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Abstract
Dynamic texture quantification, i.e., extracting texture features from the lesion enhancement
pattern in all available post-contrast images, has not been evaluated in terms of its ability to
classify small lesions. This study investigates the classification performance achieved with texture
features extracted from all five post-contrast images of lesions (mean lesion diameter of 1.1 cm)
annotated in dynamic breast magnetic resonance imaging exams. Sixty lesions are characterized
dynamically using Haralick texture features. The texture features are then used in a classification
task with support vector regression and a fuzzy k-nearest neighbor classifier; free parameters of
these classifiers are optimized using random sub-sampling cross-validation. Classifier
performance is determined through receiver-operator characteristic (ROC) analysis, specifically
through computation of the area under the ROC curve (AUC). Mutual information is used to
evaluate the contribution of texture features extracted from different post-contrast stages to
classifier performance. Significant improvements (p < 0.05) are observed for six of the thirteen
texture features when the lesion enhancement pattern is quantified using the proposed approach of
dynamic texture quantification. The highest AUC value observed (0.82) is achieved with texture
features responsible for capturing aspects of lesion heterogeneity. Mutual information analysis
reveals that texture features extracted from the third and fourth post-contrast images contributed
most to the observed improvement in classifier performance. These results show that the
performance of automated character classification with small lesions can be significantly
improved through dynamic texture quantification of the lesion enhancement pattern.
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1. Introduction
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has emerged as an
important tool in breast cancer diagnosis. Previous work has established the superiority of
DCE-MRI over X-ray mammography and sonography in lesion detection and quantification
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[1,2]. DCE-MRI has an additional advantage of not using any form of ionizing radiation in
the image acquisition process. However, DCE-MRI exams typically require acquisition in
both spatial and temporal domains, making subjective evaluation of clinical findings a
challenging task for the radiologist. As a result, breast cancer diagnosis using DCE-MRI has
been the subject of research in the area of computer-aided diagnosis (CADx) [3–9].

Previous work has investigated the use of dynamic criteria, such as signal intensity (SI)
characteristics of the contrast uptake time series, in establishing the malignancy of
suspicious breast tissue lesions (rapid contrast enhancement followed by washout) [3–5].
Other investigators have focused on characterizing morphological criteria such as shape,
border, or the enhancement pattern and using them to classify unknown breast lesions as
benign or malignant [6–9]. The effect of combining morphological and dynamic criteria on
the diagnostic accuracy of classifying lesions using DCE-MRI has also been investigated
[10–12]. Thus, the ability of CADx to achieve a high diagnostic sensitivity (up to 97%) and
reasonable specificity (76.5%) in the task of classifying suspicious lesions from DCE-MRI
is well established [13].

However, not many studies have focused on evaluating the value of DCE-MRI for small
lesions where clinical findings are unclear. Such lesions can be diagnostically challenging as
they may not exhibit typical characteristics of benign and malignant tumors, which are
usually easier to discern when the lesions are larger [14,15]. In this regard, Leinsinger et al.
reported a diagnostic accuracy of 75% in detecting breast cancer through cluster analysis of
signal intensity time curves [14]. More recently, Schlossbauer et al. reported an area under
the receiver-operator characteristic (ROC) curve (AUC) of 0.76 when using dynamic
characteristics extracted from a dataset of small lesions (mean size of 1.1 cm) in classifying
lesion character, and an AUC of 0.61 when using morphological criteria for the character
classification task [15]. The primary goal of the present study was to improve the
classification performance of such small lesions from DCE-MRI. An example of such a
lesion, as localized in a dynamic breast MRI study, is shown in Fig. 1.

Texture analysis can be used to quantify image patterns from a specified region of interest
(ROI) [16]. The present study uses second-order statistical texture features derived from
gray-level co-occurrence matrices (GLCM) as described by Haralick [17,18]. Where the
benign or malignant nature of a lesion can be determined through its homogeneous or
heterogeneous enhancement appearance [19,20], prior studies have shown that such GLCM-
derived texture features can be used to classify lesion character with high diagnostic
accuracy [7–9]. However, texture analysis in such studies has focused on extracting texture
features from a single post-contrast image (usually the first of five). Providing the classifier
with supplementary information derived from texture analysis on later post-contrast images
in addition to extracting texture features from the first post-contrast image can significantly
improve the performance of lesion character classification, specifically of small,
diagnostically challenging lesions, as used in the present study.

