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The elaborate morphology of neurons together with the information processing that occurs in remote
dendritic and axonal compartments makes the use of decentralized cell biological machines necessary.
Recent years have witnessed a revolution in our understanding of signaling in neuronal compartments and
the manifold functions of a variety of RNA molecules that regulate protein translation and other cellular
functions. Here we discuss the view that mRNA localization and RNA-regulated and localized translation
underlie many fundamental neuronal processes and highlight key issues for future experiments.
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Background
It is now clear that individual neurons are highly compart-

mentalized with specific functions and/or signaling that occur

in restricted subcellular domains. Extrinsic signals are often

spatially localized such that they are ‘‘seen’’ by restricted parts

of a neuron, such as synaptic input to a specific dendritic

spine or a guidance cue encountered by a growth cone.

Twenty-five years ago, when the first issue of Neuron was pub-

lished, it was well appreciated that the neurons were capable

of local information processing, but the potential cellular mech-

anisms that established and regulated local compartments

were not well understood. Dendritic spines had been proposed

as biochemical and/or electrical compartments (Harris and

Kater, 1994; Koch and Zador, 1993), and polyribosomes had

been identified at the base of spines (Steward and Levy,

1982). However, the view that dominated until nearly the end

of the twentieth century was that the central dogma (DNA-

RNA-protein) was carried out centrally—in the nuclei and

somata of neurons. In that context, the localization of mRNA

observed in some cells was thought to represent a specialized

mechanism that operated in unique biological systems, such

as egg cells, where storage of mRNAs is needed for subse-

quent patterning of the early embryo (see Martin and Ephrussi,

2009 for review). Evidence from a number of studies in the last

decade, particularly in neurons, has led to a revolution in our

thinking. Although the field is still young, it is becoming clear

that RNA-based mechanisms provide a highly adaptable link

between extrinsic signals in the environment and the functional

responses of a neuron or parts of a neuron. This is accom-

plished by the localization of both protein-coding and noncod-

ing RNA in neuronal processes and the subsequent regulated

local translation of mRNA into protein. Here we discuss some

of the key findings that lead us to the view that mRNA locali-

zation and RNA-regulated and localized translation underlie

many fundamental cellular processes that are regulated by

extrinsic signals in neurons, such as memory, dendrite and
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arbor branching, synapse formation, axon steering, survival,

and likely proteostasis.

The dynamic regulation of protein synthesis is essential for all

cells, including neurons. Over 50 years ago, in vivo experiments

(in a variety of species) established aclear functional link between

protein synthesis and long-term memory (see Davis and Squire,

1984 for review), indicating that proteome remodeling underlies

behavioral plasticity. These observations were paralleled by

in vitro studies of synaptic plasticity demonstrating a clear

requirement for newly synthesized proteins in the long-term

modification of synaptic function (see Sutton and Schuman,

2006 for review; also, Tanaka et al., 2008). This link between

protein synthesis and long-term plasticity is most recently rein-

forced by studies showing that targeted genetic disruption of

signaling molecules that regulate protein translation interfere

with long-term synaptic or behavioral memories (Costa-Mattioli

et al., 2009). The above studies, while indicating a requirement

for protein synthesis, do not address the location. We now

know dendrites and axons of neurons represent specialized

cellular ‘‘outposts’’ that can function with a high degree of auton-

omy at long distances from the soma, as illustrated by the

remarkable ability of growing axons to navigate correctly

after soma removal (Harris et al., 1987) or isolated synapses to

undergo plasticity (Kang and Schuman, 1996; Vickers et al.,

2005). The identification of polyribosomes at the base or in spines

(Steward and Levy, 1982) together with metabolic labeling

experiments that provided the first evidence of de novo synthesis

of specificproteins in axons anddendrites (Feig andLipton, 1993;

Giuditta et al., 1968; Koenig, 1967; Torre and Steward, 1992)

indicated the competence of these compartments for trans-

lation. Subsequent studies demonstrated that specific subsets

of mRNAs localize to synaptic sites (Steward et al., 1998) and

directly linked synaptic plasticity with local translation in den-

drites (Aakalu et al., 2001; Huber et al., 2000; Kang andSchuman,

1996;Martin et al., 1997; Vickers et al., 2005), providing definitive

proof that dendrites are a source of protein during plasticity.
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In axons, the idea of local protein synthesis has been slower

to find acceptance, no doubt hindered by the classical view of

axons as information transmitters rather than receivers; so,

why would local protein synthesis be required? Although ribo-

somes were identified in growth cones in early ultrastructural

studies (Bunge, 1973; Tennyson, 1970), they were rarely

observed in adult axons. It is now thought that at least part of

the explanation for their apparent paucity lies in their localization

close to the plasma membrane in axons (Sotelo-Silveira et al.,

2008) where ribosomal subunits can associate directly with sur-

face receptors (Tcherkezian et al., 2010). In addition, evidence

indicates that myelinated axons can tap into an external supply

of ribosomes by the translocation of ribosomal proteins from

Schwann cells (Court et al., 2011). Growing and navigating

axons are clearly information receivers, like dendrites, since

their growth cones steer using extrinsic signals. Indeed, the first

functional evidence for local protein synthesis in axons came

from studies that showed that cue-induced directional steering

is abolished by inhibitors of protein synthesis, including rapamy-

cin, in surgically isolated axons (Campbell and Holt, 2001).

