above and just below the BMI=30
threshold for adult obesity for black and Hispanic children. Whether the survey differences

Rendall et al. Page 14

Sociol Methods Res. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



we observe on the outcome variable and on some of the predictor variables leads to bias in
the estimated relationships between our included regressor variables and the obesity
outcome variable, however, needs to be evaluated specifically for our analysis model.

Model Specification, Model-Fit Diagnosis, Imputation, and Post-Imputation Analysis
The cross-survey imputation and analysis method proceeds in six steps. First, analysis and
imputation models are specified to satisfy the “variables never jointly observed”
requirement, and simultaneously “congeniality” between the imputation and analysis
equations. This is achieved by specifying an analysis model that can be estimated on the
ECLS-B alone, and by including in the imputation equation all the variables that are in the
analysis equation. Since only maternal BMI is “missing” from the ECLS-K in our analysis
model, a single imputation equation only is needed. Second, model-fit diagnostics for this
analysis model are conducted by specifying a version of the model that uses only those
variables observed in both surveys, and estimating this model on the pooled ECLS-B and
ECLS-K data. Model-fit statistics are compared between alternative versions of this
“variables-in-common” analysis model that respectively do and do not include an indicator
variable for survey, and that respectively do and do not include variables for interactions
between the covariates and this survey indicator variable. Third, the imputation model for
maternal BMI is estimated from the ECLS-B. Fourth, using the estimated imputation model,
an augmented ECLS-K dataset is constructed that contains multiple (20) versions of each
ECLS-K observation, each with a random draw of maternal BMI from the estimated
imputation equation parameters. Each of the 20 multiply-imputed ECLS-K datasets is
concatenated to the ECLS-B dataset. Fifth, the full analysis model including values of the
maternal BMI predictor variable for both ECLS-B and ECLS-K cases, and (in accordance
with the model fit statistic results) including a variable indicating from which survey the
case is drawn, is estimated on each of the 20 pooled ECLS-B and multiply-imputed ECLS-K
datasets. Sixth, the estimated parameters and standard errors are combined using the
standard multiple-imputation formulas. These adjust for the additional uncertainty in the
estimates that is introduced by using imputed and not observed values of maternal weight
status in the ECLS-K component of the pooled data.

Analysis Model and Model-Fit Diagnostics for Survey Differences—We specify a
logit model for the probabilty that child i is obese, designated by the (0,1) variable Yi, as a
function of a vector Xki, of the sociodemographic and biosocial regressors described above.
The analysis model also includes a regressor for maternal BMI:

(3)

We conduct model-fitting diagnostics for the version of this analysis model that can be
estimated from variables in common between the surveys. This is simply equation (3) but
dropping the MomBMI variable. Following our recommended model-fit evaluation
procedure of Section II above, we fit three sets of models, (3a), (3b), and (3c),
corresponding to equations (1a), (1b), and (1c) of Section II. Model (3a) has no “survey”
covariate; Model (3b) has a “survey” main effect only for presence in the ECLS-B data
source; and Model (3c) has a “survey” main effect plus full interactions between the ECLS-
B “survey” and the model covariates:

(3a)
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(3b)

(3c)

Parameter estimates for each of these models are presented in Appendix Table A1. The
model-fit statistics are summarized in Table 3. We use both the BIC and AIC model-fitting
criteria. We discuss results first for the version estimated for the full target population that
includes all race/ethnic groups (See Panel A of Table 3). According to the BIC, the best
fitting pooled-survey regression specification is clearly model specification (3b) which
includes all study variables observed in both surveys and a survey indicator variable for the
intercept-shift for the ECLS-B relative to the ECLS-K (BIC=14,866.0). Using the AIC
model fit statistics, however, the (3b) and (3c) specifications are essentially tied on model
fit, with a very small worsening of fit over the survey main-effect variable only in
specification (3b) (AIC=14,699.6) by adding the interactions between the survey and the
vector of covariates in specification (3c) (AIC=14,700.5). Inspection of the survey-covariate
interactions in specification (3c) (see Appendix Table A1) revealed statistically significant
interactions between the survey indicator and each of the following predictor variables:
Asian and Other race/ethnicity (respectively less and more likely to be obese in the ECLS-B
than in the ECLS-K); several of the maternal education categories (i.e., high school and
GED, some college, and bachelor’s degree less likely to be obese in the ECLS-B than in the
ECLS-K); and number of siblings (associated with a larger decrease in obesity in the ECLS-
B than in the ECLS-K). In light of the potential role of survey sampling differences with
respect to the Asian and Other groups noted earlier and suggested also by the AIC statistics
and by the individual survey interaction variables, we therefore also conducted a second set
of imputations and analyses restricting the ECLS-K and ECLS-B samples to black, white,
and Hispanic children. In this restricted sample, both the BIC and the AIC are seen to be
clearly minimized in the pooled model specification (3b) with the survey indicator but no
survey-covariate interactions (See Panel B of Table 3).