In this work, texture analysis using GLCM is performed on all five post-contrast images of a
dynamic breast MRI exam and the texture features extracted are combined to form lesion
characterizing five-dimensional (5D) texture feature vectors, which are used for lesion
classification. The approach is called dynamic texture quantification. For the machine
learning task, support vector regression (SVR) [21] is compared to a conventional fuzzy k-
nearest neighbor (fkNN) algorithm in terms of its ability to classify diagnostically
challenging lesions from DCE-MRI. SVR extends the use of support vector machines to
regression analysis and is used in this study as a function approximator that predicts the
class label of texture feature vectors extracted from lesions of unknown character. While
support vector machines can themselves be used in a classification task [22], they provide
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binary outputs for class predictions whereas SVR provides fuzzy class labels which can
subsequently be used to generate ROC curves, which is the accepted metric of classification
performance in previous studies. The contribution of texture features extracted from later
post-contrast images of the lesion ROI is analyzed through feature selection.

2. Materials and methods
2.1 Data

Sixty lesions were identified from a representative set of dynamic contrast-enhanced breast
MRI exams from 54 female patients by two experienced radiologists (both with > 5 years of
experience in reading breast MRI cases), who came to a consensus on the evaluation of
clinical findings. The mean patient age was 52 with a standard deviation of 12 and a range
of 27 to 78. In all cases, histo-pathologically confirmed diagnosis from needle aspiration/
excision biopsy was available prior to this study; 32 of the lesions were diagnosed as benign
and the remaining 28 as malignant. The mean lesion diameter was 1.05 cm (standard
deviation of 0.73 cm). The histological distribution of the 32 benign lesions is as follows −3
fibroadenoma, 10 fibrocystic change, 5 fibrolipomatous change, 7 adenosis, 1 papilloma,
and 6 non-typical benign disease. The histological distribution of the 28 malignant lesions is
as follows −18 invasive ductal carcinoma, 5 invasive lobular carcinoma, 3 ductal carcinoma
in-situ, and 2 non-typical malignant disease.

Patients were scanned in the prone position using a 1.5-T MR system (Magnetom
VisionTM, Siemens, Erlangen, Germany) with a dedicated surface coil to enable
simultaneous imaging of both breasts. Images were acquired in the transversal slice
orientation using a T1-weighted three-dimensional (3D) spoiled gradient echo sequence with
the following imaging parameters: echo repetition time (TR) = 9.1 ms, echo time (TE) =
4.76 ms, and flip angle (FA) = 25°. Acquisition of the pre-contrast series was followed by
the administration of 0.1 mmol/kg body weight of paramagnetic contrast agent (gadopentate
dimeglumine, MagnevistTM, Schering, Berlin, Germany). Five post-contrast series were
then acquired, each with a measurement time of 83 seconds, at intervals of 110 seconds. All
breast exams were acquired with informed consent from the patients and were evaluated in
this study in a retrospective manner.

In the collection of patient data used in this study, images in the dynamic series were
acquired with two different settings of spatial parameters: for 19 patients, the images were
acquired as 32 slices per series with a 512 × 512 matrix, 0.684 × 0.684 mm2 in-plane
resolution, and 4-mm slice thickness, and in the other cases, the images were acquired as 64
slices per series with a 256 × 256 matrix, 1.37 × 1.37 mm2 in-plane resolution, and 2-mm
slice thickness. To maintain uniform image data for texture analysis, the images acquired
with a 512 × 512 matrix were reduced to a 256 × 256 matrix through bilinear interpolation.

