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Abstract
The richness of perceptual experience, as well as its usefulness for guiding behavior, depends
upon the synthesis of information across multiple senses. Recent decades have witnessed a surge
in our understanding of how the brain combines sensory signals, or cues. Much of this research
has been guided by one of two distinct approaches, one driven primarily by neurophysiological
observations, the other guided by principles of mathematical psychology and psychophysics.
Conflicting results and interpretations have contributed to a conceptual gap between
psychophysical and physiological accounts of cue integration, but recent studies of visual-
vestibular cue integration have narrowed this gap considerably.

Most animals, including humans, function in a complex and dynamic sensory environment
in which many events must be detected, interpreted, and acted upon. Sensory systems have
evolved elegant solutions to cope with this flood of information, but a fundamental and
unavoidable aspect of sensory input is its uncertainty; that is, the imperfect mapping
between events in the world and the sensory representation thereof. This uncertainty arises
from both the physical nature of stimuli (e.g., the stochastic arrival of photons at the retina)
and the transformation of these physical events into messages carried by noisy devices,
namely neurons1. Following in the tradition of 19th century thinkers such as Helmholtz and
Fechner, experimental psychologists have long recognized that this inherent uncertainty
implies a probabilistic interpretation of sensory function: in the absence of perfect
knowledge about the world, the brain must operate with noisy statistical measurements of
environmental properties2, 3.

Statistically, a simple way to reduce uncertainty is to combine data from multiple
(independent) measurements. Because sensory uncertainty places limits on perceptual
performance, it follows that the brain can improve performance by combining sensory
measurements, both within and across modalities. This simple fact represents both the
normative basis and evolutionary advantage of cue integration: the combination of multiple
sensory cues that arise from the same event or object. In addition to mitigating statistical
uncertainty, cue integration can help resolve ambiguities in sensory data. For example, the
otolith organs of the inner ear detect linear acceleration of the head, but this can arise either
from translational motion of the head (e.g., when stepping on the gas pedal in a car) or from
tilting the head with respect to gravity. This fundamental ambiguity – a consequence of
Einstein’s equivalence principle4 – is resolved by combining otolith signals with
information from our rotational motion sensors, the semicircular canals5, 6.

In this review we focus on ‘multisensory’ cue integration, referring to cues that come from
different sensory modalities (although many of the same principles apply to within-modality
cue integration7). Moreover, we will only attempt to shed light on one small corner of this
rapidly growing field; for instance, we will not catalog the many tasks and modalities for
which cue integration behavior has been tested3, 7, 8, nor will we survey the intriguing recent
findings of cross-modal influences within early or primary sensory structures9-14. Instead,
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we will build toward answering the following questions: what are (and what should be) the
computations performed by individual multisensory neurons and populations of neurons,
and how do these computations give rise to behavioral performance in psychophysical cue-
integration tasks? These questions have obvious relevance for our general understanding of
multisensory processing, but additionally we see them as a path toward unifying two of the
main sub-disciplines in the field: (1) the theory-driven study of cue integration behavior in
human subjects, and (2) the use of neurophysiology (and more recently, neuroimaging) to
describe the phenomenology of multisensory interactions within neurons and brain areas.
We begin with a brief review of the former.

Psychophysical study of cue integration
Before one can address the neural computations underlying a behavior of interest, it is often
helpful to specify a mathematical model of the task that the brain needs to solve. Such
models are often designed to be statistically ‘optimal’ (sometimes called ‘ideal observer’
models), meaning that the hypothetical observer achieves the best possible performance
given the uncertainty of perceptual processing and the constraints of the task. Constructing
an ideal observer provides a clear standard against which to test the performance of human
or animal subjects, and helps refine our understanding of the relevant computations7, 15.

The use of ideal-observer models for studying cue integration has its roots in computational
vision research16-19, but has been extended to include auditory20, 21, somatosensory/
proprioceptive22-25, and vestibular26-30 modalities. Many of these studies employ a simple
yet highly successful model, described in Box 1. The model states that an optimal observer,
when estimating an environmental parameter from multiple sensory cues, performs a
weighted average of the estimates derived from the individual cues. Optimality in this case
is defined as the estimate with the lowest possible degree of uncertainty, or variance, while
also remaining unbiased (i.e., correct on average). This estimate is achieved by weighting
the cues in proportion to their relative reliability, or inverse variance (Eq. 1)17, 18, 31. With a
few simplifying assumptions, this weighting strategy is identical to one afforded by
Bayesian probability theory3, 19, 32 (see Box 1), hence the model is often referred to as
Bayesian or Bayes-optimal cue integration.

We should emphasize that the predictions of the weighted linear combination scheme (Eq.
1) and its extension to Bayesian inference (Eq. 3) are entirely intuitive and do not depend on
an understanding of the mathematical details. In essence, these models assert that the brain
should consider all available evidence when making a decision (or estimate), while ensuring
that more reliable evidence has greater influence. If one were to hear two weather forecasts,
one from a reputable meteorologist and the other from an eccentric neighbor, the sensible
strategy would be to place more trust in the meteorologist. Of course, this requires
knowledge of their reliability; one possible source of such knowledge in the brain during cue
integration will be discussed in a later section.

Testing cue integration models with behavioral experiments
Optimal cue integration models can be tested by asking subjects to perform a
psychophysical discrimination task using multiple cues, as well as each cue in
isolation16, 17, 20, 22, 30, 33-35. The reliability of the cues is estimated from the precision with
which subjects perform the task under single-cue conditions, establishing the predictions for
the optimal weighting scheme (Eq. 1). The weights can then be measured and tested against
this prediction by placing the cues in conflict and assessing the degree to which each cue
dominated the perceptual report (Fig. 1).
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Note that while cue-conflict experiments are often used to estimate perceptual weights, this
does not imply that cue weighting is only relevant under such artificial experimental
conditions. Separate modalities can provide conflicting information under natural
conditions, for instance in tasks that produce a systematic bias in one modality but not
another36. More fundamentally, the existence of neuronal noise guarantees conflict between
parameter estimates from separate modalities even when stimuli are not actually in
conflict37, just as random draws from independent, identical distributions will rarely be
identical.