Subsequent studies confirmed this result in different neurons

(Wu et al., 2005; Yao et al., 2006) and revealed that local protein

synthesis underlies growth-cone adaptation, gradient sensing,

and directional turning in growing axons (Leung et al., 2006;

Ming et al., 2002; Piper et al., 2005; Yao et al., 2006). In addition,

axonal protein synthesis is elicited in response to injury and plays

key roles in axon regeneration and maintenance (Jung et al.,

2012; Perry et al., 2012; Verma et al., 2005; Yoon et al., 2012;

Zheng et al., 2001).

Compartments
Neuronal function is highly dependent on spatially precise

signaling. Increasing evidence indicates that the complex

morphology of neurons has created biological compartments

that subdivide the neuron into spatially distinct signaling do-

mains important for neuronal function (Hanus and Schuman,

2013). Dendritic spines represent a specialized (‘‘classical’’)

cellular compartment in which subsets of specific proteins (e.g.

receptors, channels, signaling molecules, and scaffolds) are

collected together with a common function for receiving and pro-

cessing electrical and chemical input. Spines have a distinct

structural morphology and, as such, are easy to classify as a

compartment. Although spines are small (�1 mm3), they can still

be subdivided into further functional compartments (see Chen

and Sabatini, 2012 for review) with multiple microdomains,

raising the question of how a compartment is defined. For

example, a recent superresolution imaging study demonstrated

that, within synapses, AMPA receptors are clustered into small

nanodomains (�70 nm in diameter) that contain on average

�20 receptors (Nair et al., 2013). These nanodomains are dy-

namic in both their shape and position and may have a limited

lifetime. Anatomically and functionally distinct compartments

also exist in axons, such as the growth cone, the axon initial

segment, and terminal arbor. Equally, there are examples of

compartments that exhibit no obvious ‘‘anatomical’’ specializa-

tions. In axons, for example, somemembrane proteins are local-

ized to restricted segments of the axon (Fasciclins, Tag1/L1,

Robo) (Bastiani et al., 1987; Dodd et al., 1988; Katsuki et al.,
2009; Rajagopalan et al., 2000) indicative of plasma-membrane

compartmentalization. In addition, second-messenger signaling

molecules such as calcium and cyclic nucleotides, once thought

to signal extensively throughout a cell, are now known to be

highly regulated such that increases in concentration can be

confined to a small space, creating a signaling compartment.

Selective activation of a single spine on a dendrite, for example,

can provide the receiving neuron with information about a

specific stimulus (Varga et al., 2011). Compartments may be

overlapping or distinct and range in size depending on the

biological function. Ultimately, a neuron must integrate the infor-

mation received from multiple compartments. As such, future

experiments aimed at understanding how different compart-

ments emerge and what mechanisms generate such spatially

precise intracellular patterning will be very informative.

Compartmentalized signaling presents several challenges to

the cell, a prime one being the localization of its component

parts. Specific molecules must be transported and delivered to

the appropriate subcellular destinations. One of the remarkable

features of RNA is its ability to be spatially localized and,

therefore, potentially contribute to neuronal compartmentaliza-

tion. Historically, localized mRNAs have been studied during

development (see Martin and Ephrussi, 2009). That localized

RNA is more often the rule than the exception is spectacularly

illustrated by the finding that 71% of the Drosophila embryo

transcriptome is localized to specific subcellular compartments

(Lécuyer et al., 2007). The proteins encoded by localized

mRNAs are also concentrated at the site suggesting that

mRNA localization and the ensuing local translation plays an

important role in positioning proteins for cellular functions.

Asymmetry and Spatial Signaling
A general function of mRNA localization is the generation of

asymmetry. mRNAs tend to be abundantly localized to the

peripheral domains and motile parts of neurons where they are

optimally positioned for the arrival of external signals, e.g., in

dendrites (synaptic activation) and growth cones. Subcellular

asymmetry can lead to highly polarized dynamics and cell

morphology that can operate on a remarkably fine scale.

Growth-Cone Spatial Signaling

To navigate, growth cones must be able to make directional

turns, which demands asymmetry. In retinal growth cones, for

example, which are only 5 mm in diameter, a polarized external

gradient of netrin-1 triggers increases in both the transport and

translation of b-actin mRNA on the gradient near side (Leung

et al., 2006; Yao et al., 2006). This polarized translation leads

to a rapid (5 min) polarized increase in b-actin protein that

helps to drive axon turning towards the gradient source. Interest-

ingly, different cues show specificity in their effects on mRNA

transport and translation. Different growth factors, for example,

trigger the transport of a specific repertoire of mRNAs in axons

(Willis et al., 2005, 2007; Zhang et al., 1999), and different

guidance cues elicit the translation of specific subsets of mRNAs

(Leung et al., 2006; Piper et al., 2006; Shigeoka et al., 2013;