2.2 Lesion annotation and segmentation
With the exception of two patients, for whom two separate lesions were chosen for analysis,
one primary lesion was selected from each patient for analysis. Each identified lesion was
annotated with a two-dimensional (2D) square ROI with dimensions of 11 × 11 pixels on the
central slice of the lesion. The ROI annotations were made on difference images created by
subtracting the fourth post-contrast image from the pre-contrast image; these difference
images were acquired as part of the clinical imaging protocol and allowed for better
localization of the small lesions through enhancement of lesion tissue. This ROI was
subsequently translated to the pre-contrast and all five post-contrast images of the T1
dynamic series. The ROI size was chosen to minimize the included amount of surrounding
healthy tissue. A single encapsulating ROI was used to capture the lesion in most cases.
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Four lesions (3 malignant and 1 benign), whose margins exceeded the ROI boundary, were
captured with two non-overlapping ROIs to preserve lesion margin information. Three
examples of the small lesions used in this study are shown in Fig. 2.

The annotated lesions were then segmented to ensure that the surrounding healthy tissue did
not adversely affect subsequent texture analysis. A fuzzy C-means (FCM) approach
previously proposed for lesion segmentation in DCE-MRI [23] was used to accomplish this
task. The results were verified by the experienced radiologist and corrected if necessary. The
FCM algorithm is an unsupervised learning technique that creates fuzzy clustering
assignments to separate an input set of data points into a specified number of clusters. In the
lesion segmentation problem, the FCM algorithm was used to evaluate fuzzy cluster
assignments for each pixel time series (from five post-contrast images of the lesion) in the
2D square ROI as belonging to one of two clusters, lesion or healthy tissue. An empirically
chosen threshold was then enforced to assign each pixel to a specific class to obtain an
initial segmentation mask. Once created, this initial mask was post-processed with
connected component labeling to remove any pixels belonging to blood vessels or noise
incorrectly assigned to the lesion class, and to morphological hole filling operations to
include any necrotic regions of the lesion that may have been incorrectly assigned to the
healthy class owing to their low contrast enhancement profile. A detailed description of the
FCM approach to lesion segmentation can be found in [23].

2.3 Pre-processing steps
Lesion enhancement was performed on each post-contrast ROI (Si) as Si = (Si − S0)/S0,
where S0 is the corresponding pre-contrast ROI and i = {1, 2, 3, 4, 5}, with the
corresponding ROI annotated on the pre-contrast lesion S0, Si = (Si − S0)/S0. This step,
while effectively suppressing the healthy tissue that surrounds the lesion in the ROI, can be
problematic if patient motion during the acquisition results in improper registration between
the various post-contrast and pre-contrast images. Datasets used in this study had only
negligible motion artifacts over time and thus, compensatory image registration steps were
not required.

Following lesion enhancement, the ROIs were re-binned to 32 gray-level histogram bins
between the minimum and maximum intensity limits. The choice of 32 bins for this free
parameter was recommended by a previous work [8] in order to balance the need for
improving counting statistics (by reducing the number of gray levels) against the
corresponding discriminatory power achieved [7,24]. The minimum and maximum intensity
limits were defined globally, i.e., from all lesion ROIs, within each post-contrast set. This is
yet another free parameter in the pre-processing step. The global choice for the intensity
limits was recommended by a previous work in this field [8].

2.4 Texture analysis
GLCMs were extracted from the lesion ROIs as described in [17]. An inter-pixel distance of
d = 1 was used in generating the GLCMs; previous work has shown that including additional
distances, e.g., d = {1,2,3,4,5}, does not significantly improve classification performance for
most features [25]. On each ROI, GLCMs were generated in the four principal directions,
i.e., 0°, 45°, 90°, and 135°. These directional GLCMs were then summed up element-wise to
obtain one non-directional GLCM.

The ability of such GLCMs to capture the dynamic behavior of lesions is illustrated in Fig.
3. The GLCMs for a benign lesion show high prevalence of low intensity values initially,
though more high-intensity-value regions appear in later post-contrast images. This
corresponds to the persistent increase in contrast uptake, which is characteristic of such
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benign lesions. For a malignant lesion with washout characteristics, the GLCM initially
exhibits low-intensity-value regions. During the initial rapid increase in contrast uptake
(second post-contrast image), more high-intensity-value regions appear in the GLCM, but
are then replaced by low-intensity-value regions in subsequent post-contrast images. The
third row represents a malignant lesion with plateau characteristics. There is an increase in
the high-intensity-value regions in the GLCMs from the first to the second post-contrast
images. These high-intensity-value regions are retained in later post-contrast images.

