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Abstract
Sequence similarity searching, typically with BLAST (units 3.3, 3.4), is the most widely used, and
most reliable, strategy for characterizing newly determined sequences. Sequence similarity
searches can identify ”homologous” proteins or genes by detecting excess similarity – statistically
significant similarity that reflects common ancestry. This unit provides an overview of the
inference of homology from significant similarity, and introduces other units in this chapter that
provide more details on effective strategies for identifying homologs.
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AN INTRODUCTION TO IDENTIFYING HOMOLOGOUS SEQUENCES
Sequence similarity searching to identify homologous sequences is one of the first, and most
informative, steps in any analysis of newly determined sequences. Modern protein sequence
databases are very comprehensive, so that more than 80% of metagenomic sequence
samples typically share significant similarity with proteins in sequence databases. Widely
used similarity searching programs, like BLAST (Altschul et al. (1997); units 3.3 and 3.4),
PSI-BLAST (Altschul et al., 1997), SSEARCH (Smith and Waterman (1981); Pearson
(1991), unit 3.10), FASTA (Pearson and Lipman (1988) unit 3.9) and the HMMER3
(Johnson et al., 2010) programs produce accurate statistical estimates, ensuring protein
sequences that share significant similarity also have similar structures. Similarity searching
is effective and reliable because sequences that share significant similarity can be inferred to
be homologous; they share a common ancestor.

The units in this chapter present practical strategies for identifying homologous sequences in
DNA and protein databases (units 3.3, 3.4, 3.5, 3.9, 3.10); once homologs have been found,
more accurate alignments can be built from multiple sequence alignments (unit 3.7), which
can also form the basis for more sensitive searches, phenotype prediction, and evolutionary
analysis.

While similarity searching is an effective and reliable strategy for identifying homologs –
sequences that share a common evolutionary ancestor – most similarity searches seek to
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answer a much more challenging question: "Is there a related sequence with a similar
function?". The inference of functional similarity from homology is more difficult, both
because functional similarity is more difficult to quantify, and because the relationship
between homology (structure) and function is complex. This introduction first discusses how
homology is inferred from significant similarity, and how those inferences can be
confirmed, and then considers strategies that connect homology to more accurate functional
prediction.

INFERRING HOMOLOGY FROM SIMILARITY
The concept of homology – common evolutionary ancestry – is central to computational
analyses of protein and DNA sequences, but the link between similarity and homology is
often misunderstood. We infer homology when two sequences or structures share more
similarity than would be expected by chance; when excess similarity is observed, the
simplest explanation for that excess is that the two sequences did not arise independently,
they arose from a common ancestor. Common ancestry explains excess similarity (other
explanations require similar structures to arise independently); thus excess similarity implies
common ancestry.

However, homologous sequences do not always share significant sequence similarity; there
are thousands of homologous protein alignments that are not significant, but are clearly
homologous based on statistically significant structural similarity or strong sequence
similarity to an intermediate sequence. Thus, when a similarity search finds a statistically
significant match, we can confidently infer that the two sequences are homologous; but if no
statistically significant match is found in a database, we cannot be certain that no homologs
are present. Sequence similarity search tools like BLAST, FASTA, and HMMER minimize
false positives (non-homologs with significant scores; Type I errors), but do not make
claims about false negatives (homologs with non-significant scores; Type II errors). As is
discussed below, it is often easier to detect distant homologs when searching a smaller
(<100,000–500,000 entry) database than when searching the most comprehensive sequence
sets (more than 10,000,000 protein entries). Likewise, when domain annotation databases
like InterPro and Pfam annotate a domain on a protein, it is almost certainly there. But these
databases can fail to annotate a domain that is present, because it is very distant from other
known homologs.

We infer homology based on excess similarity; thus statistical models must be used to
estimate whether an alignment similarity score would be expected by chance. Today,
comprehensive protein databases contain tens of millions of sequences, the vast majority of
which are unrelated to an individual query. Thus, it is very easy to determine the distribution
of scores expected by chance, and it has been observed that unrelated sequences have
similarity scores that are indistinguishable from random sequence alignments. For local
sequence alignments, like those produced by BLAST, Smith-Waterman, or FASTA, the
expected distribution of similarity scores by chance (scores for alignments between two
random or unrelated sequences) is described by the extreme value distribution p(s≥x)
≤1−exp(−exp(−x)) (Fig. 1), where the score ‘s’ has been normalized to correct for the
scaling of the scoring matrix (Unit 3.5) and the length of the sequences being compared. To
avoid these normalization issues, most similarity searching programs also provide a score in
bits, which can be converted in to a probability using the formula: p(b≥x)≤1−exp(−mn2−2)1

where m,n are the lengths of the two sequences being aligned. However, the probability p(b)
is not what is reported by BLAST, FASTA, or SSEARCH, because it reflects the probability