Wu et al., 2005; Yao et al., 2006). b-actin mRNA translation is

triggered by netrin-1 but not Sema3A, whereas RhoA and cofilin

mRNA translation is induced by Sema3A but not netrin-1. This

has given rise to the differential translation model suggesting
Neuron 80, October 30, 2013 ª2013 Elsevier Inc. 649
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that translation-dependent repulsive and attractive turning in

growth cones depends on the differential translation of mRNAs

involved in assembly or disassembly of the actin cytoskeleton

(Lin and Holt, 2007). Several aspects of this translation-driven

cue-induced turning remain to be understood, such as how re-

ceptor activation signals mRNA recruitment and, critically, how

specific subsets of mRNA are translated.

Readout of Spatial Position In Vivo

Navigating growth cones encounter a series of patterned

molecular cues along the pathway from which they must read

out their spatial position. Although there are several examples

of stimulus-induced local translation in axons in vitro (Shigeoka

et al., 2013), it has only recently become possible to investigate

translation in neuronal compartments in vivo. Early studies by

Flanagan and colleagues showing compartmentalized expres-

sion of EphA2, recapitulated by a translation reporter, in the

post-midline crossing segment of commissural spinal cord

axons introduced the idea that the growing tip of the axon is

stimulated by a regionally expressed cue (e.g., at the midline)

that triggers the region-specific translation of proteins needed

for pathfinding (Brittis et al., 2002). A recent study provides

direct evidence for this type of mechanism in the control of

Robo expression and midline guidance (Colak et al., 2013).

Two Robo3 receptor isoforms have opposing roles in guiding

axons to and away from the midline, and their expression

is compartmentalized in pre-crossing (Robo3.1) and postcross-

ing (Robo3.2) axonal segments (Chen et al., 2008). The

switch to Robo3.2 expression at the midline (the transcript of

which contains a premature termination codon) is controlled

by midline-induced axonal protein synthesis coupled with

nonsense-mediated mRNA decay. This provides an elegant

mechanism for turning on synthesis time linked to the crossing

event (Colak et al., 2013).

It was not previously technically possible to inhibit translation

of a specific transcript in a compartment-specific manner.

Recently, however, new tools have been developed that allow

separatemanipulation of specific neuronal compartments in vivo

such as targeted delivery of siRNAs or antisense morpholinos

and conditional targeting of 30UTRs (Perry et al., 2012; Yoon

et al., 2012). These subcellular-directed approaches are begin-

ning to yield information suggesting that local translation is

involved in regulating multiple aspects of axonal and dendritic

biology.

Guidance cues induce immediate steering responses in

growth cones via classical signaling pathways that involve

receptor activation and phosphorylation of downstream

signaling molecules (Bashaw and Klein, 2010). Some of these

‘‘immediate’’ steering responses also involve local translation,

as discussed above. Thus, local translation can provide new

proteins on demand at subcellular sites for ‘‘immediate’’ use.

Interestingly, local translation in response to extrinsic cues has

recently been shown to provide proteins for ‘‘delayed’’ use in

axon growth and regeneration. Examples of this are the de

novo synthesis of proteins that shuttle back to the nucleus where

they influence transcriptional output (Cox et al., 2008; Perry

et al., 2012), and another is the de novo synthesis of surface

receptor proteins that are employed later in a growth cone’s

journey (Leung et al., 2013).
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Spatial Signaling in Dendrites

Recent advances in experimental procedures, allowing the

stimulation of individual synapses, have shown that synapses

can be independently regulated by synaptic activity (Matsuzaki

et al., 2004). On the other hand, other studies emphasize the

consideration of the dendritic branch as a computational unit

(Govindarajan et al., 2011). Taken together, it seems reasonable

to consider a range of spatial domains over which signaling can

occur, which would span the scale from subdomains in spines

to dendritic branches to the entire neuron. These data can be

compared to what we know about the quantitative localization

of the protein-synthesis machinery. Indeed, it is clear that

many synapses possess a polyribosome nearby (Ostroff et al.,

2002). Moreover, recent high-resolution in situ hybridization

data suggest that mRNA molecules are distributed in local

domains (Cajigas et al., 2012), but not necessarily specific to

individual synapses. Preliminary estimates of mRNA numbers

indicate that there may not be sufficient copies of individual

mRNA species for each synapse to have an exclusive and

dedicated molecular toolbox. These data imply that there is

local sharing of cell biological machineries, including themachin-

ery for protein synthesis and degradation. It remains unclear,

however, over what spatial scale local translation can be regu-

lated and stimulated in dendrites. For example, is stimulation

of a single spine sufficient to regulate local translation, and, if

so, over what spatial domain do the newly synthesized proteins

function?