The non-directional GLCMs were then used to compute Haralick features f1–f13, as listed
in Table 1 and described in [17]. Each texture feature was computed for every post-contrast
image and then combined into a texture feature vector; 13 such texture feature vectors with a
dimensionality of 5 were computed for each individual lesion ROI. For comparison, these 13
texture features were also extracted from the first post-contrast image alone.

2.5 Feature selection
Feature selection involves identifying a subset of features from the input feature space that
makes the most relevant contribution to separating the two classes of data points in the
machine learning step. In this study, mutual information (MI) analysis was used for this
step; the details of this algorithm can be found in [26]. MI is a nonlinear approach to feature
selection that measures the information content of each feature with regards to the decision
task to be performed. In this study, MI was used to identify a subset of dimensions for each
of the 13 5D texture feature vectors that best contributed to the lesion character
classification. This was akin to selecting a smaller subset of the post-contrast images from
the available five to extract texture features from, in order to get the best classification
performance from the machine learning task. Specifically, the performance obtained using
all five dimensions (or post-contrast images) of the texture feature vectors was compared to
that obtained using the best two and the best three dimensions of the feature vectors, as
determined by MI analysis.

MI is a measure of the general independence between random variables [27]. For two
random variables X and Y, the MI is defined as:

(1)

where entropy H(•) measures the uncertainty associated with a random variable.

The MI I(X,Y) estimates how the uncertainty of X is reduced if Y has been observed. If X
and Y are independent, their MI is zero. For the ROI dataset in this study, the MI between
the single texture features fi(sp) and the corresponding class labels yi was calculated by
approximating the probability density function of each variable using histograms P(•):

(2)

Here, the number of classes nc = 2 was used; the number of histogram bins for the texture
features nf was determined adaptively according to:

(3)

where κ is the estimated kurtosis and N is the number of ROIs in the dataset [26].
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2.6 Classification
The extraction of texture features and subsequent feature selection was followed by a
supervised learning step where the lesion patterns were classified as benign or malignant. In
this work, the suitability of three classifiers, namely (1) SVR with a radial basis function
kernel (SVRrbf), (2) SVR with a linear kernel (SVRlin), and (3) a fkNN classifier, was
evaluated. In the machine learning task, SVR treats the texture features as dependent
variables and their labels as the independent variable and acts as a function approximator;
this function is then used in conjunction with the texture features of the test data points to
predict their labels. The fkNN classifier proposed by Keller et al. [28], which models
learning through density estimation, was used as a baseline for comparison with SVR.

In this study, 70% of the data was used for the training phase and the remaining 30% served
as an independent test set. The training data was sub-sampled from the complete dataset in
such a manner that at least 40% of each class (benign and malignant) was represented.
Special care was taken to ensure that lesion ROIs extracted from a given patient were used
either as training or test data to prevent any potential for biased training. To ensure the
integrity of the independent test set, global intensity limits for pre-processing were
determined using lesion ROIs from the training data alone. The best dimensions of the
texture feature vectors were selected by evaluating the mutual information criteria of the
training data alone; this ensured that label information for the test data was not used prior to
the classification task. Pre-processing the two smallest lesions in this dataset with 32 bins
and global intensity limits resulted in a constant image. Extracting texture features related to
correlation, i.e., f3 and f12, as defined in [17], yielded undefined values. For these two
features alone, the problematic lesion ROIs were excluded from the classification task and
results reported in such instances are marked accordingly.

In the training phase, models were created from labeled data by employing a random sub-
sampling cross-validation strategy, where the training set is further split into 70% training
samples and 30% validation samples. The purpose of the training was to determine the
optimal classifier parameters, i.e., those that best capture the boundaries between the two
classes of lesion patterns. The free parameters for the classifiers used in this study were the
number of nearest neighbors k for fkNN, the cost parameter for SVRlin and SVRrbf, and the
shape parameter of the radial basis function kernel of SVRrbf. During the testing phase, the
optimized classifier predicted the label (benign or malignant) of lesion ROIs in the
independent test dataset. An ROC curve was generated and used to compute the AUC,
which served as a measure of classifier performance. This process was repeated 100 times,
resulting in an AUC distribution for each feature set.