Despite its simplicity, the basic optimal cue integration model (Box 1) has been found to
explain psychophysical performance reasonably well across many tasks and systems
(reviewed by REF. 7). There are some notable exceptions38-40, and it is clear that a more
complete picture will require schemes that go beyond simple reliability-weighted linear
combination. For example, recent work has modified the basic model to include inference
about whether two cues arise from the same real-world event (‘causal’ inference41), the
ability to discount highly discrepant information (robust estimation17, 42), and consideration
of the accuracy of cues in addition to their precision43, 44. Nevertheless, it is fairly well
established that human subjects, and more recently nonhuman primates30 and rodents45, are
able to reduce perceptual uncertainty and improve their performance by combining multiple
cues in a manner that approximates a statistically optimal observer (Eq. 1). Since real-world
objects and events are rarely sensed with just a single modality, these studies suggest that
weighting sensory information by its reliability may be fundamental to our everyday
experience of the world and the actions we take in it.

The neurophysiology of multisensory integration
Years before the aforementioned theoretical and psychophysical tools were brought to bear
on cue integration, several laboratories had begun to characterize the properties of
multisensory neurons in experimental animals. Although neuroscience has historically
considered each sensory modality as a distinct information channel with its own dedicated
brain structures, it was known fairly early on that neurons with converging sensory inputs
could be found in many regions throughout the brain and across species (reviewed by
REFS 46, 47).

A region that has received the bulk of neurophysiologists’ attention is the mammalian
superior colliculus (SC), a midbrain structure involved primarily in orienting the eyes and
head toward salient stimuli48-50. Because the motor system needs to react to stimuli
regardless of the modality with which they are detected, it makes sense that such a structure
would contain multisensory neurons. In particular, cells in the deep layers of the SC are
spatially selective for visual and auditory targets, as well as tactile stimulation of the face
and body. But beyond mere convergence of multi-modal information, it soon became clear
that these signals interact functionally within the SC, often in dramatic fashion47. For
example, weak visual or auditory stimuli presented alone might elicit a very small response
from an SC neuron, yet when presented together can cause a vigorous neural response.

The seminal work of Stein and colleagues (for reviews see REFS 46, 51) characterized this
and other functional interactions in the SC, outlining a number of empirical principles that
have guided multisensory research for over two decades, including a recent surge in human
fMRI studies11, 52, 53. The extensive evidence supporting these empirical principles has been
reviewed elsewhere14, 46, 51, 54. For our purposes, the key findings can be adequately
summarized as follows55: (1) The spatial/temporal principle: neurons that receive input from
multiple sensory modalities typically show enhanced responses to multisensory stimuli
(relative to the largest unisensory response), provided that the stimuli from the two

Fetsch et al. Page 3

Nat Rev Neurosci. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



modalities are close together in space and time. In contrast, sufficient separation in space or
time can suppress the multisensory response relative to the best unisensory response. (2)
Inverse effectiveness: multisensory response enhancement is proportionally larger when the
same stimuli presented individually (unisensory stimuli) only weakly activate the neuron.
Moreover, weak unisensory stimuli can cause a substantial fraction of multisensory neurons
in the SC to display ‘superadditivity’, a phenomenon in which the multisensory response of
a particular neuron is greater than the arithmetic sum of unisensory responses. Note,
however, that inverse effectiveness can hold regardless of whether superadditivity occurs55.

Importantly, these physiological response properties bear an intriguing resemblance to
behavior in alert animals. For example, stimulus combinations that were more effective in
activating neurons were also more effective at driving behavioral detection of stimuli56-59.
In addition, this line of research has assembled an impressively thorough account of the
anatomical origins of multisensory integration in the SC (namely, via descending input from
specific cortical regions60, 61), as well as its developmental trajectory62-64. However, until
recently, less attention had been paid to the computations that underlie multisensory
integration in SC neurons.

A significant advance on this front came in a report by Stanford and colleagues55. These
authors noted that most earlier studies tested only a limited set of stimulus intensities,
focusing on weaker stimuli for which multisensory responses were most impressive and
seemingly most relevant for behavior. Without a more thorough characterization of SC
responses to different combinations of stimulus intensities, the mathematical operations
performed by SC neurons remained obscure, hampering efforts to understand and model the
underlying neuronal mechanisms55. Expanding the repertoire to three levels of intensity,
chosen to span the dynamic range of each neuron’s response to both visual and auditory
stimuli, Stanford et al.55 confirmed the basic response patterns outlined above, and
systematically characterized transitions from superadditive to additive to subadditive
responses in single neurons as stimulus strength increases, consistent with the principle of
inverse effectiveness (see also REFS 65-67). Whereas nearly all neurons demonstrated
inverse effectiveness, superadditivity was generally seen only for neurons with weak
responses to unisensory stimuli. These studies helped clarify that superadditivity is not a
ubiquitous property of multisensory integration by neurons. However, they still left in doubt
the specific mathematical rules by which SC neurons combine their inputs.

Computational modeling and neural theories of cue integration
In the same spirit of attempting to pin down the computations underlying multisensory
integration, several computational models68-70 have been presented to account for SC
responses and their dependence on cortical input (reviewed by REF. 71). Recent SC-based
network models provide a detailed explanation of multisensory responses in the SC,
emphasizing the role of the association cortex and laying a strong predictive foundation for
future studies. However, despite this progress, a parsimonious description of the basic neural
computations involved in multisensory integration has eluded consensus. More importantly,
these models68-71 focused mainly on explaining the physiology, rather than providing
quantitative predictions linking neuronal activity with behavior. One issue is that the
behavioral task associated with multisensory integration in the SC (orienting to spatial
targets) has not typically been defined in the language of statistical decision-making – or the
related ideas of signal-detection theory72 – as used by psychophysicists (but see
REFS 73, 74), and hence the neurophysiological data were not interpreted in that context.

Meanwhile and in contrast, a different theoretical framework75 was developed from the
perspective of probabilistic (statistical) inference – the process of drawing conclusions based
on uncertain data – of which cue integration is a special case (see previous section and Box

Fetsch et al. Page 4

Nat Rev Neurosci. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



1). In a landmark set of studies, Ma, Beck, Latham and Pouget showed how populations of
neurons can implicitly represent probability distributions and perform Bayesian
computations75 and optimal decision-making76. The key insight of this “probabilistic
population code” (PPC) framework (Fig. 2) is that the type of variability observed in most
neuronal responses – termed “Poisson-like” variability75 – makes these computations
surprisingly easy to perform. Specifically, the Bayes-optimal combination of multiple
sensory cues (an operation that mathematically requires multiplication of probability
distributions; see Eq. 3) can be achieved by simple linear summation of population activity
(Fig. 2a; see also REF. 77 for a related approach).