Imputation Model
We impute maternal BMI to the ECLS-K observations from observed maternal BMI in the
ECLS-B. Being sure to include the analysis model’s outcome variable in the imputation
equation, the imputation model for the maternal BMI variable is:

(4)

We include all the same variables in the X vector as in equation (3) to assure congenial
imputation and analysis models. This equation is estimated unweighted from ECLS-B
observations alone. The resulting parameter estimates are randomly perturbed in the
imputation procedure to produce 20 realizations of maternal BMI for each ECLS-K
observation. Although 5 imputations are standard in within-survey imputation (Rubin 1987),
the large fraction of observations with missing values in our cross-survey imputation case
(approximately three quarters, being every ECLS-K observation) leads us to create instead
the 20 imputed datasets. We use SAS PROC MI with the MONOTONE option to implement
the imputation model. Previous work [SELF-IDENTIFYING REFERENCE] has shown that
the IVEware software for sequential multiple imputation (Raghunathan, Solenberger, and
van Hoewyk 2000) and the PROC MI software we use here produce identical results.
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PROC MI outputs the imputation equation coefficient parameter estimates after
standardizing continuous variables and using effects coding for categorical variables. In
Table 4 we present imputation coefficient means and additionally standard deviations
calculated over the 20 versions of the imputed coefficients. The standard deviations illustrate
the additional uncertainty introduced by the imputation process. Their magnitudes
approximate the analytical standard errors estimated for this imputation equation in a regular
regression with standardized coefficients (results not shown). Coefficient means and
standard deviations are presented for both the full sample and the sample restricted to white,
black, and Hispanic children.

The coefficient estimates that are most readily interpretable are those for the dichotomous
and continuous predictor variables. In both the full and restricted samples, child obesity is
positively associated with mother’s BMI, and this is one of the strongest predictors
considered. Log household income is negatively associated with maternal BMI, while
female child gender, number of siblings, and being a twin or higher-order multiple are all
positively associated with maternal BMI. Effects coding, like dummy variable coding,
involves specifying a reference category which is dropped in the estimation of the model;
however, the interpretation of the parameter estimates differ. The advantage of effects
coding is that these parameter estimates do not depend upon which group is nominated to be
the reference category. The parameter estimates, however, must be interpreted with respect
to an unweighted grand sample mean, calculated as the grand mean of the group (variable
category) means on the outcome variable. Black race/ethnicity is thus seen to be positively
associated with maternal BMI in both the full and restricted samples, and Asian is negatively
associated in the full sample. Hispanic is weakly positively associated with maternal BMI in
the full sample and weakly negatively associated in the restricted sample. The change in the
sign is a direct implication of the increase in the unweighted grand mean (i.e., the increase in
the intercept) when the Asian and Other racial/ethnic groups were excluded from the
sample. There is a negative association between the highest levels of maternal education and
maternal BMI in both the full and restricted samples. In addition, consistent with the
positive associations between child obesity and maternal BMI, the child’s low birth weight
was negatively associated with maternal BMI and his or her high birth weight was positively
associated with maternal BMI.

In the full sample, the coefficients for black and Asian are respectively the largest positive
and negative associations observed. We can anticipate from the strongly positive
multivariate association between the child’s obesity and his or her mother’s BMI,
simultaneously with a strongly positive multivariate association between black race/ethnicity
and maternal BMI, that maternal BMI will mediate (facilitate) black children’s obesity.
Analogously, we may anticipate from the strongly negative association between Asian and
maternal BMI the opposite effect of including imputed maternal BMI for the ECLS-K
observations: the lower BMI of mothers of Asian children will suppress the child’s obesity.
If the analysis equation would have been estimated on the ECLS-K cases without first
multiply imputing maternal BMI differentially by child’s race/ethnicity, much of the higher
obesity of black than Asian children would go unexplained. By first multiply imputing
maternal BMI, we allow for the difference between black and Asian children’s likelihood of
being obese in kindergarten to be estimated as a smaller residual after controlling for the
opposite directions of influence of black and Asian children’s mothers’ BMI on their own
obesity propensity.

Analysis Estimates
The analysis model (3), with the addition of an ECLS-B survey indicator, is estimated on
each of the 20 datasets and the results combined using the standard MI algorithms given in
section II above to account for the additional variance due to imputation. These pooled
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cross-survey MI estimates of the regression parameters and standard errors are presented in
Model 6 in Table 5. The validity of these estimates depends on the successful imputation of
maternal BMI to every child in the ECLS-K. We assess this validity in two ways: by
comparisons of the maternal BMI coefficient and standard error before and after imputation;
and by comparisons of the coefficients and standard errors for variables in common between
the ECLS-B and ECLS-K.

First, the magnitudes of the coefficient and standard error about the maternal BMI
coefficient are expected to be materially unaffected by having imputed this variable to every
case in the ECLS-K. We see that this holds by comparison with the parameter and standard
error estimates for analysis model (3) estimated from the ECLS-B cases only (see Model 2
in Table 5). The maternal BMI coefficient is not substantially changed from 0.077 in the
ECLS-B to 0.086 in the pooled ECLS-B and ECLS-K estimate (Model 6). Concerning the
standard error, intuitively the accuracy of this coefficient estimate of the relationship of
maternal BMI to the child’s likelihood of being obese should not be improved by adding
cases (from the ECLS-K) for which maternal BMI is not observed. This is confirmed by
there being no material change in the maternal BMI standard errors between Model 2 and
Model 6 (taken to 4 decimal places, the standard errors are respectively 0.0062 and 0.0066,
for a ratio of 0.94). This is despite the quadrupling of total sample size when adding the
multiply-imputed ECSL-K data.

