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Abstract
Cell signaling can be thought of fundamentally as an information transmission problem in which
chemical messengers relay information about the external environment to the decision centers
within a cell. Due to the biochemical nature of cellular signal transduction networks, molecular
noise will inevitably limit the fidelity of any messages received and processed by a cell’s signal
transduction networks, leaving it with an imperfect impression of its environment. Fortunately,
Shannon’s information theory provides a mathematical framework independent of network
complexity that can quantify the amount of information that can be transmitted despite
biochemical noise. In particular, the channel capacity can be used to measure the maximum
number of stimuli a cell can distinguish based upon the noisy responses of its signaling systems.
Here, we provide a primer for quantitative biologists that covers fundamental concepts of
information theory, highlights several key considerations when experimentally measuring channel
capacity, and describes successful examples of the application of information theoretic analysis to
biological signaling.
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Introduction
In their in vivo environment, cells are constantly awash in a sea of hormones, cytokines,
morphogens, and other receptor ligands released by other cells. Each of these molecular
signals can be thought of as being sent with the intent of communicating a specific message
or action for the receiving cell to perform. Within the recipient cell, the information
contained within the chemical messages must be captured and processed by the cell’s
biochemical circuitry, which typically involves feedback loops, crosstalk, and delays. These
control functions are commonly executed by dedicated sets of kinases and transcription
factors to ensure that the appropriate cellular response is activated. Since the mechanisms
behind this complex function are biochemical in nature, molecular noise can greatly hamper
the propagation of signals [1–3]. As a result, the message can get distorted and cells may not
be able to acquire a precise perception of their surroundings.

Biological noise can perhaps more adequately described as stochastic cell-cell variability
and can be experimentally observed by sampling the distribution of responses by a group of
genetically identical cells exposed to the same stimulus. If, for example, the distribution of
responses elicited by a weak stimulus overlaps with the distribution elicited by a strong
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stimulus, a cell whose response value falls within the overlap will not be able to discern with
absolute certainty which stimulus was present (figure 1A). This inability to resolve distinct
stimuli represents a loss of information about the input. Traditional metrics for noise related
to the standard deviation or variance primarily quantify the magnitude of noise and do not
directly indicate the degree to which noise hampers the discrimination of different inputs.
Likewise, both deterministic and stochastic mathematical models, although able to capture
dynamic trends, require a priori knowledge or assumptions of the underlying molecular
mechanisms and ultimately fail to describe how signaling fidelity is affected by variability.
In order to quantify the degree to which noise affects the fidelity of the message, or
specifically to determine what a biological signaling system can or cannot communicate
accurately, it is useful to turn to information theory.

Originally developed by Claude Shannon for the purpose of data compression and the
analysis of man-made communication systems, information theory provides a mathematical
framework to quantify the amount of information that can be transmitted through a noisy
communication channel. A differentiating strength of this type of analysis, especially
pertinent in cell signaling, is that only input and output measurements are required, thereby
obviating the need for a detailed understanding of the signaling system. With information
theory, any complex system can be reduced to a black box communications channel and
analyzed. When details of the underlying system are available, they can be included as part
of the analysis, leading to an even deeper understanding. Some examples of biological
systems that have benefitted from such an analysis include neural networks [4] and, more
recently, gene regulation networks [5, 6], particularly in developmental biology [7], and
signal transduction networks [8].

In this review, we aim to provide a basic background and guide for quantitative biologists
interested in using information theory in the analysis of signal and information transduction
in noisy biochemical networks. Specifically, we endeavor to provide readers having an
undergraduate-level understanding of probability with a basic understanding of entropy and
mutual information, as needed to appreciate applications of information theory to biology.
We refer the reader to excellent texts [9, 10] for more in-depth discussions of these core
concepts, which due to space constraints, could not be included here. Additionally, for
summaries of the application of information theory in biology we recommend the following
recent reviews [11, 12].

Key concepts from information theory
In order to quantify how much information can be transmitted, we must first define it. In
Shannon’s theory, information is conceptually considered to be knowledge that enables the
state of a system (or signal or input) to be distinguished from among many available
potential states. Examples include whether a coin flip turns up heads or tails, or whether a
roll of a die is 1, 2, 3, 4, 5, or 6, or (as Paul Revere famously employed) whether one light is
lit to signal a land invasion versus two lights to signal invasion by sea. The more states that
are available for selection, the more information can be obtained when the selection is made.
Importantly, in this model of information, the meaning or identity of a state is irrelevant. It
only matters that each state can be encoded as a unique symbol, such as heads/tails, the
numbers 1 through 6, or one or two lights.

As a consequence of the above definition, any system capable of taking on multiple states
can be a source of information, and that state can be mathematically represented as a random
variable that can take on multiple values. If we are initially uncertain about the value of this
random variable, but then later ascertain its value, we will have resolved the system’s state
and thus gained information. The amount of information that can be gained, or equivalently

Rhee et al. Page 2

Phys Biol. Author manuscript; available in PMC 2013 November 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the amount of uncertainty associated with the random variable that can be reduced, can be
quantified by the Shannon entropy which is described further below.