RNA in Neurons
The past view that RNA acts primarily as an inert intermediate

between genes and proteins has undergone a revolution in

recent years with discoveries of both new classes of RNAs

(e.g., noncoding RNAs, (see Ulitsky and Bartel, 2013 for review)

and new RNA-based mechanisms of gene regulation (e.g., mi-

croRNA and RNAi silencing) (see McNeill and Van Vactor, 2012

for review). Indeed, given the relatively constrained diversity of

proteomes across cells and organisms, RNA-based mecha-

nisms (diverse RNA species and RNA functions) represent a

unique platform to diversify and specialize cells, especially neu-

rons. Numerous new roles for RNA have been found in recent

years, expanding the role of RNA to controllingmany and diverse

cellular processes, including stimulus-induced local translation

that underlie adaptive responses in neurons (e.g., memory,

axon guidance, and maintenance). In addition, RNA’s role may

not be limited to the cells where it is synthesized, as new studies

indicate it can be transferred between cells (via exosomes)

(Sharma et al., 2013) and even between organisms (Sarkies

and Miska, 2013), bringing a whole new era of RNA function in

cellular communication into focus.

mRNA

The demonstrations that local protein translation functions

during synaptic development and plasticity led to the hunt

for specific mRNAs that could be translated in these local

compartments. For many years, in situ hybridization was the

method of choice, and several individual mRNAs were visualized

in dendrites, including the mRNA for the Ca2+-calmodulin-

dependent protein kinase alpha subunit, CaMKIIa (Burgin

et al., 1990; Mayford et al., 1996), MAP2 (Garner et al., 1988),
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Shank (Böckers et al., 2004), and b-actin (Tiruchinapalli et al.,

2003). In growth cones and axons, in situ hybridization provided

evidence for several different mRNAs, including b-actin (Bassell

et al., 1998; Kaplan et al., 1992; Wu et al., 2005). Recent micro-

array approaches and deep RNA sequencing have dramatically

expanded the local transcriptome in both dendrites and axons

(Poon et al., 2006; Zhong et al., 2006). One of the most surprising

findings to come out of these studies is the vast number of

mRNAs that are present in these neuronal compartments.

Growing axons have 1000–4500 mRNAs (Zivraj et al., 2010),

while dendrites have >2500 mRNAs (Cajigas et al., 2012). The

mRNAs resident in these compartments span many different

functional classes of molecules: metabolism, translation, degra-

dation, receptors/channels, cytoskeleton, etc. Many functional

categories are shared between the two compartments, although

there are numerous distinct compartment-specific subsets

of mRNAs, e.g., GAP43 mRNA in axons and neurotransmitter

receptor subunits in dendrites.

The localization of mRNA to cellular compartments involves

recognition of information that is contained in the 30 and/or 50

untranslated (UTR) sequences. The use of mRNA localization

to achieve protein localization may arise from the fact that, at

least theoretically, unlimited address information can be built

into the 30 and/or 50 UTRs of mRNA without altering its gene-

coding function, whereas there is a tight limit to how much

additional coding sequence can be added to a protein without

ramifications for function. The family of proteins that bind, trans-

port, localize, and regulate the translation of mRNAs are known

as RNA-binding proteins (RBPs) (see Darnell, 2013 for review).

RBPs bind to cis-elements in the 30 and 50 UTRs of mRNAs.

RNA-binding proteins complexed with mRNA, other RNA spe-

cies, and accessory proteins are thought to be assembled in

the cell body and form RNA granules (Kiebler and Bassell,

2006). During transport on microtubules and microfilaments to

its destination (e.g., Hirokawa, 2006 and Czaplinski and Singer,

2006), the mRNA cargo is thought to be ‘‘silenced’’ by transla-

tional repressors (Krichevsky and Kosik, 2001). Once trans-

ported, it is unclear how or whether mRNAs are anchored

near translational sites—or if they show continued dynamics.

Both stationary and anchored particles have been observed in

dynamic mRNA imaging experiments (Lionnet et al., 2011).

RNA-binding proteins are an important class of regulatory

molecule that recognizes specific nucleotide sequences in

RNA (Ray et al., 2013). IP-Seq analysis has revealed, unexpect-

edly, that some RBPs can bind hundreds of different mRNAs

(see Darnell, 2013 for review). Some RBPs, however, appear

to be cell-type specific, such as Hermes (RPBMS2) that is ex-

pressed exclusively in retinal ganglion cells in the CNS and its

knockdown causes severe defects in axon terminal branching

(Hörnberg et al., 2013). The number of mRNA-binding proteins

identified by known RNA-binding domains is relatively small

(around 270) given the increasingly large number of transcripts

found in axons and dendrites. Recent work using interactome

capture in embryonic stem cells has significantly expanded the

number of RBPs, adding a further �280 proteins to the reper-

toire, including, remarkably, many enzymes such as E3 ubiquitin

ligases with previously unknown RNA-binding function (Kwon

et al., 2013). Several RBPs have been implicated in neurological
disorders, such as FMRP in Fragile X syndrome and survival of

motor neuron protein (SMN) in spinal muscular atrophy (Bear

et al., 2008; Liu-Yesucevitz et al., 2011), and translation dysregu-

lation has recently been implicated as a major factor in autism

(Gkogkas et al., 2013; Santini et al., 2013).