To make this idea more concrete, consider a cue-conflict task such as the one depicted in
Fig. 1a-b. Visual and auditory cues are presented with a small spatial separation (conflict)
and unequal reliability. When the activity of each neuron is plotted as a function of its
preferred stimulus, the population response in unisensory areas takes the form of noisy
‘hills’ of activity (simulated in Fig. 2b, blue and red points) The height, or gain, of each hill
of activity is proportional to the reliability of the corresponding cue, with a proportionality
constant that depends on the width of the tuning curves and number of neurons. The
summation of unisensory activity (Fig. 2b, green) produces a third hill that is shifted toward
the more reliable cue, reflecting the optimal weighting of the cues (Eq. 1). There is no need
for cue reliability to be learned or even represented explicitly in the brain; instead, it is
encoded by the unisensory population activity itself (in the form of probability distributions
over stimuli; see Fig. 2, insets), then propagated to a downstream multisensory area via
linear summation75.

Thus, the PPC theory predicts that brain regions involved in optimal cue integration should
exhibit additive75 or subadditive78 responses regardless of stimulus strength, in contrast with
the emphasis on superadditivity and inverse effectiveness (a dependence on stimulus
strength) in the SC literature. Compared to models specifically targeting the SC71, the key
advantage of the PPC framework is its generality – it can be applied to neurons in
multisensory brain regions other than the SC – and its ability to account for a range of
psychophysical results using straightforward and biologically plausible linear operations.
One caveat to the PPC model, however, is that the brain must ‘know’ (or be able to learn)
the shape, width, and distribution of neuronal tuning curves in order to perform the correct
linear operations, as well as to decode the probability distributions encoded in population
activity.

The story so far
In summary, the gulf between the two main approaches in multisensory research – the
empirical and neurophysiology-driven approach versus the psychophysical and theory-
driven approach – can be boiled down to a few key historical facts: (a) despite a wealth of
data (summarized by the ubiquitous empirical principles46) and several detailed models of
the SC71, there has been no consensus as to the mathematical rules by which single neurons
combine multisensory inputs, and few if any model-based behavioral predictions that would
permit coupling the SC literature to the modern psychophysical paradigm of statistical
decision-making; (b) traditional neurophysiology studies did not measure behavior in a
psychophysical task while recording from multisensory neurons and attempting to link the
two; and (c) an influential theory75 designed to capture the probabilistic nature of cue
integration made a clear prediction (additive or subadditive summation, independent of
stimulus strength) that was at odds with reported nonlinear interactions in the SC, such as
superadditivity and inverse effectiveness (although the emphasis on superadditivity has
waned as estimates of its prevalence evolved over time55, 67, 79-81).
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It should be noted that distinct approaches operating in parallel can be productive for
scientific discovery, and it goes without saying that many important insights have been
gained in the two sub-disciplines that do not require any sort of reconciliation or unification
of ideas. Nevertheless, in the following section, we will describe a series of studies that
bridges some of the gaps described above, utilizing an ecologically relevant task that is both
inherently multisensory and amenable to simultaneous psychophysical and
neurophysiological investigation. This research focuses on a different brain area and task
than the SC studies, but, as explained below, reveals a putative computational mechanism
underlying key aspects of multisensory integration in both areas.

Visual-vestibular cue integration for heading perception
All animals that navigate through their environment need to estimate their direction of self-
motion, or heading. Heading perception is an intriguing example of a fundamentally
multisensory task: when we move, vision provides cues such as optic flow82, 83 – the
apparent movement of the visual scene caused by relative movement between an observer
and their surroundings – while at the same time, several non-visual modalities signal the
physical motion of the head or body. In particular, the otolith organs of the vestibular system
act as inertial sensors, providing a directional self-motion cue during translation (as opposed
to rotation) of the head in space84-87.

Several areas in the primate brain receive both vestibular and visual signals related to self-
motion88-90. In the context of cue integration, the best studied of these areas is the dorsal
subdivision of the medial superior temporal area (MSTd), located in the extrastriate visual
cortex of the macaque monkey. Neurons in this region are selective for heading based on
optic flow and/or vestibular cues89, 91, and artificially manipulating MSTd activity via
electrical stimulation or reversible inactivation can affect perceptual decisions in heading
discrimination tasks92, 93.

A comprehensive strategy for determining how neurons combine sensory information
With the goal of understanding the computations performed by multisensory neurons,
Morgan et al.94 recorded from individual MSTd cells while monkeys were presented with
naturalistic heading stimuli delivered using a virtual-reality system (Fig. 3a). The stimuli
consisted of either physical movement of the body by a motion platform (the ‘vestibular’
condition), computer-generated optic flow simulating observer movement through a three-
dimensional field of random dots (‘visual’ condition), or synchronous combinations of the
two cues (‘combined’ condition).

Each neuron was tested with many different combinations of visual and vestibular headings
at different levels of stimulus strength, or cue reliability. This is similar to the approach
taken by Stanford et al.55 in the SC, but with a few notable differences. Stanford et al.
presented both visual and auditory targets together in the center of the neurons’ receptive
fields (thereby focusing on multisensory enhancement), and varied stimulus strength over a
modest range, resulting in about a twofold difference in firing rate on average. In contrast,
Morgan et al.94 presented all combinations of congruent and conflicting stimuli across the
full 360-degree range of possible headings (i.e., spanning the complete tuning curve of each
neuron, including both preferred and non-preferred stimuli), and varied visual cue reliability
(motion coherence of the optic flow display) over a fourfold range.