Second, the nature of the change in the coefficients for variables in common between the
ECLS-B and ECLS-K when adding the maternal BMI variable to the analysis model
estimated for the ECLS-B observations should be reproduced in the ECLS-K observations
with imputed maternal BMI. Intuitively, only the ECLS-B cases provide any information on
that part of the multivariate relationship to child obesity of a given sociodemographic or
biosocial variable that involves controlling for maternal BMI. This is best verified by
comparing the change in coefficients between the model with and without maternal BMI in
the ECLS-B (Model 1 to Model 2) with the change in coefficients between the model with
and without maternal BMI in the ECLS-K (Model 3 to Model 4). Indeed this expectation of
equivalent change holds across all the coefficients. Two of the largest changes in coefficient
magnitudes when adding maternal BMI to the model, for example, are the reduction in the
absolute values of the magnitudes for black race/ethnicity and for the log of household
income. In the ECLS-B, adding maternal BMI to the model reduces the black coefficient
from 0.368 to 0.209, and reduces the impact of log household income from −0.120 to
−0.070. Adding multiply-imputed maternal BMI to the model estimated on only the ECLS-
K observations reduces the black coefficient from 0.113 to −0.069, and reduces the impact
of log household income from −0.091 to −0.036. As anticipated in the discussion of the
imputation model coefficients above, maternal BMI is seen to mediate the relationship of
black race/ethnicity to child obesity. Analogously, for the Asian coefficient, the anticipated
suppressing effect of maternal BMI is also seen. In the ECLS-B, adding maternal BMI to the
model reduces the negative (healthy) effect of being Asian on child obesity from a
statistically-significant coefficient value of −0.477 to a non-significant coefficient value of
−0.189. This direction and magnitude of coefficient change is reproduced in the ECLS-K, in
which the coefficient of Asian on child obesity is positive but statistically non-significant
(magnitude 0.170) without maternal BMI. Adding multiply-imputed values of maternal BMI
reproduces the ECLS-B’s positive change to the coefficient, here to a statistically-significant
0.425 after controlling for the lower than average maternal BMI of Asian mothers also in the
ECLS-K.

We turn now to the improvements in substantive interpretation of the model estimates made
possible by the pooled cross-survey MI method. The reduced effect of being black or
Hispanic, or having higher household income on child obesity, and increased effect of being
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Asian on child obesity, once maternal BMI is added to the model, indicates that the omitted-
variable bias in estimates of race/ethnicity and household income is corrected for by cross-
survey imputation to the ECLS-K cases. This is analogous to the correction of omitted-
variable bias achieved by adding observed maternal BMI to the equation estimated on the
set of ECLS-B cases. Pooled ECLS-B and ECLS-K estimates of the effects of race/ethnicity
and household income in the best-specified model (Model 6) may then be evaluated for their
efficiency gains over estimates of these same coefficients from the ECLS-B only. The
standard errors for log household income, black, and Hispanic coefficients are (see far right
column of Table 5) around 1.8 to 1.9 times higher in the ECLS-B-only estimates (Model 2)
than in the pooled ECLS-B and ECLS-K estimates (Model 6). The corresponding ratios of
the standard errors for Asian and Other race/ethnicity children are in the 1.5 to 1.6 range,
reflecting the oversampling of these groups in the ECLS-B and therefore the lesser
proportionate increase in total sample size acheived by adding the ECLS-K cases.

The reduced standard errors in estimates of the coefficients for variables-in-common
between the ECLS-B and ECLS-K without the omitted-variable bias that would have
occurred had the model been estimated only with variables in common (that is, excluding
maternal BMI) are, we argue, the main benefits of our pooled cross-survey MI estimation.
For further evidence of these efficiency gains in the full model including maternal BMI, we
note that the “married” coefficient is not statistically significant at the p < .05 level in
estimates using either the ECLS-B or ECLS-K cases alone, but is statistically significant in
the pooled ECLS-B and ECLS-K model. With respect to log household income, a more
powerful test against the null hypothesis is made possible, as shown by the halving of the
standard error between the ECLS-B-only model and the pooled model (from 0.052 to
0.027).