Noncoding RNAs

In recent years the discovery of noncoding RNAs, including

miRNAs (which use sequence complementarity to recognize

target mRNA), has revealed unanticipated and enormous poten-

tial for the regulation of mRNA stability and translation, as well as

other functions. Given the huge and unanticipated number of

mRNAs detected in axons and dendrites, it is perhaps not

surprising that these noncoding RNAs also exist—and are even

enriched—in neuronal compartments. One might even argue

the complex morphology and functional specialization of neu-

rons provides a hotbed for mRNA regulation that can potentially

be mediated by noncoding RNAs. Indeed, an analysis of 100

different miRNAs discovered the differential distribution of

some miRNAs in dendrites versus somata and copy numbers

in individual neurons as high as 10,000—equivalent to the num-

ber of synapses a typical pyramidal neuron possesses (Kye et al.,

2007). Recently, the differential distribution of miRNAs has been

also reported in axons versus soma (Natera-Naranjo et al., 2010;

Sasaki et al., 2013) and recently emerged as regulators of axon

growth and branching (Kaplan et al., 2013). Moreover, the

enrichment of miRNAs in synaptosomes isolated from specific

brain regions has also been reported (Pichardo-Casas et al.,

2012). miRNAs have now been shown to regulate many synaptic

functions (see Schratt, 2009 for review). In addition, miRNAs

themselves are regulated by behavioral experience (Krol et al.,

2010) as well as synaptic plasticity (Park and Tang, 2009).

More recently, the appreciation of other types of noncoding

RNAs have come into focus, though very little is known about

their function in neurons. This includes small-nucleolar RNA-

derived and transfer RNA-derived small RNAs, firstly identified

as degradation products, and long noncoding RNA known as

regulators of gene transcription, that may regulate gene expres-

sion posttranscriptionally. A recent study demonstrated, for

example, that a long noncoding RNA that is anti-sense to a K+

channel subunit (Kcna2) is upregulated following peripheral

nerve injury, leading to a downregulation of the K+ channel and

a resulting increase in the excitability of DRG neurons, increasing

neuropathic pain (Zhao et al., 2013).

Technical Hurdles and Advances
Isolating Compartments

In the early years, the study of local translation was hampered

by the technical difficulty of obtaining pure and sufficient quanti-

ties of dendrites and axons for analysis. Pioneering studies

used metabolic labeling to demonstrate the synthesis of specific

proteins such as tubulin in axons (Giuditta et al., 1968; Koenig,

2009), but the possibility that the signal arose from cell-body

contamination could not be eliminated due to these technical

limitations. Localized translation was convincingly demonstrated

by surgically severing the soma from its processes (Aakalu et al.,

2001; Campbell and Holt, 2001; Kang and Schuman, 1996) and,

more recently, by the use of chambers in which the processes

(dendrites or axons) are fluidically isolated from cell bodies
Neuron 80, October 30, 2013 ª2013 Elsevier Inc. 651
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(Eng et al., 1999; Taylor et al., 2010). Other methods for isolating

neuronal processes include substrates with limited pore size

that allow axons to penetrate but not cell bodies (Torre and

Steward, 1992; Zheng et al., 2001) and laser capture microdis-

section (Zivraj et al., 2010). These methods combined with the

rapid increase in the sensitivity of profiling techniques have

enabled genome-wide transcriptome analyses to be performed

on axons and dendrites in a variety of neurons (see below).

Tagging Newly Synthesized Proteins

The visualization and identification of newly synthesized proteins

has also been a hurdle due to issues of sensitivity (detecting low

levels of newly synthesized proteins) as well as difficulties in

distinguishing between the movement of existing proteins and

the synthesis of new proteins. Puromycin, a tRNA analog, can

be used together with fluorescent tags (Smith et al., 2005) or

antibodies (Schmidt et al., 2009) to label sites of protein synthe-

sis. Fluorescent reporters, such as photo-switchable Kaede,

fused to the 30UTR regulatory region of mRNAs of interest have

enabled de novo protein synthesis to be monitored live in

neuronal processes (Aakalu et al., 2001; Brittis et al., 2002;

Leung et al., 2006). In addition, new methods have been devel-

oped to selectively label the pool of newly synthesized proteins,

to ascertain a given cell type or cellular compartment as the site

of synthesis, and to visualize the newly synthesized proteins.

These methods make use of noncanonical amino acids that

cross cell membranes and get charged onto tRNAs by the cell’s

own tRNA synthetases and then incorporated into new protein

during protein synthesis. These techniques, bio-orthogonal

noncanonical amino acid tagging (BONCAT) and fluorescent

noncanonical amino acid tagging (FUNCAT) can be used to

selectively identify (Dieterich et al., 2006) or visualize (Dieterich

et al., 2010) newly synthesized proteins. A modification of the

NCAT method, which in principle enables one to label newly

synthesized proteins in specific cell types, has also recently

been developed (Ngo et al., 2012), and NCAT can be used in

combination with 2D difference gel electrophoresis (DIGE-

NCAT) to compare the proteomes of specific subcellular (e.g.

axonal) compartments (Yoon et al., 2012).