1For scores with p()<0.01, which will include any significant score in a database search, this expression can be simplified to p(b ≥x)
=mn2−x.
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of the score in a single pairwise alignment. Current search programs report the best scores
after hundreds of thousands to tens of millions of comparisons have been done; as a result
BLAST and other programs report the expected number of times the score would occur by
chance — the evalue, E()-value, or expectation value — after thousands or millions of
searches. The E()-value is E(b)≤p(b)D, where D is the number of sequences in the database.
2

Because the expectation value depends on database size, an alignment score found by
searching 10,000,000 entry database will be 100-fold less significant than exactly the same
score found in a search of a 100,000 entry database. This does not mean that sequences can
be homologous in one context (the smaller search) but not in another. If the alignment was
significant in the smaller (and shorter) search, the sequences are homologous, but that
homology may not be detected in the larger search because there are 100-fold more
sequences that could produce high (but not significant) alignment scores by chance.
Sequences that share significant sequence similarity can be inferred to be homologous, but
the absence of significant similarity (in a single search) does not imply non-homology. For
non-significant alignments, comparisons to an intermediate sequence, or analysis with
profile or HMM based methods, can be used to demonstrate homology.

The most common reason homologs are missed is because DNA sequences, rather than
protein sequences (or translated DNA sequences), are compared. Protein (and translated-
DNA) similarity searches are much more sensitive than DNA:DNA searches. DNA:DNA
alignments have between 5–10-fold shorter evolutionary look-back time than protein:protein
or translated DNA:protein alignments. DNA:DNA alignments rarely detect homology after
more than 200–400 million years of divergence; protein:protein alignments routinely detect
homology in sequences that last shared a common ancestor more than 2.5 billion years ago
(e.g. humans to bacteria). Moreover, DNA:DNA alignment statistics are less accurate than
protein:protein statistics; while protein:protein alignments with expectation values < 0.001
can reliably be used to infer homology, DNA:DNA expecation values < 10−6 often occur by
chance, and 10−10 is a more widely accepted threshold for homology based on DNA:DNA
searches. The most effective way to improve search sensitivity with DNA sequences is to
use translated-DNA:protein alignments, such as those produced by BLASTX and FASTX,
rather than DNA:DNA alignments.

Reliable homology inferences require reliable statistical estimates. The statistical estimates
provided by BLAST, FASTA, SSEARCH, and other widely used similarity searching
programs are very reliable. But in unusual cases, which can appear scientifically exciting,
the statistical estimation fails, and unrelated sequences are assigned statistical significance
not because of homology, but because of statistical errors. When a scientifically unexpected
alignment appears to be statistically significant, investigators should consider alternate
strategies for estimating statistical significance. Statistical estimates can be confirmed in two
ways: (1) by attempting to identify the most similar alignments to unrelated sequences and
confirming that those alignments are not significant; or (2) running additional searches with
shuffled versions of the original sequences.

Since it is difficult to be certain that two sequences are unrelated, particularly for unexpected
inferences of homology, strategy (1) above might seem impractical. Fortunately, high
scoring alignments that happen by chance can be quite diverse, as they do not reflect
evolutionary relationships. Alignments between unrelated sequences will have very different
domain content and structural classifications. By examining the domain structures (and
possibly structural classes) of high-scoring alignments, one can identify the highest scoring

2BLAST actually uses a slightly different correction that has the same effect.
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unrelated sequences because sequence alignments with proteins containing unrelated
domains must be unrelated. Accurate statistical estimates will give E()-values ~1 to
unrelated sequences (sequences with different domains); if unrelated sequences have E()-
values < 0.001–0.01, then the scientifically novel relationship is suspect.

The second strategy—inferring significance from shuffled sequences with identical length
and composition—is much more straight-forward, but it depends on the assumption that
shuffled sequences have similar properties to real protein sequences. This is certainly true
for most sequences, but the assumption may be weaker in the exceptional cases that produce
“novel” results. The most reliable shuffling strategies preserve local residue composition,
either by simply reversing one of the sequences, or by shuffling the sequences in local
windows of 10 or 20 residues, which preserves local amino acid composition. SSEARCH
(unit 3.10) and the other members of the FASTA program package (unit 3.9) offer statistical
estimates based on shuffles that preserve local composition.