The aim of the Morgan et al. study94 was to define a mathematical ‘combination rule’ that
could adequately describe multisensory responses in MSTd. By combination rule we mean
an arithmetic expression that describes the response to multisensory stimulus combinations
(call it Rcomb) as a function of the responses to vestibular and visual stimuli presented
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separately (Rvestib and Rvisual). To accurately measure the combination rule required testing
a broad range of preferred and non-preferred stimuli, probing as much of the stimulus space
and dynamic range of the neurons as possible. This comprehensive strategy is important
because the contribution of nonlinearities such as a response threshold or saturation (a
ceiling effect on high firing rates) can vary widely across different stimulus regimes,
potentially biasing the outcome toward super- or subadditivity94, 95. But perhaps the most
crucial aspect of this strategy was the presentation of conflicting stimuli (i.e., different
headings specified by visual and vestibular cues), as the neural combination rule is not well
constrained otherwise. If a neuron has similar tuning for the two modalities, a congruent
multimodal stimulus can elicit a response that is consistent with a variety of combination
rules. In other words, the same response could arise from a large weight applied to one cue
and a small weight to the other, or vice versa. By analogy, the perceptual weights in a
multisensory psychophysical task cannot be measured unless the cues are somehow placed
in conflict (Fig. 1); otherwise, the subject could completely ignore one or the other cue and
still give the same behavioral response.

Although in principle the neural combination rule could be fairly complex (e.g., involving
nonlinearities), Morgan et al.94 found that a simple weighted sum plus a constant (Rcomb =
Avestib*Rvestib + Avisual*Rvisual + C) provided a good fit to the data, with ‘neural weights’
Avestib and Avisual that were subadditive (less than 1) on average. This finding of linear
subadditivity in MSTd is compatible with the PPC theory of Bayes-optimal cue
integration75. However, a key feature of the MSTd combination rule was not predicted by
the basic PPC theory, nor any existing model at the time: the neural weights were found to
vary with cue reliability; specifically the visual weight (Avisual) increased and the vestibular
weight (Avestib) decreased with increasing visual motion coherence94.

At first blush this outcome seems perfectly reasonable: behavioral choices show evidence
for weighting of cues according to their reliability (Fig. 1a,b & Box 1), why shouldn’t single
neurons? Here we must clarify the distinctions between different uses of the term ‘weight’,
e.g., the weights computed at the level of single neurons versus at the level of behavior. Box
2 explains these distinctions with a simple conceptual model. The take-home message is that
the neural weights (combination rule) measured in studies like that of Morgan et al.94 do not
map onto perceptual weights (Box 1; Fig. 1a,b) in any straightforward way – a caveat that
also applies to the empirical principles of Stein and colleagues. Rather, their relationship
depends on many factors including the tuning properties of the neurons and the read-out
mechanism.

With this caveat in mind, let us return to the question of whether neural weights should vary
with cue reliability. The model of Ma et al.75 asserts that these weights need not vary with
reliability for the population to account for reliability-based weighting in behavior – in fact,
the optimal neural weights are fixed at 1 (simple summation) under a reasonable set of
assumptions.

How can cue reliability shape the output of the multisensory population without affecting
single-neuron weights? The simple answer is that cue reliability (as manipulated by stimulus
strength), by definition, alters the strength of unisensory inputs going into the summation.
The Poisson-like neural variability, which entails a response variance proportional to its
mean, ensures that the population “hill” of activity encodes a probability distribution with
inverse variance (reliability) proportional to the amplitude, or gain, of the hill (Fig. 2a).
Adding two such hills yields a third (multisensory) hill with gain g3 = g1 + g2, and thus an
encoded probability distribution reflecting the sum of unisensory cue reliabilities – precisely
the prediction of optimal weighting schemes (Eq. 2). If the summation of activity needs to
be counteracted by a baseline shift (i.e., via global inhibition) to keep neurons in their
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dynamic range, then single neurons will appear subadditive without compromising the
optimality of the computations78. However, this still does not predict neural weights that
vary with reliability.

Because reliability-weighted cue integration is readily achievable in a population with fixed
neural weights75, the changes in neural weights with reliability described by Morgan et al.94

remained a puzzle. In hindsight, this neural combination rule was actually a clue, hinting at a
particular network-level computation that would unify several seemingly unrelated findings.
Before relating that part of the story, however, we must first establish that these
computations are relevant for a behaving animal actively engaged in cue integration. Thus,
the next section will summarize evidence linking MSTd activity to psychophysical
performance in a multisensory heading discrimination task.

Comparison of MSTd responses with cue integration behavior
We and others55 have argued that deciphering the computations reflected in single-neuron
activity is crucial for constraining models of multisensory integration. However, equally
important is to seek evidence supporting the involvement of such neurons in a particular
behavior, and a potent way to collect such evidence is to record or manipulate neural activity
during a psychophysical task96. Until recently, this had not been done for cue integration
tasks, as there were few if any suitable animal models for this purpose.

We26 developed a paradigm enabling the simultaneous recording of MSTd neuron activity
while monkeys performed a multisensory heading discrimination task. As in the Morgan et
al. study94, a virtual-reality apparatus (Fig. 3a) was used to deliver stimuli in visual-only,
vestibular-only, and combined conditions, and cue reliability was controlled by varying the
visual motion coherence. Monkeys were trained to report their perceived heading (left or
right relative to straight ahead; left in the example of Fig. 3b) by making an eye movement
to one of two choice targets presented at the end of each trial (Fig. 3c).

Behaviorally, Gu et al. found that monkeys show near-optimal (Eq. 2) improvements in
perceptual sensitivity when the cues were presented together compared with when they were
presented singly (Fig. 3d)26. Subjects also weighted the cues in proportion to their reliability
(Fig. 3g)30 as predicted by the standard optimal cue integration model (Eq. 1). We then
related neural activity to behavior by converting firing rates into simulated choices made by
an ideal observer, using a common technique called ROC analysis97-99. In this analysis, the
simulated observer effectively performs the discrimination task by comparing distributions
of firing rates (the means of which are plotted in Fig. 3e, h) recorded in response to different
stimuli. The resulting ‘neurometric’ curves (Fig. 3f, i) quantify the sensitivity and pattern of
cue weighting by a single neuron, in units that are comparable to the behavioral data. The
results indicated that MSTd neurons show close parallels with behavior, with respect to both
the improvement in sensitivity26 (compare Fig. 3d with 3f) and cue weighting100 (compare
Fig. 3g with 3i).

What should neurons do? Deriving the optimal combination rule
Although we showed that subjects weight visual and vestibular cues in proportion to their
reliability30, the perceptual weights were in fact slightly but consistently sub-optimal: both
humans and monkeys modestly over-weighted vestibular information in this task, compared
with the optimal predictions from Eq. 1. Remarkably, this specific deviation from optimality
was reflected in MSTd neuronal activity100. To explain this surprising finding, we needed to
return to the concept of a neural ‘combination rule’94 and compare the observed neural
weights with those that would be required to produce optimal cue integration at the level of
behavior. As suggested in Box 2, this is not as simple as mapping neural firing rates onto the
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choices of a simulated observer (i.e., the ROC analysis strategy discussed above) because
such a mapping is not bidirectional: one cannot take a hypothetical instance of optimal
performance and directly infer its underlying neuronal activity. Instead, we needed to derive
a more basic mathematical formula for how multisensory neurons should – in a normative
sense – combine their inputs.