Looking Ahead
There are many questions for the future, as noted below.

1. How Should We Think about Subcellular

Compartments?

We know that some compartments (like spines) have plasma

membrane as a boundary that can serve to compartmentalize

chemical and electrical signals. Other compartments could be

determined by the spatial arrangement of molecules, cytoskel-

eton, or limited diffusion. Are compartments ‘‘static’’ when

bounded by anatomy (e.g., a spine) but dynamic when

determined by signaling molecule volumes? What defines

a subcellular compartment such that mRNAs contain specific

addresses to target them there?

2. How Do mRNAs Reach Neuronal Compartments?

Some mRNAs are targeted specifically to axons and dendrites

and even to the growth cone—how is this targeting achieved?

While we have in hand several ‘‘zip codes,’’ there are certainly

many messages for which a clear consensus sequence in the

UTR has not emerged. In addition, in some cases the signal
652 Neuron 80, October 30, 2013 ª2013 Elsevier Inc.
for recognition by an RNA-binding protein may reside in the

secondary structure of the mRNA, rather than the nucleotide

sequence. The fact that current secondary structure prediction

techniques are limited to small stretches of nucleotides (�100)

complicates our ability to identify binding motifs in 30UTRs.
Adding to the complexity is the recent observation that low-

complexity regions of RNA-binding proteins are sufficient

to create reversible RNA granule-like structures (Kato et al.,

2012). The expanded identification of RBPs as well as the ability

to define the binding sites with methods like HITS-CLIP (Licata-

losi et al., 2008) should dramatically enhance our knowledge of

the binding sites. Future studies should focus on the dynamics

of the RNA-protein interactions in cellular contexts. In addition,

the possibility that RNA might be delivered from extracellular

sources (e.g., via exosomes from neighboring neurons or glia)

is a recently suggested exciting idea.

3. How Is theRepertoire of LocalizedmRNAsRegulated?

Unbiased genome-wide analyses have shown that the mRNA

repertoire is dynamically regulated with the mRNA repertoire

changing over time (Gumy et al., 2011; Zivraj et al., 2010). In

addition, it is clear that synaptic activity can lead to the regulated

trafficking of mRNA to the distal processes (e.g., Steward et al.,

1998). Is this regulated at the level of transcription, or is there

some ‘‘gating’’ mechanism that regulates the trafficking of

specific transcripts into dendrites/axons? Evidence with ephrinB

in RGCs indicates that although the transcripts are present

in somas early in development, they do not move into axons until

later, suggesting that some kind of specific gating mechanism

may exist.

4. HowManyMolecules ofmRNAAre in a Compartment?

Currently, little is known about the quantitative aspects of mRNA

localization and translation in neurons. For example, how many

RNA molecules are needed to provide a functionally significant

amount of protein? How many proteins are synthesized from

a single mRNA? One might speculate that some classes of

proteins, such as cytoskeletal, would be translated much more

than others—such as receptors or channels—and transcript

abundance could reflect this difference. In theory, just a few

new channel or receptor proteins could be sufficient to alter

signaling characteristics within a neuronal microdomain. In

addition, a low abundant transcript could be stable and trans-

lated with high efficiency. Thus, low-abundance transcripts

could exert a significant physiological effect and should not be

overlooked in profiling analyses. This also raises the intriguing

question of whether translation from monosomes, rather than

polysomes, may be more common in distal neuronal com-

partments where there could be demand for a few highly local-

ized proteins. New high-resolution single molecule detection

methods (Cajigas et al., 2012; Park et al., 2012) and live-imaging

methods for translation (Chao et al., 2012) will be valuable when

answering these sorts of questions.

5. What mRNAs Are Translated in Subcellular

Compartments In Vivo?

With the advent of TRAP (translating affinity purification) tech-

nology (Heiman et al., 2008) it will be possible in the future

to answer this question in specific neuronal compartments of

specific subsets of neurons. For example, cell-type specific

Cre-driver lines can be crossed with the RiboTag mouse (Sanz
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et al., 2009), which expressesHA-tagged endogenous ribosomal

protein (Rrl22), thereby generating mice with specific neurons

expressing HA-tagged ribosomes. These can be isolated from

mouse brains by immunoprecipitation at different ages and

under different conditions (and diseased), and RNA-Seq analysis

can identify the ribosome-protected, and therefore, actively

translating transcripts. This will be of huge importance in charac-

terizing and understanding the translatome of neuronal com-

partments. Thus, current technology now offers the exciting

possibility of being able to discover differences in the dendritic

or axonal translatome of diseased (e.g., autosomal models) indi-

viduals.