Homology (common ancestry and similar structure) can be reliably inferred from
statistically significant similarity in a BLAST, FASTA, SSEARCH, or HMMER search, but
to infer that two proteins are homologous does not guarantee that every part of one protein
has a homolog in the other. BLAST, SSEARCH, FASTA, and HMMER calculate local
sequence alignments; local alignments identify the most similar region between two
sequences. For single domain proteins, the end of the alignment may coincide with the ends
of the proteins, but for domains that are found in different sequence contexts in different
proteins, the alignment should be limited to the homologous domain, since the domain
homology is providing the sequence similarity captured in the score. When local alignments
end within a protein, the ends of the alignment can depend on the scoring matrix used to
calculate the score. In particular, scoring matrices like BLOSUM62, which is used by
BLASTP, or BLOSUM50, which is used by SSEARCH and FASTA, are designed to detect
very distant similarities, and have relatively low penalties for mismatched residues. As a
result, a homologous region that is 50% identical or more can be extended outside the
homologous domain into neighboring non-homologous regions. This is a common cause of
errors with iterative methods like PSI-BLAST (Gonzalez and Pearson, 2010), but can be
reduced by limiting extension in later iterations (Li et al., 2012). The relationship between
the similarity scoring matrix and alignment overextension is discussed in Unit 3.5.

E()-values, identity, and bits—While homology is inferred from excess similarity, and
excess similarity is recognized from statistical estimates (E()-values), most investigators are
more comfortable describing similarity in terms of “percent identity”. Although a common
rule of thumb is that two sequences are homologous if they are more than 30% identical
over their entire lengths (much higher identities are seen by chance in short alignments), the
30% criterion misses many easily detected homologs. While 30% identical alignments over
more than 100 residues are almost always statistically significant, many homologs are
readily found with E()-values <10−10 that are not 30% identical. Thus, E()-values and bit-
scores (see below) are much more useful for inferring homology. When 6,629 S. cerevisiae
proteins were compared to 20,241 human proteins, 3,084 of the yeast proteins shared
significant (E()<10−6) similarity with a human protein, but only 2,081 of those proteins were
more than 30% identical. There are 19 yeast proteins whose closest human homolog shares
less than 20% identity (E()-values from 10−7 – 10−40; about an equal number are >80%
identical). A 30% identity threshold for homology underestimates the number of homologs
detected by sequence similarity between humans and yeast by 33% (this is a minimum
estimate; even more homologs can be detected by more sensitive comparison methods).

The bit-score provides a better rule-of-thumb for inferring homology. For average length
proteins, a bit score of 50 is almost always significant. A bit score of 40 is only significant
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(E() < 0.001) in searches of protein databases with fewer than 7000 entries. Increasing the
score by 10 bits increases the significance 210=1000-fold, so 50 bits would be significant in
a database with less than 7 million entries (10 times SwissProt, and within a factor of 3 of
the largest protein databases). Thus, the NCBI Blast web site uses a color code of blue for
alignment with scores between 40–50 bits; and green for scores between 50–80 bits. In the
yeast vs human example, the alignments with less than 20% identity had scores ranging
from 55 – 170 bits. Except for very long proteins and very large databases, 50 bits of
similarity score will always be statistically significant and is a much better rule-of-thumb for
inferring homology in protein alignments.

While percent identity is not a very sensitive or reliable measure of sequence similarity –
E()-values or bits are far more useful – percent identity is a reasonable proxy for
evolutionary distance, once homology has been established. Like raw similarity scores, bit-
scores and E()-values reflect the evolutionary distance of the two aligned sequences, the
length of the sequences, and the scoring matrix used for the alignment (Unit 3.5). An
alignment that is twice as long, e.g. 200 residues instead of 100 residues at the same
evolutionary distance, will have a bit score that is twice as high. Since the E()-value is
proportional to 2−bits, a two-fold higher bit-score squares the E()-value (10−20 becomes
10−40). For analyses that depend on evolutionary distance, percent identity provides a useful
approximation, but evolutionary distance is not linear with percent identity. The
evolutionary distance associated with a 10% change in percent identity is much greater at
longer distances. Thus, a change from 80 – 70% identity might reflect divergence 200
million years earlier in time, but the change from 30% to 20% might correspond to a billion
year divergence time change.

INFERRING FUNCTION FROM HOMOLOGY
Homologous sequences have similar structures, and frequently, they have similar functions
as well. But the relationship between homology and function is less predictable, both
because a single protein structure can have multiple functions (does chymotrypsin have a
different “function” from trypsin?) and because the concept of “function” is more
ambiguous (the same enzyme have “different” roles in two tissues because of different
concentrations of substrates).