Our approach was to assume that the goal of neural cue combination (the operation shown in
Box 2, panel b) is to maximize the information carried by neurons about the variable of
interest (here, heading direction). Using Fisher information101, 102, a quantity related to the
precision with which an ideal observer can discriminate small changes in a stimulus, we
derived a simple expression for the optimal neural weights. Without going into the details
(see REF. 100), we found that the optimal neural weights do in fact vary with cue reliability
in a manner similar to the pattern observed by Morgan et al94: as the reliability of the visual
cue increases, so does its influence on the multisensory neural response. This differs from
the prediction of the original PPC study75 – in which neural weights were fixed at 1
irrespective of cue reliability – but the discrepancy can be explained by an assumption in the
basic PPC framework about the effect of cue reliability on neuronal responses, an
assumption that does not hold for our MSTd data. Thus, the derivation of an optimal
combination rule for neurons100 was essentially a modification of the PPC theory to
accommodate MSTd-like response patterns. The bottom line is that, by making a
mathematical appeal to optimality, we were able to understand an initially puzzling
empirical finding94 in a completely new light: as part of a neural strategy for combining
sensory signals in a near-optimal fashion within a probabilistic population coding
framework.

Closing the loop: a normalization model unifies old and new observations
Although we had gained a better understanding of the neuronal combination rule in MSTd
and why it might exist, we still had not addressed the ‘how’ question: what cellular and/or
circuit mechanisms could plausibly explain the changes in how neurons weight their inputs
as a function of cue reliability? We surmised that the changes in neural weights (Box 2,
panel b) were unlikely to reflect changes in synaptic weights onto individual cells (Box 2,
panel a), for two reasons. First, because the animals in Morgan et al.94 were not performing
a perceptual task, there is no clear basis for expecting reliability to modulate synaptic
strength (e.g., via some kind of reward signal), even if such changes were desirable. Second,
Fetsch et al.100 showed that the neural weight changes occur even when reliability is varied
randomly on a trial-by-trial basis. These effects seem unlikely to be mediated by changes in
synaptic weights because the strengths of synaptic inputs to the neuron would need to be
modulated from moment to moment (on a time scale of tens or hundreds of milliseconds)
based on a rapid assessment of cue reliability at the beginning of each trial. Although such a
possibility cannot be ruled out, it would require rather sophisticated mechanisms for
modulating synaptic weights that are currently unknown.

For these reasons, it seemed more likely that a network-level computation was responsible
for the observed changes in neural weights. By this we simply mean that the response of a
given multisensory neuron is shaped in a systematic way by the activity of other neurons in
the population, without requiring changes in the synaptic inputs to individual cells. A strong
candidate for such a network effect is divisive normalization103, a computation in which the
response of each neuron is divided by the summed activity of a population of neurons
known as the normalization ‘pool’. A normalization pool could consist of all neurons within
a functional brain area, all neurons within some distance of the target neuron to be
normalized, or all neurons that share some range of stimulus feature preferences with the
target neuron. Normalization is similar in concept to lateral inhibition, except that lateral
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inhibition typically involves subtraction whereas normalization involves a ratio of the
driving input to the target neuron and the summed activity of the normalization pool:

[4]

In this standard form of the normalization equation103, the excitatory drive E is passed
through an expansive nonlinearity (the exponent n, simulating spike generation) then
divided by the aggregate activity of all neurons in the normalization pool (Ej), plus a
constant (αn).

Divisive normalization is believed to be a near-universal feature of neural computation
across many species and brain areas (reviewed by REF. 103). It has been implicated in
dozens of studies within vision, audition, olfaction, spatial attention, and even higher
cognitive processes such as economic decision-making104. It could be that normalization is
so common because it can be realized with a variety of biophysical mechanisms, and yet it
provides several key advantages for information processing103. A recent theoretical study105

showed how divisive normalization can implement an important component of many
probabilistic computations (marginalization), which may also help explain its ubiquity in
neural systems.

Ohshiro et al.106 recently developed a model in which divisive normalization occurs at the
level of multisensory integration (Fig. 4a,b). This model expands on the basic architecture
shown schematically in Box 2; namely, that (i) unisensory inputs converge on a
topographically aligned multisensory neuron (Fig. 4a) with synaptic weights d1 and d2
(called ‘modality dominance weights’ in REF. 106), and that (ii) the spiking output of the
multisensory layer is influenced by lateral connections that may implement normalization
(Fig. 4b). We found that divisive normalization can give rise to a neural combination rule
similar to what we measured experimentally in MSTd94, 100, the intuition for which is as
follows. The pooled normalization signal in the visual condition changes greatly with
motion coherence, whereas the effect of coherence on the normalization pool is weaker in
the combined condition owing to the contribution of vestibular signals that do not depend on
coherence. As a result, the weights in the neural combination rule depend on coherence in a
manner similar to that shown by MSTd neurons106.

In an intriguing convergence, it turns out that the normalization model106 also accounts for
the classic empirical principles of multisensory integration42, including the spatial/temporal
principle, inverse effectiveness, and the relationship between stimulus strength and sub-
versus super-additivity55. For an example of how a well-known multisensory property
follows intuitively from a divisive normalization mechanism, consider the phenomenon of
cross-modal suppression in the SC107. In this manifestation of the spatial principle, the
response of a neuron depends in a peculiar way on the intensities of two stimuli that are
presented at different locations (illustrated schematically at the top of Fig. 4c). One stimulus
is presented at the center of the neuron’s receptive field, and produces responses that
increase sharply with stimulus intensity (Fig. 4c, red curve). A second stimulus is presented
near the edge of the receptive field, and produces much weaker excitatory responses that
also increase with intensity (Fig. 4c, blue curve). Surprisingly, when both stimuli are
presented together at high intensities, they elicit a weaker response than the more effective
stimulus alone (Fig. 4c, black curve). Normalization produces this phenomenon because the
non-optimal second stimulus contributes more strongly to the normalization pool (the
denominator of Eq. 4, which includes neurons with receptive fields aligned with the second
stimulus) than to the driving input onto the neuron being studied (the numerator of Eq. 4).
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This scenario predicts that cross-modal suppression can be triggered by non-optimal stimuli
that are excitatory to the neuron when presented alone (Fig. 4c, blue curve), analogous to
empirical observations in primary visual cortex108 and consistent with preliminary results in
MSTd (T. Ohshiro, D.E.A., and G.C.D., unpublished observations).