6. How Is Translation Regulated in Space?

How does the spatial morphology of the dendrite, axon, or spine

contribute to or constrain protein synthesis? It was recently

shown that spines enhance the cooperative interaction among

multiple inputs (Harnett et al., 2012). These observations suggest

that the amplifying and coordinating properties of dendritic

spines have an effect on neuronal input processing and may

influence information storage by promoting the induction of

clustered forms of synaptic and dendritic plasticity among

coactive spines. This could allow spines to enhance the ability

of neurons to detect, uniquely respond to, and store distinct syn-

aptic input patterns (Harnett et al., 2012). Different patterns of

synapse activation can lead to protein synthesis-dependent

or -independent plasticity (Govindarajan et al., 2011). However,

the importance and mechanism of specific protein translation

remains to be examined in this cooperativity. Since there are

mRNAs that are differentially distributed in the length of the den-

drites, it is tempting to speculate that there is a role for protein

synthesis in regulating the functional compartment in dendrites

and spines. Thus, while it is clear that protein synthesis occurs

in the dendrite and that it is regulated by neuronal activity, the

extent to which the activity of single synapses or synaptic

regions stimulates protein synthesis, or alters protein localiza-

tion, remains unknown. Moreover, the importance and impact

of synapse location along the dendrite or axon for protein syn-

thesis is unknown.

7. How Is Translation Coordinated with Degradation?

In the small cytoplasmic volume of a dendritic spine or growth

cone, there is a limit to the amount of protein that can fit into

the space before molecular crowding becomes a problem.

While it is clear that changes in synaptic transmission involve

extensive regulation of the synaptic proteome via the regulated

synthesis and degradation of proteins (Fonseca et al., 2006;

Wang et al., 2009), it is not well understood how these two pro-

cesses are coordinately regulated to achieve the desired level

of individual proteins at synapses. Indeed, this is another level

of homeostatic control that must exist in order for synapses to

maintain the desired level of receptors, scaffolds, and signaling

molecules. Changes in the steady-state level of a protein

have to be particularly fast and fine-tuned in neurons, due to

the fast nature of synaptic transmission and the rapid induction

of plasticity.

8. How Specific Is mRNA Translation,

and How Is It Regulated?

How are specific mRNAs translated and not others? Studies

using either global activity manipulations (TTX/APV) (Sutton
et al., 2004) or application of an D1/D5 agonist (Hodas et al.,

2012) have suggested large-scale (at least�100 distinct proteins

synthesized) changes in the dendritic proteome. Similarly, global

cue stimulation of axons elicits the de novo translation of

hundreds of new proteins (Yoon et al., 2012). In these studies,

however, the stimulation was applied to the entire network

(dish of cultured neurons or brain slice). Under physiological

conditions the spatial and temporal profile of synaptic and cue

stimulation is on a much finer scale and the translational readout

is likely limited. Indeed, we know that different cues can trigger

translation of specific subsets of mRNAs in the growth cone

(Lin and Holt, 2007). The mechanisms by which specific patterns

of synaptic signals (e.g., different frequencies of stimulation,

different concentrations or gradients of agonists) and receptor

activation lead to activation of the translation machinery are

not well understood. Mechanistically, it is clear that elements

contained in the 50 and 30UTR of mRNAs can regulate their

translation initiation. In addition, it is probably the case that the

spatial proximity of an mRNA to an active translation site plays

a role. The use of high-resolution imaging techniques and focal

stimulation should provide answers to these questions.

9. What Roles Do MicroRNA and Other Noncoding

RNAs Play in Regulating Local Translation

and Neuronal Function?

In neurons, the miRNA function has been explored both individ-

ually and on a population level, but a broad conceptual under-

standing is still lacking. Moreover, if miRNAs regulate mRNA

translation and expression in different neuronal compartments,

what regulates the expression of miRNA themselves? The

accessibility of deep sequencing has enabled the detection of

other noncoding RNA species in neurons. These additional

RNA classes can directly regulate translation, regulate miRNA

function, or serve as scaffolds for other molecules, making

the levels of regulation and interactions potentially extremely

complicated. In addition, the recent appreciation of the abun-

dance and regulatory potential of other noncoding RNAs, mostly

in nonneuronal cell types, adds another level of complexity,

including the recent demonstration of regulation by circular

RNAs that may serve as either shuttles, assembly factories, or

sponges for miRNAs and/or RBPs (Hentze and Preiss, 2013).

Based on this, it is likely that a real understanding of the

complexity of RNA function in neurons will require not only

investigation of individual molecules but also a systems biology

perspective where the entire network of RNA molecules and

their targets can be considered together (see Peláez and Car-

thew, 2012).

10. Do Specialized Ribosomes Exist,

and Can They Tune Translation?

While ribosomes are readily visible in dendrites spines (Ostroff

et al., 2002) and growth cones (Bassell et al., 1998; Bunge,

1973) how they are transported and whether they are seques-

tered or anchored is not well understood. A mechanism that

could provide specificity or docking would be the specialization

of ribosomes by accessory proteins or subunits. One of the

most intriguing questions raised by recent work is whether ribo-

somes are tuned to translating specific mRNAs. This possibility

is suggested by recent studies showing that haplo-insufficiency

of several different ribosomal proteins give rise to specific
Neuron 80, October 30, 2013 ª2013 Elsevier Inc. 653
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phenotypes rather than affecting all cells ubiquitously (Kondra-

shov et al., 2011; Uechi et al., 2006; Xue and Barna, 2012). This

has given rise to the notion of a ‘‘ribocode’’ that suggests

heterogeneity in the composition of ribosomes, enabling ribo-

somes to be tuned to translate specific mRNAs via specific

ribosomal proteins (Xue and Barna, 2012). In addition, a striking

and curious feature of many recent sequencing studies is the

detection of many ribosomal subunits in dendritic or axonal

fractions. Indeed, the single most abundant class of mRNAs

encode ribosomal proteins in axons (Andreassi et al., 2010;

Gumy et al., 2011; Taylor et al., 2009; Zivraj et al., 2010).