Given the mixed evidence we found with respect to ECLS-B and ECLS-K comparability for
Asian and Other race/ethnicity children, we estimated the same models also for the restricted
sample of white, black, and Hispanic children only (see Appendix Table A2). As in the full-
sample estimates of Table 5, in the restricted samples in the pooled models that include
maternal BMI among the predictors of the ECLS-B and ECLS-K, Hispanic but not black
children were statistically-significantly more likely to be obese than white children. Findings
on maternal education and household income were also similar in the samples restricted to
exclude children with Asian and Other race/ethnicity. These socioeconomic variables were
negatively associated with child obesity in both the ECLS-B and ECLS-K. By pooling the
samples, moreover, we obtained statistically significant negative associations between
increased maternal education and obesity across all educational categories (respective to the
reference group with less than 9th grade). The lack of change in educational disparities after
adjustment for maternal BMI, however, appears inconsistent with previous substantive
findings of increased likelihood of exposure to high maternal BMI among children with
lower educated mothers (e.g., McLaren 2007). In supplementary analyses in which we did
not simultaneously adjust for household income, we determined that differences in child
obesity by maternal education were reduced after adjusting for maternal BMI. Other
associations between predictor variables and child obesity in both these restricted-sample
models and the full-sample models are consistent with results found elsewhere in the
literature (Classen and Hokayem 2005; Salsberry and Reagan 2005; Weden et al.
Forthcoming). Factors negatively associated with obesity included low birth weight, female
gender, and increased number of siblings. Factors positively associated with obesity
included mother’s age at birth and high birth weight. In general, therefore, we found our
pooled cross-survey MI estimates to be robust to whether estimates were generated for the
full target population of U.S. children or for the target population restricted to black, white,
and Hispanic children.
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IV. DISCUSSION
Within-survey MI has become a common and widely-accepted practice for improving
estimation over that from complete-case analysis in sociology (e.g., Downey, von Hippel,
and Broh 2004). We are not aware, meanwhile, of any successful implementations in
sociology of cross-survey MI in the more than 25 years since Rubin (1986) proposed the
method. Moreover, we know of no more than occasional, experimental implementations of
cross-survey MI in the social and health sciences more generally (e.g., Gelman et al 1998a;
Schenker et al 2010), even while the broader topic of combined-survey analysis is becoming
an active area of new research (Roberts and Binder 2009). We argued that the benefits of
cross-survey MI are potentially very large, and we proposed a set of implementation
procedures to overcome previous objections in the social and statistical sciences to pooled-
survey analysis with non-identical sets of regressors across the surveys. We illustrated these
steps and the resulting improvement over single-survey analysis in an example application
chosen to be representative of a common situation in sociology in which the researcher has
at his or her disposal a first survey dataset of relatively small sample size and possibly some
non-response sampling bias, and a second survey dataset of larger sample size and
potentially smaller sampling bias but less covariate detail. These surveys were respectively
the Early Childhood Longitudinal Survey 2001 Birth Cohort (ECLS-B) and the Early
Childhood Longitudinal Survey 1998 Kindergarten Cohort (ECLS-K). We combined them
using pooled cross-survey MI to analyze the sociodemographic associations with early
childhood obesity. The analysis model was specified to include maternal BMI, which was
derived from height and weight measures available only in the ECLS-B.

One way to view the benefits of combined-survey estimation through cross-survey MI is to
compare the results to those that would have been possible from the larger survey (the
ECLS-K) only. By estimating a model that included mother’s BMI as an additional
predictor, multiply imputed from the ECLS-B to the ECLS-K, we achieved substantial
reductions in omitted variable bias. In particular, the magnitude and directions of the
estimated racial/ethnic associations with child obesity were changed, and income
associations were moderated. Both genetic and social factors figure prominently in
explanations for strong inter-generational correlations of obesity (Martin 2008). Controlling
for these inter-generational associations is therefore expected improve estimation of the
roles of proximate environmental circumstances, such as local economic and political
resources that may impact adversely on children’s nutritional or physical exercise
environments (Anderson and Butcher 2006). Crucially, we achieved the resulting reductions
in omitted variable bias without losing the major sample-size gains of the ECLS-K relative
to the ECLS-B. The typical trade-off between sample size and covariate richness was thus
avoided.

A second way to view the gains to cross-survey MI is to contrast it with estimation from the
smaller survey with the best possible model specification, in our case the ECLS-B. The
principal advantage is likely to be efficiency gains. The standard errors about most of the
regression coefficients for the variables in common between the ECLS-B and ECLS-K were
almost twice as large in the estimates from the ECLS-B only as they were in our pooled
cross-survey MI estimates. This large efficiency gain is an unsurprising consequence of the
quadrupling of the sample size compared to using the ECLS-B alone. We submit, however,
that efficiency gains in social science estimation continue to be undervalued, possibly in
large part due to the predominance of a “p-value culture” that pays little attention to the size
and precision of an estimated association after its “statistical significance” has been
established (Taylor and Frideres 1972; McLoskey 1985; Fidler et al 2004). Even for
researchers (and journals) focused on results that attain statistical significance, estimation
with much larger sample sizes promises substantially enhanced potential to achieve that
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goal. We gave an example of this in estimates of marital status associations with child
obesity that were statistically significant in the pooled cross-survey MI estimates, but not in
either of the single-survey estimates.

A second advantage of combining data from a larger survey (the ECSL-K) with the data
from a smaller but covariate-rich survey (the ECLS-B) is to mitigate the effects of sampling
biases in the latter. This advantage was illustrated by Hellerstein and Imbens (1999) in their
labor economics application that combined the larger and more population-representative
Current Population Survey (CPS) with the smaller and covariate-rich National Longitudinal
Survey (NLS). The inclusion of the CPS corrected what were assumed to be substantial
attrition biases in the NLS. The use in our study of the larger ECLS-K survey with, as at the
kindergarten year, less attrition than in the smaller ECLS-B survey analogously corrected a
substantial upward bias in overall level of child obesity in the smaller ECLS-B survey. The
ECLS-B was already in its fourth wave by the kindergarten observation, and just under half
of the original ECLS-B sample was still present. This level of cumulative attrition is typical
in social surveys (see, for example, Fitzgerald, Gottschalk, and Moffitt 1998 and other
articles in that special issue), but methods to deal with attrition are a challenge to develop
and implement. Both Hellerstein and Imbens (1999) and Handcock et al (2005) proposed
data-combining methods to mitigate bias from attrition through the imposing of constraints
on the set of possible regressor values. The present study’s method can be seen in part as an
alternative approach to achieving this same goal. The computational demands of direct
estimation methods such as those that impose constraints, however, are greater than for
cross-survey MI, typically requiring code to be built that is specific to each application
(Schafer and Graham 2002). Moreover, the assumption that bias is present only, or even
primarily, in the smaller data source is limiting with respect to the application circumstances
to which the method can be applied. In Schenker et al’s (2010) cross-survey MI application,
for example, measurement bias was assumed to be present only in the larger “impute-to”
survey, and not in the smaller “impute-from” survey.