2.7 Statistical analysis
A Wilcoxon signed-rank test was used to compare two AUC distributions. Significance
thresholds were adjusted for multiple comparisons using the Holm-Bonferroni correction to
achieve an overall type I error rate (significance level) of less than α (where α = 0.05)
[29,30]. Texture, classifier, and statistical analysis were implemented using Matlab 2008b
(The MathWorks, Natick, MA).

3. Results
Figure 4 shows the classification performance obtained using the fkNN, SVRlin, and
SVRrbf classifiers for texture features f4 and f6, which exhibited the best overall AUC
values (0.82). The SVRrbf classifier significantly outperformed the other classifiers when
these texture features were extracted from all five post-contrast images. When texture
features were extracted from the first post-contrast image alone, the performance of fkNN
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was comparable to that of SVRrbf. Since the highest AUC values were observed with the
SVRrbf classifier, all other results reported in this study used SVRrbf for the classification
task.

Table 2 compares the classification performance obtained with texture features extracted
from all five post-contrast images to that obtained when texture analysis involves the first
post-contrast image alone. Six of thirteen texture features showed statistically significant
improvements in classification performance (p < 0.05) when the dynamic texture
quantification approach was used to characterize lesion enhancement. In particular, texture
features f4 and f6 had AUC values of 0.82, the highest observed in this study. Only texture
feature f2 significantly deteriorated in performance when the dynamic texture quantification
approach was used.

Table 3 compares the classification performance obtained with texture features extracted
from all five post-contrast images to that obtained with texture features from the best 2 and
best 3 post-contrast images, as determined by MI criteria. Of particular interest are texture
features f4 and f6, whose classification performance did not significantly deteriorate when
certain post-contrast images were dropped from the texture analysis. In fact, none of the
features exhibited significant changes when extracted from a subset of post-contrast images
compared to being extracted from all available post-contrast images.

Since MI criteria were used to rank the contribution of each post-contrast image to the
classification task, the number of times each post-contrast image was ranked in the top 2 or
top 3 was recorded for 100 different sub-sampled sets of training data during the
classification task. These results are presented as histograms in Fig. 5 for texture features f4
and f6 to better understand the contribution of different post-contrast images to the
classification task. As shown in the figure, when selecting the three best features, the third
and fourth post-contrast images seem to be selected most frequently and often in
combination with either the first or the second post-contrast image. Similar trends were
observed while selecting the two best features, where again the third and fourth post-contrast
images were selected most often.

4. Discussion
The primary goal of this study was to improve the performance of classifying diagnostically
challenging lesions, specifically those considered small (mean lesion diameter of 1.05 cm),
from DCE-MRI. Previous approaches to CADx have involved quantifying the lesion
enhancement pattern of breast lesions on the first post-contrast image alone using texture
features [7–9]. However, this approach does not provide the best classification performance
for small lesions (as confirmed in this study), where improved performance can have a
significant clinical value. To address this problem, a dynamic texture quantification method
where the lesion enhancement pattern is quantified dynamically by extracting texture
features from all five post-contrast images of the lesion was proposed here. The results show
that such an approach can significantly improve the performance of the lesion character
classification task. Improved classification performance can contribute to reducing (1) the
likelihood of performing false-positive biopsies of benign lesions, thereby eliminating the
surgical risks associated with the biopsy, and (2) missed breast cancers developing from
misdiagnosed malignant lesions, while also enabling earlier diagnosis of suspicious lesions.

In this work, 13 Haralick texture features were extracted from all five post-contrast images
of the lesion and combined to form 13 5D lesion characterizing vectors. As shown in Table
2 and Fig. 2, such texture feature vectors significantly outperform texture features extracted
from the first post-contrast image alone. This can be attributed to the ability of the dynamic
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quantification approach to capture variation in textural information as the contrast uptake
dynamics change. As shown in Fig. 6 (first column), features f4 and f6 do not provide any
discrimination between the benign and malignant lesions shown in Fig. 1 when extracted
from the first post-contrast image alone. However, when these features are computed as a
function of time (or contrast uptake), more distinct differences between the two classes of
lesions are observed. This is believed to be the primary reason behind the improvements
observed in lesion character classification.