Thus, an additional intriguing possibility suggested by the

abundance of ribosomal protein mRNA in axons and dendrites

is that ribosomal proteins may be synthesized de novo. This

could provide proteins for in situ repair of ribosomes, or even

more interestingly could provide onsite ‘‘tuning’’ of translation

(Lee et al., 2013).

11. Does Dysregulated Protein Synthesis Underlie

a Wide Range of Neurological Disorders?

One of the most exciting clinically relevant findings to emerge

from recent work is the link between dysregulated synaptic

protein synthesis and neurological disorders (Bear et al.,

2008; Darnell and Klann, 2013; Liu-Yesucevitz et al., 2011).

Mouse models of neurodevelopmental disorders such as

autism spectrum disorder (ASD) show significant improvement

on treatment with reagents that target the protein-synthesis

pathway (Bear et al., 2008; Darnell and Klann, 2013; Gkogkas

et al., 2013; Santini et al., 2013), opening up new possibilities

in terms of potential therapeutics. Much of the focus has

been on the postsynaptic side of the synapse, the predominant

site of plasticity and learning. Recent evidence indicates that

regulated protein synthesis in the presynaptic compartment is

also important for synapse formation (Taylor et al., 2013) and

axon arborization (Hörnberg and Holt, 2013; Hörnberg et al.,

2013; Kalous et al., 2013), raising the question of whether

defects in axonal protein synthesis contribute to the miswiring

aspects of neurodevelopmental disorders. Dysregulated pro-

tein synthesis may also underlie a broad range of neurodegen-

erative disorders (Fallini et al., 2012; Liu-Yesucevitz et al., 2011)

consistent with axonal protein synthesis being required for

axon maintenance (Hillefors et al., 2007; Yoon et al., 2012).

Indeed, the first ‘‘effective’’ oral drug treatment that prevents

neurodegeneration in a prion disease/Alzheimer’s mouse

model targets a kinase (PERK) that shuts down protein syn-

thesis as part of the unfolded protein response (Moreno

et al., 2013).

Summary
Recent years have witnessed a transformation in our appreci-

ation of RNA function in dendrites/axons on the one hand

and of neuronal compartments as spatially distinct signaling/

processing units on the other. Here we have highlighted the

convergence of these two areas and have sought to define

some of the many interesting questions and challenges that

lie ahead. As technical approaches become increasingly sensi-

tive for unbiased profiling there is the promise of improved

‘‘understanding’’ of the qualitative concepts that govern the

various active RNA species and formation and function of
654 Neuron 80, October 30, 2013 ª2013 Elsevier Inc.
compartments as well as quantitative details on the stoichiom-

etries of all of the players positioned within the morphological

framework of the neuron and its remarkable dendritic and

axonal arbor.
ACKNOWLEDGMENTS

We thank Nicole Thomsen for editorial support. We thank Susu tom Dieck,
Anais Bellon, and Bill Harris for comments and our labs for discussions.
Research in C.H.’s laboratory is supported by The Wellcome Trust and the
European Research Council and in E.R.’s lab by the Max Planck Society,
The European Research Council, and the DFG (CRC 902, 1080, and the Clus-
ter of Excellence for Macromolecular Complexes, Goethe University).
REFERENCES

Aakalu, G., Smith, W.B., Nguyen, N., Jiang, C., and Schuman, E.M. (2001).
Dynamic visualization of local protein synthesis in hippocampal neurons.
Neuron 30, 489–502.

Andreassi, C., Zimmermann, C., Mitter, R., Fusco, S., De Vita, S., Saiardi, A.,
and Riccio, A. (2010). An NGF-responsive element targets myo-inositol
monophosphatase-1 mRNA to sympathetic neuron axons. Nat. Neurosci.
13, 291–301.

Bashaw, G.J., and Klein, R. (2010). Signaling from axon guidance receptors.
Cold Spring Harb. Perspect. Biol. 2, a001941.

Bassell, G.J., Zhang, H., Byrd, A.L., Femino, A.M., Singer, R.H., Taneja, K.L.,
Lifshitz, L.M., Herman, I.M., and Kosik, K.S. (1998). Sorting of beta-actin
mRNA and protein to neurites and growth cones in culture. J. Neurosci. 18,
251–265.

Bastiani, M.J., Harrelson, A.L., Snow, P.M., and Goodman, C.S. (1987).
Expression of fasciclin I and II glycoproteins on subsets of axon pathways
during neuronal development in the grasshopper. Cell 48, 745–755.
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