The principles of constraining approaches also differ from those of the present study’s
pooling approach. Pooled cross-survey MI gives equal weight in the analysis equation to
each observation, irrespective of into which survey that observation was selected. This
means that in the present example, the ECLS-K survey was effectively given more weight
not because of an a priori designation as the less biased of the two with respect to covariate
effects, but simply because its sample size was three times that of the ECLS-B by the
Kindergarten wave. If the larger survey is indeed more population-representative than is the
smaller survey, bias will be reduced by having the larger sample effectively dominate the
estimation of the coefficients for which predictor variables are present in both the surveys.
This weighted-averaging estimation obtained through pooling observations in cross-survey
MI is more akin to the meta-analysis method in which findings across studies are averaged,
though in that case typically using only a limited set of moments such as regression
parameters without incorporating the full covariance structure of each data source. This
involves implicit or explicit assumptions that differences in model specifications across
studies can be ignored. Rao et al (2008) note the desirability of combining individual
observations when conducting a meta-analysis that combines survey estimates. When
discussing the problem of different regressors present across the different studies, however,
they cite no meta-analysis studies and instead direct the reader to the “statistical matching”
literature, which we noted has been discredited in the social sciences (e.g., Ridder and
Moffitt 2007) due to its perceived failure to handle adequately the “variables never jointly
observed” problem.

In thinking about what have been and continue to be barriers to the successful
implementation of cross-survey MI in the social sciences, we consider the two largest of
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them to be: (1) overcoming the problem of estimation with variables never jointly observed;
and (2) accounting for differences in survey sampling and measurement characteristics
across the two (or more) surveys being pooled. The first of these problems is the easier one
to solve in the pooled cross-survey MI approach, by simply specifying an analysis model
that can be estimated with one of the surveys alone. This model is therefore no worse than
the model that may be specified in a regular analysis in which the researcher first chooses
the best available data source and proceeds to estimate a model with that data source.

The second problem, of accounting for survey design and operations differences, is ever-
present. There is a high likelihood that any two surveys of a given population will have
differences in survey instruments, sampling schemes, and survey operations that could affect
the character of responses. Research into the development of diagnostic and estimation
solutions applicable to the many different circumstances of survey differences is ongoing in
the broader field of combined-data methods (e.g., Pfefferman and Sverchkov 2007).
Selection of the best diagnostic and estimation methods for handling survey differences will
vary according to the context. When many surveys are pooled, a hierarchical Bayesian
method that parameterizes differences across surveys (Gelman et al 1998a) is a promising
solution that has seen related applications in the small-area estimation literature (e.g.,
Assuncao et al 2005). Among the advantages of this approach is that it is empirically based,
requiring no formal incorporation of outside information evaluating the relative quality of
the surveys being pooled. That is, it is an “objective Bayesian” approach. With only two
surveys being combined, however, the hierarchical Bayesian model is not feasible. A
subjective Bayesian approach in which expert judgment informed by other data sources, as
shown by Rendall, Handcock, and Jonsson (2009) in the constrained MLE case, is a
plausible alternative. The challenges of developing defensible subjective Bayesian priors,
however, increase with model complexity. It is noteworthy that Rendall et al’s prior adjusted
only for biases in overall fertility rates.