To conclude, divisive normalization may provide a unifying computational framework for
understanding a variety of empirical observations regarding multisensory integration both in
brainstem and cortex. Further work is needed to flesh out a more complete model that
connects optimal probabilistic computations (e.g., PPC theory) with normalization, and
perhaps also incorporates feedback or modulatory input from anatomically and functionally
distinct neuronal populations.

Concluding remarks
Just as the brain benefits from exploiting multiple sources of sensory information, we hope
to have convinced the reader of the benefits of drawing upon multiple experimental and
theoretical tools when approaching a difficult problem such as multisensory integration. We
believe that a mechanistic understanding of how neural circuits give rise to multisensory
perception and behavior requires a detailed examination of the intervening computations109.
Because sensory information is inherently probabilistic, it is natural to frame these
computations in the language of statistical decision theory and the analysis of ideal
observers, an approach that has been largely absent from traditional multisensory
neurophysiology and neuroimaging (but see REFS 110, 111).

In our system of interest (visual-vestibular integration for heading perception), we have
outlined – with the benefit of hindsight – a comprehensive strategy for linking
psychophysical performance, physiological measurements in behaving animals, and
computational modeling in a multisensory paradigm. This strategy consisted of (a) training
animals in a multisensory perceptual task and comparing their behavior with normative
predictions26, 30, (b) identifying a candidate brain area that likely contributes to the
behavior26, 93, 112, 113, (c) establishing neural correlates of psychophysical
measurements26, 100, (d) quantifying the neuronal ‘combination rule’ across many stimulus
conditions and levels of cue reliability94, (e) comparing the observed combination rule with
one that is mathematically optimal given the observed neural tuning properties100, and (f)
constructing a model of the population that quantitatively reproduces both physiological and
behavioral observations106 using a relatively simple and widespread neural computation103.

Much work remains to be done in this system, including following up untested predictions
of the normalization model106, defining the specific contributions of the various cortical
areas believed to participate in self-motion perception88, 90, 93, 114, and understanding how
visual-vestibular integration accounts for the potentially confounding effects of eye, head,
and object movements on self-motion perception. Indeed, the general problem of inferring
self-motion in the presence of moving objects may require neural solutions to the causal
inference problem41, as it is necessary to determine whether a given pattern of retinal image
motion was generated by self-motion alone or self-motion combined with object motion. In
the mean time, we suggest that the strategy described in this review might serve as a
roadmap for studying the neural underpinnings of cue integration in other systems. Evidence
is rapidly mounting that multisensory interactions are more fundamental to perception115-117

and cortical information processing10, 12-14 than previously thought. Hence, the quest to
understand multisensory integration will be vital for expanding our knowledge of both
normal and abnormal brain function.
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Glossary Box

reliability,
precision, and
accuracy

While the term reliability can mean different things in different fields,
here we use it as a synonym for the precision, or inverse variance, of a
measurement. Accuracy, on the other hand, refers to how close the
measurement is to the true value, i.e., how unbiased it is.

normative A general term referring to an idea, statement, or model that describes
how something ought to be; i.e., relating to an ideal or standard of
correctness.

cue Any signal or piece of information bearing on the state of some
property of the environment. Examples include binocular disparity in
the visual system, interaural time/level differences in audition, and
proprioceptive signals (e.g., from muscle spindles) conveying the
position of the arm in space.

ideal observer A theoretical construct used to quantify optimal performance in a
given task, where optimality is defined according to a pre-defined
mathematical function (e.g., minimizing a cost function or maximizing
a utility function). The term ‘ideal’ does not imply perfect (error-free)
performance, which is generally impossible given the uncertainty
associated with all sensory data.

Bayesian theory The branch of statistics and probability theory in which probability is
interpreted as ‘degree of belief’ that an event will occur (or that a
hypothesis is true), rather than the relative frequency with which it has
occurred. It is chiefly associated with the process of updating a prior
belief about a hypothesis in light of new data, but the essence of
Bayesian theory is this way of thinking about probability itself, which
permits the estimation of a statistical parameter (or property of the
environment) from experimental observations (or sensory
information).

Poisson-like
neuronal
variability

Neurons respond differently to repeated presentations of the same
stimulus, and this variability often resembles a family of probability
distributions that includes the Poisson distribution (hence termed
“Poisson-like”). A prominent feature of this family is that the variance
of neuronal responses (i.e., the variance of the number of action
potentials across repeated stimulus presentations) is proportional to the
mean response.

heading An organism’s instantaneous direction of translational movement.

motion
coherence

A property of random-dot motion stimuli – used in visual
psychophysics and neurophysiology – that is often varied to control
stimulus strength, and therefore task difficulty. Motion coherence is
the percentage of dots moving in the prescribed direction (the
‘signal’), while the remaining dots are re-plotted randomly on every
video frame (the ‘noise’).

divisive
normalization

A neural computation in which the would-be response of an individual
neuron (i.e., its excitatory drive) is divided by the summed activity of
a pool of neurons prior to generating an output.
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abbreviations

SC superior colliculus

MSTd medial superior temporal area, dorsal portion

PPC probabilistic population code

ROC receiver operating characteristic

P(A∣B) a conditional probability distribution, read as “the probability of A given B.”
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Box 1

Optimal cue integration

Studying perceptual processing within a normative framework such as an ideal-observer
model is useful because it encourages us to think rigorously and quantitatively about the
computations required of the nervous system7, 15. The canonical ideal-observer model for
optimal cue integration – borrowed from a simple statistical method in an unrelated

context31 – predicts a linear weighted sum of single-cue estimates , with perceptual
weights (wi) specified by each cue’s relative reliability (gi, defined as inverse variance):

(1a)

(1b)

The reliability of the final estimate is greater than the reliability of either single-cue
estimate; in fact it is their sum:

(2)