Currently, the most popular strategy for inferring functional similarity is to focus on
“orthologs”, typically understood as the same protein in different organisms. The concept of
“orthology” was originally introduced to distinguish two kinds of evolutionary histories: (1)
homologous sequences that differ because of speciation events—orthologs; and (2)
homologous sequences that were produced by gene-duplication events—paralogs (Koonin,
2005). Orthologs were initially recognized in phylogenetic reconstructions because they
could accurately reproduce the evolutionary histories of the organisms where they were
found. Because paralogs are duplicates that preserve the original gene (presumably with the
original function), paralogous proteins are more likely to acquire novel functions. But
“novelty” very much depends on the level of functional specificity. For example, trypsin and
chymotrypsin are paralogous serine proteases with slightly different substrate specificities,
but many of their Gene Ontology terms do not capture their functional differences; thus they
are paralogs that are functionally very similar.

Unfortunately, the terms “orthologous” and “paralogous” have been given different
meanings in different contexts. Their original phylogenetic definitions—orthology, same
gene, different organism; paralogy, duplicated genes—did not have clear functional
implications. More recently, orthology has been associated with functional similarity
(sometimes in the absence of homology, e.g. functional orthologs), while paralogy has
sometimes been defined as functionally distinct (Gerlt and Babbitt, 2000). Perhaps because
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of the greater interest in homologs with similar functions, the term orthologous has been
applied more generously than evolutionary analyses might support, and paralogous genes
are assumed to have different functions. From the evolutionary perspective, both orthologs
and paralogs are details about evolutionary history that have some ability to improve
function prediction, but for many protein families most paralogs have similar functions.

The problem of functional inference is exacerbated by the need to infer function at great
evolutionary distances; the closest matches between mouse and human proteins share about
84% identity, but yeast-human closest matches are about 30% identical on average. It is easy
to argue that two proteins that are more than 80% identical with conserved active sites will
share the same function, but more difficult to reliably infer similar function at much longer
evolutionary distances. For example, humans have three trypsin paralogs to
TRY1_HUMAN: TRY2_HUMAN and TRY6_HUMAN, which are both more than 90%
identical, and TRY3_HUMAN, which is about 70% identical. In addition, there are about 50
other paralogs that range from 45–25% identical. CTRB2_HUMAN is the most similar
chymotrypsin, at 38% identity. All these proteins share significant global similarity and are
identical at the three residues in the serine protease catalytic triad; thus we can infer that
these paralogs share the serine protease function. Several studies have shown that
homologous sequences that share more than 40% identity are very likely to share functional
similarity as judged by E.C. (Enzyme Commission) numbers, but counter-examples exist
where a small number of residues in very similar proteins are associated with dramatic
changes in enzyme activity. Inferring functional similarity based solely on significant local
similarity is less reliable than inferences based on global similarity and conserved active site
residues.

FROM PAIRWISE TO MULTIPLE SEQUENCE ALIGNMENT
Pairwise sequence alignments, such as those calculated by BLAST, FASTA, and
SSEARCH, view the evolutionary structure of a protein or domain family from a single
perspective. Pairwise alignments produce very accurate statistical significance estimates, so
one can have great confidence when significant homologs are found. But the one-sequence
perspective has shortcomings as well; searches with models of protein families, using either
PSI-BLAST or Hidden Markov Model (HMM) based methods, can identify far more
homologs in a single search at little additional computational cost. Moreover, the multiple
sequence alignments that are used to construct the position-specific scoring matrices of PSI-
BLAST or the Hidden Markov Models used by HMMER provide important information
about the most conserved regions in the protein; locating conserved regions in protein and
domain families can dramatically improve predictions of the functional consequences of
mutation. Multiple sequence alignments thus provide much more structural, functional, and
phylogenetic information than pairwise alignments.

While multiple sequence alignments are much more informative, they cannot be used to
answer the first critical question about two sequences — are they homologous? The
inclusion of a protein into a multiple sequence alignment requires independent evidence for
homology; multiple sequence alignment programs do not provide statistical estimates and
will readily align non-homologous sequences (particularly non-homologous sequences that
are highly ranked by chance in a similarity search). The assumption of homology can be
especially misleading with iterative methods like PSI-BLAST, because once a non-
homologous domain has been included in the multiple sequence alignment used to produce
the position-specific scoring matrix, the matrix can become re-purposed towards finding
members of the non-homologous family. Ideally, each sequence included in a multiple
sequence alignment will be evaluated both to ensure that it shares significant similarity with
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some of the other members of the family, and that the boundaries of the included sequence
correspond with the boundaries of the domain homology.