Other researchers have characterized lesion enhancement through dynamic evaluation of
spatial variation. Gilhuijs et al. described lesion enhancement through descriptors such as
margin enhancement and radial gradient analysis as a funtion of space and time [31]. Zheng
et al. performed a discrete fourier transform (DFT) of the pixel time series and created
enhancement maps using the first three DFT coefficients; texture features were subsequently
extracted from these enhancement maps [32]. Buelow et al. computed a serial enhancement
ratio (SER) for each lesion pixel and then used features describing the variation in SER
values to predict lesion character [33]. The results reported in the present study are expected
to be poorer owing to the collection of small lesions used in the character classification task.
However, they still present an improvement over previous work with a similar dataset of
small lesions [14,15]. Of the six features that showed an improvement with the proposed
dynamic quantification approach, f6 (Sum Average) and f9 (Entropy) had been previously
identified as texture features that are associated with homogeneity (f6) and heterogeneity
(f9) of the enhancement pattern [9]. Features f4 (Sum of Squares: Variance), f7 (Sum
Variance), and f8 (Sum Entropy) are all variance or entropy measures, suggesting that
homogeneity/ heterogeneity of the enhancement pattern is a key distinguishing factor
between benign and malignant lesions. While it is expected that some of these texture
features are correlated, previous work has shown that f4 and f9 are uncorrelated [9]. Given
the small size of lesions in this dataset, where characteristics of the enhancement pattern
may not be easily perceived, these results strongly motivate the use of such texture features
in a CADx approach to assist radiologists in diagnosing small lesions.

Different classifiers were evaluated in terms of their classification performance when used
in conjunction with these high-dimensional texture feature vectors. SVRrbf was found to
yield the best overall classification performance, as shown in Fig. 4. It must also be noted
here that the classification performance of the fkNN classifier, when texture features were
extracted from the first post-contrast image alone, was comparable to that of SVRrbf. This
suggests that SVRrbf better uses the supplementary information provided by texture features
extracted from later post-contrast images in distinguishing between benign and malignant
lesions.

To gain further insight into which post-contrast images contribute the most relevant
information to the classification task, different post-contrast images were ranked during the
supervised learning task; the results are shown in Fig. 5 for texture features f4 and f6 and
reflect the general trend for most features analyzed in this study. The most important
contribution to the reported classification performance comes from the inclusion of texture
features extracted from the third and fourth post-contrast images. When selecting the three
best features using MI criteria, the best combination of features, as shown in Fig. 5, includes
texture features extracted from the third and fourth post-contrast images, as well as one of
the earlier post-contrast images (first or second). This is further illustrated in Fig. 6 (second
column), which shows the texture feature curves for f4 and f6 over the first, third, and fourth
post-contrast images for the lesions in Fig. 1. The curves in Fig. 6 are similar to
characteristic benign and malignant dynamic time curve signatures (Fig. 1), which suggests
that such dynamic texture quantification does in fact incorporate dynamic characteristics of
these lesions in the classification task. In conventional dynamic analysis, evaluating the
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dynamic behavior of a lesion involves extracting the time series of every lesion pixel. Once
extracted, these pixel time series are used to generate a single time series that represents the
behavior of the lesion as a whole. While there are several approaches for accomplishing this
(taking the mean, using different clustering approaches, etc.), the proposed approach
represents the entire lesion enhancement pattern at each time point by a single texture
feature. The results obtained here are in agreement with those in a previous work that
suggested that such texture feature curves may perform better than signal intensity time
curves as they are more robust to bias field and intensity non-standardness [34].

This work revealed certain limitations of using Haralick texture features for characterizing
the enhancement pattern in small lesions from DCE-MRI. While 14 texture features are
described in [17], feature f14 (Maximal Correlation Coefficient) was undefined for the
lesions used in this study. This is a consequence of re-binning the gray levels found in small
lesions to 32 bins, which results in certain bins remaining empty; under such conditions, f14
is undefined. Another problem was encountered with the smallest two lesions in the dataset;
re-binning to 32 gray levels resulted in a constant image for the ROIs for certain post-
contrast images. Since the variance for constant images is zero, texture features f3
(Correlation) and f12 (Information Measure of Correlation I) were undefined for these
lesions. In future research, statistical texture features can be replaced with more recent
texture analysis techniques that characterize the underlying gray-level pattern through
geometric information.