We argued that for a two-survey context, a model-fitting diagnostics approach is an effective
means of evaluating whether differences across surveys are large enough to demand
additional statistical methods to correct for them. The modeling-fitting approach penalizes
the adding of complexity to a model specification, requiring that additional variables be
sufficiently informative about the social process being modeled to justify their inclusion in
the statistical model. In our case, the additional variable indicates into which survey an
individual was selected. Of course, this variable has no substantive meaning, and ideally we
would like to be able to ignore it. We argued for a model-fitting approach to assess the
degree to which it can reasonably be ignored, and that this model-fitting assessment be
conducted by first adding only an intercept term for ‘survey,’ and second adding a full set of
interactions of the covariates with ‘survey.’ If the model that includes the ‘survey’ intercept
improves in a model-fit sense over the model estimated with the pooled data but without the
intercept term, this implies a difference in the overall level of the outcome variable, but not
in the relationships between the covariates and the outcome variable, between the surveys. A
difference in the level of the outcome variable is unlikely to be a problem for most social
science analysis, in which the goal is to understand relationships between covariates and the
outcome variable. The analysis model using the pooled surveys may then be estimated with
the addition only of an indicator variable for survey. Although the intercept is not generally
considered to be a parameter of substantive interest, it nevertheless has two potentially
important roles. First, it affects predicted values, and these may be of substantive interest.
This was an early motivation for proposing combined-data methods in economics (Imbens
and Lancaster 1994) and demography (Handcock et al 2000). Second, in nonlinear models
the comparison of predicted values may be needed for valid statistical inference about
covariate effects (Ai and Norton 2003).
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In our example application, we first established through comparison to outside data from the
cross-sectional National Health and Nutrition Examination Survey (NHANES) that the
overall level of obesity in the ECLS-K was unbiased whereas the overall level of obesity in
the ECLS-B was upwardly biased. This conclusion was corroborated by our diagnostics-
stage model-fit statistic being improved by including an “ECLS-B survey” indicator
variable. Therefore we proposed that any predicted values should be generated omitting the
coefficient for that survey indicator variable. This may be seen as being similar to
constraining the results to the overall level of outcome variable to that of the larger survey.
From a Bayesian viewpoint, ignoring the contributions of the ECLS-B observations to the
overall level by excluding the intercept-shifting survey indicator coefficient value in
calculating any predicted values is equivalent to imposing a “dogmatic prior” (Lancaster
2004) on the unbiasedness of the ECLS-K sample. This is analogous to the imposition of
exact constraints on an overall outcome level, which again requires an a priori designation of
one of the two data sources as being unbiased. For a Bayesian analysis that relaxes this
dogmatic prior in a constrained estimation framework, see Rendall et al (2009). We suggest
that this may be a relatively common situation in social science applications estimated
across two or more surveys, that differences are found in the overall level of the variable
being considered but not in the covariate relationships to the dependent variable. Weden et
al (forthcoming) and [SELF-IDENTIFYING REFERENCE] give additional examples of an
improvement in model-fit statistic with a survey indicator intercept-shift coefficient, but
model-fit worsening after adding interactions between the survey indicator and the
covariates present in both surveys.

The case in which the best-fitting model includes interactions with ‘survey’ is more
complicated, requiring explicit additional statistical treatment to account for the differences.
Without doing so, it may be unclear to which target population the parameter estimates
apply (see Hellerstein and Imbens 1999 for further discussion of a similar case). The
additional statistical treatment may involve restricting the samples and target population to
those components for which comparability can be well established. This is the approach
taken by Schenker et al (2010) in their propensity-score method for matching subsamples of
two surveys based on equality of covariate distributions. Their sample-matching method, as
opposed to matching on a target population, is consistent with their use of the smaller survey
as an auxiliary data source whose observations are used for the imputation equation but not
for the analysis equation. We suggest that one of the roles of a pooled analysis is to assure
the integrity of the cross-survey imputation modeling process, in which the sample used in
the imputation model can be shown to be drawn from the same target population as the
sample(s) used in the analysis model. Schenker et al (p. 543) recognize the limitation of not
pooling survey observations in the analysis equation under the heading of “issues of
uncongeniality” between the imputation and analysis equations.

In our example application, we illustrated an alternative approach that explicitly restricted
both the samples and target population for both the imputation equation and the subsequent
analysis equation. After examining both the survey designs, and noting differences in the
oversampling of Asian and selected ‘Other’ groups between the ECLS-B and in the ECLS-
K, we experimented with restricting the samples and target population in the imputation and
analysis steps to only the Hispanic and non-Hispanic white and black children. When the
Asian and Other race/ethnicity groups were included, only for the BIC statistic was the
simpler model without “survey” interactions with the covariates clearly superior to the
model that included these interactions, whereas the AIC statistic was almost identical in the
latter, “survey-covariate interactions” model compared with the “survey intercept-shift-
only” model. Moreover, the sign of the Asian coefficient differed between the ECLS-B and
ECLS-K samples, possibly as a result of different oversample designs between the two
surveys. When Asian and Other race/ethnicity groups were excluded from both the ECLS-B
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and ECLS-K samples, both the AIC and BIC model-fit statistics indicated that the model
that excluded the survey interactions with the covariates was clearly favored over the model
that included these interactions. We argued that the BIC is probably the more appropriate fit
statistic to use for pooled cross-survey MI. Nevertheless, in the case of different conclusions
between the BIC and AIC, the researcher’s judgment may be used to weigh the population-
coverage and sample-size benefits of the larger target population (in our example case,
including Asian and Other Race children) against the sample-comparability benefits of the
smaller target population. Our substantive results were seen to be otherwise robust to the
inclusion or exclusion of Asian and Other race/ethnicity children.

Our concluding guidance to social scientists is to view cross-survey MI primarily as a
method for improving efficiency by adding observations, and secondarily for mitigating the
adverse consequences of sampling bias by adding these observations. This differs from the
original rationale in the statistical matching literature which views cross-survey MI as
primarily a means to add variables. The “adding observations” viewpoint presumes the
existence of a primary data source with all the needed variables but that suffers from
sample-size limitations and possibly sampling bias. We suggest this situation is the norm
rather than the exception in social science research. Given the choice between a data source
containing most or all of the variables considered important to the substantive model but
with a smaller sample size and potentially some sampling bias, and an alternate data source
containing only a subset of variables considered important to a substantive model but with
large numbers of observations and low sampling bias (in the limit, a census), the social
scientist will usually opt for the more covariate-rich, smaller survey. Doing so will minimize
omitted-variable bias. The researcher may even initiate a new survey data collection to
obtain variables missing in existing data sources. Given the high costs of data collection,
compromises leading to sample size limitations, and possibly also high non-response and
non-response bias, are again likely to result. We additionally suggest, therefore, that the
situation in which sample size limitations can be mitigated by the adding of “incomplete”
observations from a larger survey, using cross-survey MI to “complete” the data in this
larger survey, may also be viewed as the norm rather than the exception in social science
analysis. The present study offers guidance of how this mitigation can be achieved using
statistical package software allowing flexible specifications of both the analysis and
imputation models, and provides an example of the substantial benefits that may be expected
to result.
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Table 3