Rigorously building a multiple sequence alignment is exponentially more computationally
expensive than pairwise alignment. Rigorous pairwise alignment algorithms require time
proportional to the product of two sequences (O(n2), so increasing the sequence lengths 2-
fold increased the time required 4-fold. Fortunately, protein sequences have a limited range
of lengths, so rigorous searches (SSEARCH) are routine. In contrast, the rigorous multiple
sequence alignment of 10 sequences of length 400 would take proportional to 40010 and 100
sequences would take O(400100), so rigorous multiple sequence alignment is impractical.
During the 1980s, progressive alignment strategies, like ClustalW (Larkin et al., 2007; Unit
2.3) were developed that simplified the problem to O(n2l2), where n is the number of
sequences, and l is their average length. These early progressive alignment strategies
suffered from the problem that gaps placed early on in the alignment could not be re-
adjusted to reflect information from sequences aligned later. More recent multiple sequence
alignment methods, like MAFFT (Katoh et al., 2002) and MUSCLE (Edgar, 2004) use
iterative approaches that allow gaps to be re-positioned.

There is a much greater diversity of multiple sequence alignment algorithms than pairwise
sequence alignment algorithms, largely because optimal pairwise solutions are readily
available, but multiple sequence alignment strategies use different heuristic approximations.
While different multiple sequence alignment programs will often produce modestly different
results, most programs produce very similar results for sequences at modest evolutionary
distances (greater than 40% identity), and the differences are found near the boundaries of
gaps. A more common problem is multiple sequence alignments with large gaps, which may
reflect the presence or absence of domains in a subset of the sequence set. Alignment only
makes biological sense when the residues included in the alignment are homologous. Large
differences in sequence length, or attempts to multiply align sequences that are locally, but
not globally, homologous can produce very different results because the programs are
aligning non-homologous domains.

SUMMARY
BLAST, FASTA, SSEARCH, and other commonly used similarity searching programs
produce accurate statistical estimates that can be used to reliably infer homology. Searches
with protein sequences (BLASTP, FASTP, SSEARCH,) or translated DNA sequences
(BLASTX, FASTX) are preferred because they are 5–10-fold more sensitive than
DNA:DNA sequence comparison. The 30% identity rule-of-thumb is too conservative;
statistically significant (E() < 10−6 – 10−3) protein homologs can share less than 20%
identity. E()-values and bit scores (bits > 50) are far more sensitive and reliable than percent
identity for inferring homology.

With the rise of whole-genome sequencing, protein sequence databases are both
comprehensive and large. It is rarely necessary to search complete sequence databases to
find close-homologs; more sensitive searches can be limited to complete protein sets from
evolutionarily close organisms. Because of its sensitivity and the slower changes in protein
sequences, protein similarity searching can easily detect vertebrate homologs, almost all
homologous sequences that have diverged in the past 500 million years (bilateria), and a
very large fraction of the sequences that diverged in the past billion years. The most efficient
and sensitive searches will focus on well-annotated model organisms sharing a common
ancestor that diverged in the past 500 million years.

Because of the abundance of relatively closely related (>40% identical) sequences in
comprehensive databases, the accuracy and location of annotation can often be more
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important than finding the closest homolog. The SwissProt subset of the UniProt database is
unique in providing comprehensive information on modified residues, active sites, variation,
and mutation studies that allow more accurate functional prediction from homologous
alignments. Once an homologous protein or domain has been found, establishing the state of
functionally critical residues (and ensuring that functional domains are part of the
alignment) can greatly decrease errors produced by simply copying the name (and function)
of the reference protein to the query sequence. Similarity searches that use statistical
significance to well-curated sequences provide the most accurate functional predictions.
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Figure 1.
The distribution of real and expected similarity scores. The human dual specificity protein
phosphatase 12 (DUS12_HUMAN) was compared to 38,114 human RefSeq proteins using
the SSEARCH program. The distribution of bit-scores for all 38,114 alignments is shown
(squares, □) as well as the mathematically expected distribution of normalized similarity
scores (z-scores, or standard deviations above and below the mean 0) based on the size of
the database, using the extreme-value distribution. The close agreement between the
observed and expected distribution of scores reflects the observation that the distribution of
unrelated sequence scores is indistinguishable from random (mathematically generated)
scores, so sequences with significant sequence similarity can be inferred to be not-unrelated,
or homologous.
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