One limitation of this study was that only exams with negligible motion artifacts over time
were included in the texture analysis and classification tasks. Future studies with less
stringent inclusion criteria for exams could incorporate sophisticated nonlinear image
registration methods as part of the pre-processing to compensate for motion artifacts over
time [35]. Another limitation of this study regards the use of 2D lesion ROIs in texture
analysis rather than 3D lesion volumes; volumetric analysis could not be performed with the
image datasets used in this study owing to the anisotropy of the pixels involved. Although
previous research has shown that volumetric analysis of lesions improves classification
performance [8], arguments have been made against acquiring breast images with isotropic
voxels owing to the longer imaging time involved as well as the smaller coverage of the area
being imaged [9]. However, even with these limitations, this work demonstrates the
applicability of dynamic texture quantification of the lesion enhancement pattern for
automated character classification using DCE-MRI.

5. Conclusion
This study evaluated the performance of automated character classification of diagnostically
challenging lesions, specifically those considered small (mean lesion diameter of 1.05 cm),
and found that it can be significantly improved through dynamic texture quantification of the
lesion enhancement pattern, i.e., extracting texture features from the lesion enhancement
pattern on all five post-contrast images. The results suggest that such an approach to
automated lesion character classification for DCE-MRI could be helpful in clinical practice.
Larger controlled trials need to be conducted in order to validate the clinical applicability of
this approach.
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Figure 1.
Small contrast-enhanced benign lesion (circled) on the T1-weighted fourth post-contrast
image of a dynamic breast MRI study. The annotated lesion is magnified and shown in the
lower-right corner of each image; the accompanying histo-pathological report pronounced
this lesion benign (fibrosis, possibly induced by degenerative epithelial changes) with a
lesion diameter of 0.8 cm.
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Figure 2.
Examples of (1) benign and (2, 3) malignant lesion ROIs at five stages of contrast uptake.
The histo-pathological diagnosis for the lesions were as follows: (1) fibrous mastopathy and
adenosis, (2) invasive ductal carcinoma and (3) malignant-invasive ductal carcinoma (grade
1). Gray-level images were used in texture analysis after lesion segmentation; the
corresponding color images better showcase the dynamic contrast uptake signatures of these
lesions ((1) persistent increase for benign; (2) washout and (3) plateau patterns for
malignant). The red and blue pixels correspond to high and low intensity values,
respectively.
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Figure 3.
32 × 32 non-directional GLCM matrices shown as color-coded images for the three example
lesions shown in Fig. 2. (Top) benign, (middle) malignant-washout, and (bottom) malignant-
plateau. Each column corresponds to the respective post-contrast image. The corresponding
color bar is shown on the right. Note that the top-left and bottom-right corners represent
regions of low and high intensity values, respectively.
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Figure 4.
Classification performance of texture features f4 (Sum of Squares: Variance) (left) and f6
(Sum Average) (right) for different classifiers when all five post-contrast images are used
for the classification task. The top and bottom rows correspond to texture feature vectors
extracted using all five post-contrast image (ALL) and texture features extracted from the
first post-contrast image alone (P1), respectively. For each distribution, the central mark
corresponds with the median and the edges are the 25th and 75th percentiles. SVRrbf
significantly outperforms the other classifiers (p < 0.05).
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Figure 5.
Histogram analysis for texture features f4 (Sum of Squares: Variance) (top, black) and f6
(Sum Average) (bottom, gray), showing the number of times each post-contrast image is
ranked 1st, 2nd, or 3rd by MI criteria in 100 sets of sub-sampled training data (used in the
machine learning task).
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Figure 6.
Left column shows features f4 (Sum of Squares: Variance) (top) and f6 (Sum Average)
(bottom) as computed from all five post-contrast images (P1–5) for the lesions shown in Fig.
2. The lesions are harder to distinguish when texture features are extracted from the first
post-contrast image alone. However, the behavior of these features over time is distinctly
different in benign and malignant lesions. When such feature curves include P1, P3, and P4
alone (right column), the differences in the behavior of both lesion classes is much more
obvious. Note that malignant type I corresponds to washout (#2 on Fig. 2) and malignant
type II corresponds to plateau (#3 on Fig. 2).
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Table 1

List of 13 Haralick texture features used in this study.