AIC and BIC Model Fit Statistics for Multivariate Logistic Regressions Predicting Child Obesity using (in
Panel A) the Full Sample and (in Panel B) a Sample Restricted to White, Black, and Hispanic Race/Ethnicity,
Pooling Data from the Early Childhood Longitudinal Study, 1998 Kindergarten Cohort (ECLS-K) and 2001
Birth Cohort (ECLS-B)

BIC AIC

Panel A: Full Samples of ECLS-B and ECLS-K

 Model “a” with no survey indicator variable for ECLS-B vs. ECLS-K 14,916.3 14,757.8

 Model “b” with inclusion of survey indicator variable 14,866.0 * 14,699.6 *

 Model “c” with interactions between the survey indicator and all study variables 15,017.4 14,700.5

Panel B: Restricted Samples of ECLS-B and ECLS-K 1

 Model “a” with no survey indicator variable for ECLS-B vs. ECLS-K 13,152.9 13,012.5

 Model “b” with inclusion of survey indicator variable 13,101.0 * 12,952.9 *

 Model “c” with interactions between the survey indicator and all study variables 13,246.6 12,965.9

Notes:

1
The restricted samples of ECLS-K and ECLS-B are retricted to children whose mother was non-Hispanic white, non-Hispanic black, or Hispanic;

they thus exclude children whose mother was non-Hispanic Asian or non-Hispanic other (i.e., American Indian/Alaskan Native, Native Hawaiian
Pacific Islander, and more than one race). All models include the following predictor variables: race/ethnicity, mother’s education, log of
household income, mother’s marital status, mother’s age at birth, child’s age, gender, birth weight, number of siblings, and singleton status. All
regressions are unweighted.

*
Indicates the best-fitting model of the variations for the respective pooled-survey or individual-survey specifications; smaller AIC or BIC

indicates better model fit.
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Table 4

Multiple Imputation Equation Parameters for Estimating Mother’s BMI Estimated using Effects Coding and
Standardized Variables in the Full and Restricted ECLS-B Samples1

Parameter

Full ECLS-B Sample Restricted ECLS-B Sample

Observed Parameter Estimate

Standard
Deviation of 20

Imputation
Parameters Observed Parameter Estimate

Standard
Deviation of 20

Imputation
Parameters

Child obese 0.261 0.021 0.267 0.023

Mother’s race/ethnicity

 Hispanic 0.065 0.024 −0.054 0.029

 Non-Hispanic Black 0.291 0.019 0.171 0.031

 Non-Hispanic Asian −0.432 0.037

 Other 0.086 0.038

Mother’s education

 9th–12th grade 0.044 0.047 0.053 0.050

 High school or GED 0.070 0.022 0.103 0.024

 Some college 0.085 0.026 0.084 0.027

 Bachelor’s degree −0.075 0.034 −0.084 0.037

 Some graduate −0.133 0.045 −0.158 0.040

Log Household income −0.098 0.017 −0.112 0.018

Mother’s marital status

 Currently married 0.014 0.029 0.035 0.019

 Formerly married −0.054 0.042 −0.063 0.038

Birthweight

 Low −0.116 0.031 −0.111 0.038

 High 0.226 0.046 0.224 0.052

Mother’s age at child’s birth 0.000 0.014 0.012 0.018

Multiple birth 0.079 0.019 0.085 0.021

Female 0.025 0.009 0.028 0.013

Child’s age 0.001 0.012 −0.007 0.012

Number of siblings 0.039 0.015 0.023 0.014

Intercept 0.289 0.043 0.303 0.031

Observations2 5,200 4,100

Notes:

1
The restricted sample of the ECLS-B is retricted to children whose mother was non-Hispanic white, non-Hispanic black, or Hispanic; they thus

exclude children whose mother was non-Hispanic Asian or non-Hispanic other (i.e., American Indian/Alaskan Native, Native Hawaiian Pacific
Islander, and more than one race).

2
All observations are rounded to comply with NCES disclosure guidelines.
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Table A2

Log Odds of Obesity among Kindergarteners using Data from the Restricted Samples of the Early Childhood
Longitudinal Study, 1998 Kindergarten Cohort (ECLS-K) and 2001 Birth Cohort (ECLS-B), Estimates (β) and
Standard Errors (SE) 1

Part 1

ECLS-B ECLS-K

Model 1. ECLS-B no
maternal BMI

Model 2. ECLS-B with
maternal BMI

Model 3. ECLS-K, no
maternal BMI

Model 4. ECLS-K,
with maternal BMI

β SE β SE β SE β SE

Mother’s race/ethnicity (Ref:
non-Hispanic white)

 Hispanic 0.611 ** 0.115 0.594 ** 0.119 0.481 ** 0.074 0.454 ** 0.078

 Non-Hispanic

Black 0.386 ** 0.139 0.228 0.143 0.128 0.091 −0.047 0.098

Mother’s education (Ref: < 9th
grade)