The same reliability-based weighting scheme can be derived by formalizing the problem
in terms of Bayesian inference. In this case the goal is to infer a conditional probability
density (known as the posterior) over the parameter of interest (X), given the sensory
input from, say, two conditionally independent sources of information C1 and C2 (the
cues). According to Bayes’ rule,

(3)

where P(Ci∣X) are called the likelihood functions of each cue (the probability of
obtaining the sensory input given each possible value of X) and P(X) is the prior over X
(the probability of each particular value of X occurring before any sensory observation is
made). If one assumes a uniform prior – meaning that all values of X are considered
equally probable before the observation – and independent Gaussian likelihoods, the
product of these Gaussians will yield another Gaussian with mean corresponding to Eq.
1a and variance corresponding to the inverse of Eq. 2. But irrespective of any simplifying
assumptions, the consequence of multiplying the single-cue likelihood functions (which
carry information about cue reliability) is that the greater a cue’s reliability, the more it
contributes to the final estimate.
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Box 2

Levels of analysis in multisensory integration

Descriptions of how single neurons combine multiple sensory inputs, such as those
provided by Stein and colleagues for the SC46, 51, 55 and Morgan et al.94 for MSTd
(medial superior temporal area, dorsal portion), are often compared to patterns of
behavioral cue integration, despite the complex and poorly understood connection
between these two levels of analysis. Here we attempt to clarify some of the issues
involved by illustrating three distinct uses of the term ‘weights’.

In this highly simplified scheme, we assume the existence of two populations of primary
sensory neurons (shown in red and blue), each receiving unisensory information from
different modalities, (e.g., the visual and auditory stimuli in Fig. 1). These signals are
transmitted to a multisensory neural population (green) whose activity will generate a
particular behavior or perceptual choice.

In the figure, the output of two primary sensory neurons (r1, r2; panel a) converges onto a
multisensory neuron with synaptic (or ‘input’) weights d1 and d2. These weights could
reflect the number and/or efficacy of synaptic connections associated with each modality,
and are generally inaccessible to the neurophysiologist recording extracellular action
potentials in a multisensory area (although they often can be inferred from the relative
strength of unisensory responses106, 118). Instead, what we actually measure is the output
of a network computation – likely involving lateral and perhaps feedback connections –
which generates firing rates denoted R1, R2 (the responses to each modality presented in
isolation) and Rc (the response to multisensory stimuli; panel b). We can then ask how Rc
is best predicted from R1 and R2, for instance via a weighted sum with neural (or
‘output’) weights A1 and A2

94, 100.

Lastly, the population activity of the multisensory layer is read out (decoded) by
downstream circuits to generate a behavioral response (panel c). The details of this step
are not critical; here, similar to the model shown in Fig. 2, the population activity is
shown giving rise to bell-shaped probability distributions (likelihoods or posteriors; see
Box 1): blue, red, and green corresponding to trials of modality 1 only, modality 2 only,
and combined multisensory stimuli, respectively. It is assumed that the brain uses these
distributions to choose a single stimulus value (usually the peak, or most likely value) as
its estimate on a particular trial, leading to a behavioral choice made by the subject (in
this case, “left”, relative to a reference value of zero). Regardless of the neural
implementation, the perceptual weights w1 and w2 can be estimated by recording these
choices over many trials (i.e., the sigmoidal choice curves in Fig. 1). The optimal
perceptual weights are given by the reliability (inverse variance) of the unisensory
evidence (Eq. 1), as illustrated here by the shift of the combined (green) distribution
toward the more reliable cue (modality 1, blue; note that σ1 < σ2 and therefore w1 > w2
and the observer more often chooses “left”).

With or without the equations and symbols, we hope this exercise makes it clear that the
neural weights depicted in panel b (i.e., what is measured in most single-unit studies of
multisensory integration51, 94) are decoupled from both the synaptic weights onto a
multisensory neuron (panel a) and the perceptual weights (panel c) that are commonly
measured in cue integration psychophysics7. In particular, the relationship between
neural weights (A1, A2) and perceptual weights (w1, w2) is far from straightforward and
is the subject of ongoing investigations (see below).
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Figure 1. Schematic of a generic cue-integration/cue-conflict psychophysical task
Simplified version of a visual-auditory localization task20, 41, 119 in which the subject reports
whether a stimulus was located to the left or right of a reference location (marked ‘0’). The
stimulus can be a flash of light (the visual cue; light bulb icon) and/or a broadband noise
burst or click (the auditory cue; speaker icon) presented at one of several possible locations
in front of the subject. The two cues are presented either at the same location or separated by
some amount (the cue-conflict), and the reliability of one or both cues is often manipulated
experimentally, here denoted by the width and blurring of the icons. a. Depiction of cue-
conflict trials in which the visual cue is more reliable and also displaced to the right, while
the auditory cue is less reliable and displaced to the left. For this example, the cue-conflict is
kept fixed, and the pair of stimuli is jointly moved to the left or right on different trials,
generating a sigmoidal choice curve (psychometric function, green, plotted relative to the
midpoint between the two stimuli). If the subjects weight the cues according to their
reliability, they will make more rightward choices for a given position of the paired stimuli
(relative to non-conflict conditions), and the psychometric curve will be shifted to the left of
center. The stimulus position at which the curve reaches 50% rightward choices (point of
subjective equality, PSE, dashed lines) maps onto a particular set of perceptual weights
(waud and wvis; the wi in Eq. 1, Box 1), which in this case would have the relationship waud
< wvis, since the visual cue is more reliable. b. Scenario on a different set of trials with the
same cue-conflict but reversed reliability (auditory more reliable than visual). Here the
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subject should make more leftward choices, shifting the curve to the right (waud > wvis). c.
In addition to measuring shifts of the psychometric function, performance with combined
visual-auditory stimuli (green curve) can be compared to single-cue conditions (red and blue
curves), testing the prediction that reliabilities add (Eq. 2 in Box 1; here denoted by a
decrease in the standard deviation, σ, of the green cumulative Gaussian psychometric
function by a factor of the square root of 2).
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Figure 2. A probabilistic population code (PPC) framework accounts for optimal cue integration
by summation of unisensory population activity
a. In this model (reproduced with permission from REF. 75), sensory cues C1 and C2 each
generate a ‘hill’ of population activity in their respective unisensory areas, which could be,
for example, regions in visual cortex and auditory cortex. Each data point indicates a single
neuron, and these cells are arranged by their preferred stimulus value (e.g., receptive field
location). The hills are noisy, not smooth, because of variability in neuronal responses.
Owing to the particular kind of variability in these model neurons (also commonly found in
real neurons), each hill of activity encodes a conditional probability distribution (P(ri∣S),
insets) whose variance is inversely proportional to the gain, or height, of the hill, indicated
by the vertical arrows (g ∝ 1/σ2; note the weaker response and consequently broader
distribution for the less reliable cue, C2). The inverse variance of this distribution is the
quantity needed to perform optimal reliability-weighted cue integration (Box 1). Summing
the two unisensory populations neuron-by-neuron generates a third population (right side)
whose gain is the sum of the unisensory gains g1 and g2. Therefore, the inverse variance of
the probability distribution P(r1 + r2∣S) encoded by the multisensory population is equal to
the sum of the individual cues’ inverse variances, or reliabilities – the same operation
prescribed by the optimal integration model (Eq. 2 in Box 1). b. A simulated cue-conflict
trial in which sensory cue C1 (blue) specifies, in arbitrary units, a stimulus value of −20 and
C2 (red) a value of +20. The C1 response has a greater gain than the C2 response, simulating
a more reliable cue being presented along with a less reliable one, respectively. After
summation, the resulting hill of activity (green) is skewed toward the more reliable cue, as
shown schematically by the encoded probability distributions (inset). A downstream brain
area that optimally decodes this multisensory activity would produce behavioral responses
consistent with optimal cue integration theory (Box 1). Note that the shape of the
multisensory hill – which depends on parameters such as the shape and width of tuning
curves and the size of the cue-conflict – need not mimic the shape of the encoded
distributions. Optimal cue integration can still occur via a linear combination of unisensory
activity for a variety of tuning widths or shapes, provided that the linear combination is
appropriately tailored to these tuning properties75.