Feature label Feature name

f1 Angular Second Moment

f2 Contrast

f3 Correlation

f4 Sum of Squares: Variance

f5 Inverse Difference Moment

f6 Sum Average

f7 Sum Variance

f8 Sum Entropy

f9 Entropy

f10 Difference Variance

f11 Difference Entropy

f12 Information Measures of Correlation I

f13 Information Measures of Correlation II
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Table 2

Classification performance (mean AUC ± standard deviation) of texture features extracted from the 1st post-
contrast image (P1) compared to that of texture feature vectors extracted from all five post-contrast images
(ALL).

Feature P1 ALL p-value threshold

f1 0.66 ± 0.09 0.66 ± 0.09 0.2868 --

f2 0.68 ± 0.12 0.63 ± 0.09 0.0002 0.0071

f3 0.60 ± 0.08 0.60± 0.08x 0.4172 --

f4 0.69 ± 0.10 0.82 ± 0.08 < 0.0001 0.0042

f5 0.69 ± 0.10 0.69 ± 0.10 0.4006 --

f6 0.72 ± 0.10 0.82 ± 0.08 < 0.0001 0.0038

f7 0.67 ± 0.10 0.79 ± 0.09 < 0.0001 0.0045

f8 0.61 ± 0.08 0.72 ± 0.11 < 0.0001 0.0050

f9 0.68 ± 0.09 0.72 ± 0.11 < 0.0001 0.0063

f10 0.67 ± 0.11 0.64 ± 0.10 0.0345 --

f11 0.73 ± 0.10 0.74 ± 0.08 0.6182 --

f12 0.62 ± 0.08 0.64 ± 0.09x 0.3120 --

f13 0.60 ± 0.07 0.67 ± 0.10 < 0.0001 0.0056

Significantly higher AUC values in each row are marked in bold.

Results marked with an 'x' indicate numbers that were obtained after excluding two lesions for reasons mentioned in the text. Significantly better
classification performance is observed for 6 of 13 features when texture features extracted from all five post-contrast images are combined as
feature vectors.
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Table 3

Classification performance (mean AUC ± standard deviation) of texture features extracted from all five post-
contrast images (ALL) compared to that of texture feature vectors extracted from the best two (Best 2) and
best three (Best 3) post-contrast images identified using mutual information.

Feature ALL Best 2 Best 3

f1 0.66 ± 0.09 0.67 ± 0.09 0.67 ± 0.10

f2 0.63 ± 0.09 0.64 ± 0.10 0.64 ± 0.10

f3 0.60 ± 0.08x 0.59 ± 0.08x 0.60 ± 0.07x

f4 0.82 ± 0.08 0.82 ± 0.09 0.83 ± 0.09

f5 0.69 ± 0.10 0.69 ± 0.10 0.69 ± 0.10

f6 0.82 ± 0.08 0.82 ± 0.09 0.81 ± 0.09

f7 0.79 ± 0.09 0.80 ± 0.09 0.80 ± 0.08

f8 0.72 ± 0.11 0.72 ± 0.10 0.71 ± 0.10

f9 0.72 ± 0.11 0.72 ± 0.11 0.73 ± 0.10

f10 0.64 ± 0.10 0.63 ± 0.10 0.63 ± 0.09

f11 0.74 ± 0.08 0.74 ± 0.08 0.74 ± 0.09

f12 0.64 ± 0.09x 0.64 ± 0.10x 0.63 ± 0.09x

f13 0.67 ± 0.10 0.66 ± 0.09 0.66 ± 0.09

Significantly higher AUC values in each row are marked in bold.

Results marked with an 'x' indicate numbers that were obtained after excluding two lesions for reasons mentioned in the text. Classification
performance does not deteriorate when texture features are extracted from the best two or three post-contrast images alone.
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