 9th–12th grade −0.502 * 0.222 −0.533 * 0.225 −0.191 0.150 −0.189 0.166

 High school/GED −0.678 ** 0.200 −0.722 ** 0.204 −0.120 0.134 −0.158 0.142

 Some college −0.730 ** 0.205 −0.759 ** 0.207 −0.196 0.136 −0.220 0.145

 Bachelor’s −0.841 ** 0.244 −0.743 ** 0.247 −0.488 ** 0.156 −0.407 * 0.163

 At least some graduate
school

−0.868 ** 0.262 −0.740 ** 0.266 −0.604 ** 0.177 −0.476 * 0.186

Log household income −0.145 ** 0.054 −0.089 0.057 −0.100 ** 0.031 −0.035 0.036

Mother’s marital status (Ref:
never married)

 Married −0.060 0.136 −0.075 0.137 −0.152 † 0.092 −0.158 0.098

 Formerly married −0.145 0.170 −0.118 0.170 −0.122 0.103 −0.066 0.114

Birthweight (Ref: average)

 Low −0.658 ** 0.121 −0.683 ** 0.124 −0.411 ** 0.126 −0.415 ** 0.132

 High 0.635 ** 0.157 0.458 ** 0.162 0.665 ** 0.073 0.468 ** 0.084

Mother’s age at birth 0.017 * 0.008 0.017 * 0.009 0.014 ** 0.005 0.012 * 0.006

Multiple birth −0.098 0.145 −0.200 0.151 0.010 0.209 −0.091 0.217

Female −0.034 0.091 −0.062 0.093 −0.139 0.054 −0.180 ** 0.058

Number of Siblings −0.307 ** 0.048 −0.317 ** 0.049 −0.191 ** 0.028 −0.202 ** 0.030

Child’s age −0.008 0.010 −0.008 0.010 −0.002 0.006 0.000 0.007

Maternal BMI 0.076 ** 0.007 0.085 ** 0.010

Survey sample control for
ECLS-B (Ref: ECLS-K)

Intercept 0.904 0.911 −1.778 † 0.953 −0.733 0.553 −3.950 ** 0.738

Observations 3 4,100 4,100 13,890 13,890
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Part 2

ECLS-B and ECLS-K Pooled Ratio of SE’s

Model 5. Pooled, no
maternal BMI

Model 6. Pooled, with
maternal BMI

Ratio of Pooled versus
ECLS-B, no maternal

BMI

Ratio of Pooled versus
ECLS-B, with
maternal BMI

β SE β SE (Model 5)/(Model 1) (Model 6)/(Model 2)

Mother’s race/ethnicity (Ref:
non-Hispanic white)

 Hispanic 0.507 ** 0.061 0.482 ** 0.064 1.88 1.85

 Non-Hispanic

 Black 0.201 ** 0.075 0.031 0.080 1.86 1.79

Mother’s education (Ref: < 9th
grade)

 9th–12th grade −0.288 * 0.122 −0.300 * 0.132 1.81 1.70

 High school/GED −0.287 ** 0.109 −0.328 ** 0.115 1.84 1.77

 Some college −0.362 ** 0.111 −0.391 ** 0.117 1.84 1.77

 Bachelor’s −0.615 ** 0.129 −0.532 ** 0.134 1.89 1.85

 At least some graduate
school

−0.694 ** 0.144 −0.571 ** 0.150 1.81 1.77

Log household income −0.109 ** 0.026 −0.046 0.030 2.07 1.92

Mother’s marital status (Ref:
never married)

 Married −0.131 † 0.075 −0.139 † 0.079 1.80 1.73

 Formerly married −0.128 0.087 −0.078 0.094 1.95 1.82

Birthweight (Ref: average)

 Low −0.532 ** 0.088 −0.548 ** 0.092 1.38 1.36

 High 0.659 ** 0.066 0.468 ** 0.074 2.39 2.18

Mother’s age at birth 0.015 ** 0.004 0.014 ** 0.005 1.92 1.77

Multiple birth −0.130 0.116 −0.235 † 0.121 1.25 1.24

Female −0.111 * 0.046 −0.149 ** 0.049 1.95 1.89

Number of Siblings −0.223 ** 0.024 −0.234 ** 0.026 2.02 1.92

Child’s age −0.003 0.005 −0.001 0.006 1.92 1.84

Maternal BMI 0.082 ** 0.008 0.89

Survey sample control for
ECLS-B (Ref: ECLS-K)

0.447 ** 0.056 0.448 ** 0.059

Intercept −0.475 ** 0.468 −3.532 ** 0.585

Observations 3 17,990 17,990

Notes:

1
The restricted samples of ECLS-K and ECLS-B are retricted to children whose mother was non-Hispanic white, non-Hispanic black, or Hispanic;

they thus exclude children whose mother was non-Hispanic Asian or non-Hispanic other (i.e., American Indian/Alaskan Native, Native Hawaiian
Pacific Islander, and more than one race). All regressions are unweighted.

2
Mother’s weight status in the ECLS-B is calculated from reported height and weight; mother’s weight status in the ECLS-K is imputed.

3
All observations are rounded to comply with NCES disclosure guidelines.

†
P <.10;
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*
P <.05;

**
P <.01
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