Fetsch et al. Page 25

Nat Rev Neurosci. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Combined psychophysical and neurophysiological studies of visual-vestibular cue
integration in the macaque
a. Monkeys were trained to report their perceived heading (direction of self-motion relative
to straight ahead) while seated in a virtual-reality setup26. The apparatus consists of a
motion platform that can translate in any direction, upon which is mounted a projector and
rear-projection screen for displaying optic flow patterns that simulate movement of the
observer through a random-dot ‘cloud’. Figure modified with permission from REF. 120. b.
While the monkey fixated his gaze (dashed lines) on a spot at the center of the screen
(yellow), heading stimuli were delivered in one of three conditions: vestibular (platform
motion only, indicated by arrows on the platform), visual (optic flow only, indicated by
arrows on the screen), or combined (platform motion and optic flow, as shown). c.
Following each 2-second motion stimulus (here, a heading to the left of straight ahead), the
monkey indicated his choice by making a saccadic eye movement to one of two targets
(red). d. Behavioral data (psychometric functions) for a single session are plotted showing
the proportion of rightward choices as a function of signed heading angle, where positive
heading indicates rightward motion and negative indicates leftward. The slope of the fitted
curve is a measure of the animal’s sensitivity to small changes in heading, in other words the
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reliability of the cue(s). The slope was greater in the combined condition (blue curve,
triangles) than in the single-cue conditions (black and red curves), indicating an
improvement in sensitivity (i.e., reduction in uncertainty or variance). The average
improvement across sessions was close to the optimal prediction (Eq. 2). e. The firing rate
responses (tuning curves) of a single example neuron from area MSTd are plotted using the
same conventions as the behavioral data. Note the steeper slope of the tuning curve in the
combined condition (blue, triangles), suggesting an increase in sensitivity of the neuron
under multisensory stimulation. f. The firing rates depicted in panel e. were converted into
simulated choices by an ideal observer using ROC analysis. The resulting ‘neurometric’
functions quantify the sensitivity of the neuron to small changes in heading during the
vestibular (black), visual (red), and combined (blue) conditions. Similar to the behavioral
effect, the slope of the neurometric curve is steeper in the combined condition than the
single-cue conditions. Panels e and f modified with permission from REF. 120g. In a separate
study100, the cues were placed in conflict to test for reliability-based cue weighting,
analogous to Fig. 1a-b. Here, the visual cue was more reliable, hence the monkey made
more rightward choices when the visual heading was displaced to the right (Δ = +4°, green
curve and symbols) and more leftward choices when the visual heading was displaced to the
left (Δ = −4°, blue curve and symbols). h. Tuning curves from the same neuron as in panel
e., recorded under cue-conflict conditions. The curves are offset from one another because
the more reliable visual cue drives the cell to fire more spikes (Δ = −4°, blue) or fewer
spikes (Δ = +4°, green) for a given heading angle. i. Conversion of these firing rates into
neurometric functions reveals a pattern similar to the behavioral result in panel g.; the shift
of the curves for different values of Δ reflects the trial-by-trial weighting of cues (favoring
the more reliable visual cue, as predicted from optimal cue integration). Panels g-i modified
with permission from REF. 100.
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Figure 4. The normalization model of multisensory integration
a. In this model, as in the simplified conceptual model of Box 2, unisensory neurons from
separate populations send inputs to a topographically aligned multisensory neuron. b.
Unisensory inputs are multiplied by synaptic weights d1 and d2 (fixed for a given neuron)
and summed to generate the driving input to a particular multisensory neuron. This driving
input is then divided by the summed responses of the rest of the population (the
normalization pool; see Eq. 4 under “Closing the loop”). c. In addition to explaining the
origin of the multisensory combination rule in MSTd94, 106, divisive normalization can also
account for the classic empirical principles of multisensory integration made famous by
studies of the superior colliculus (SC)46, 51. One such phenomenon is called the spatial
principle, illustrated here as a case of cross-modal suppression. One stimulus (‘input 1’,
cross in red circles) is presented at the center of the receptive field of a simulated SC neuron,
while a second stimulus (‘input 2’, X in blue circles) is presented two standard deviations
(2σ) away from center. At relatively high (>7) intensities of the two inputs, the response to
the combined inputs (black curve) is less than the response to input 1 alone (i.e., cross-
modal suppression), even though input 2 alone is excitatory. This results from the
contribution of input 2 to the normalization pool. Panels a-c modified with permission from
REF. 106.
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