The analysis of how well information can be transmitted relies on the concept of a
communication channel, which is a system that links an input source of information to some
output (figure 2A). Any channel can be mathematically represented by a random variable for
the input and another random variable for the output, where the values of the two variables
depend on each other. Consequently, measuring the output value can help resolve the input
value, and the amount of information thus gained can be quantified using the mutual
information, described below.

Entropy
A central concept to information theory is the Shannon entropy, a separate concept from the
thermodynamic entropy. The Shannon entropy (hereafter referred to simply as entropy)
quantifies how unpredictable the value of a random variable is, and hence can be thought of
as a measure of uncertainty. For a discrete random variable X which can take on the values
x1, x2, .., xn, with the respective probabilities p(x1), p(x2), …, p(xn), the entropy is defined
as [9]

[1]

We have chosen, by the usual convention, to define entropy using a base 2 logarithm so that
the entropy is measured in bits. Note also that since each of the p(xi) is between zero and
one inclusive, each term in the sum is non-positive (taking, by convention, the value of 0 log
0 to be identically zero), and thus entropy is necessarily non-negative.

A few case examples can help to demonstrate that this formula indeed provides an intuitive
measure of uncertainty. In the first example, let X be the outcome of a flip of an evenly
weighted coin. This random variable has two outcomes each with probability of ½, i.e. p(x1)
= p(x2) = ½. Thus, the entropy of X is

The 1 bit entropy is consistent with the uncertainty associated with the two equally probable
outcomes for the flip of a fair coin.

Now, in the second example, consider instead the example of rolling a fair 6-sided die. In
comparison to the fair coin, there are more outcomes (also equally probable), hence we
would expect the entropy to be greater. Indeed, for this example, p(x1) = p(x2) = … = p(x6)
= 1/6, so that

As anticipated, the value of 2.59 bits confirms our expectation that the greater number of
possible outcomes confers higher entropy to rolling of a fair die than to flipping of a fair
coin.
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In our third example, consider the flip of an unfair coin. If the coin is now weighted so that it
is three times as likely landing heads instead of tails, the entropy of a single coin flip
decreases from 1 bit to 0.81 bits.

The reduction in entropy reflects a greater degree of certainty as to the outcome of the flip of
the unfair coin compared to a fair coin. More generally, we can compute entropy as a
function of the probability of landing heads, which yields a concave down graph (figure 2B).
The plot shows that the entropy is maximized when the probability is exactly 50%, and
provides a clear example of a more general property of entropy: it is maximized when all
outcomes are equally probable. Stated differently, when all outcomes are equally likely, then
uncertainty is at its greatest.

Frequently, new users of information theory are confused as to the interpretation of partial
bits. In computers, information storage is measured in a whole number of bits, but in
information theory entropy (and related quantities) can take on non-integer values. Thus,
0.81 bits of entropy can be interpreted as being equivalent to a system that can take on
between 1 and 2 states.

Continuing the example of an unfair coin, in the extreme, if the coin can only land on heads
then the entropy is −1log2 1 − 0log2 0 = 0. The zero entropy reflects the fact that in this
fourth example, the random variable can only take on one predetermined value and thus
there is no uncertainty in its value. This is an example of entropy taking on its lowest
possible value (recall from above that the entropy is non-negative).

Extending the concept of Shannon entropy towards biology, we again imagine an
experiment in which a population of cells is exposed to various stimuli and the resulting
individual cell responses are recorded. We may observe that, depending on the stimulus, the
population of cells may exhibit relatively wide or narrow response distributions (figure 1B).
The response entropy can then be used as a metric of dispersion, because, as the variance of
the response of a population of cells increases, there is higher uncertainty as to what
response value an individual cell will take on and hence, greater associated entropy.

Together, these examples demonstrate that the entropy is an intuitive measure of the
uncertainty associated with a random variable, and is a simple function of the number of
possible states and the probabilities associated with those states. The specific form given in
Eq. 1 can be shown to be required for any measure of uncertainty which satisfies certain
sensible axioms, particularly continuity, symmetry (the entropy does not depend on the
assignment of the xi’s), maximality (entropy is maximized for a uniform distribution), and
additivity (if the possible outcomes are partitioned into subsets, the overall entropy is the
probability-weighted sum of the entropy of subsets) [9]. Armed with this understanding of
entropy, we now turn to a special use of the entropy: mutual information.

Mutual Information
A communication channel, such as a phone cable, fiber-optic line, or biochemical pathway,
allows information to be transmitted from one place to another. Regardless of its underlying
physical basis or complexity, any channel can be reduced to a “black box” that maps an
input to an output. Because the input is not known a priori it can be considered to be a
random variable, thus the output whose value depends on the input is also a random
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variable. Useful communication occurs if knowing the output value allows the input value
sent through the channel to be fully or partially determined.

Mutual information quantifies this concept in terms of the amount of information that the
value of one random variable contains about the value of another random variable. Using S
to represent the input (signal or sender, depending on context) and R to represent the output
(response or receiver), we can define their mutual information I(R;S) as:

[2]

where H designates entropy. As discussed above, entropy is a measure of uncertainty, thus
H(S) can be interpreted to be the overall uncertainty one has about the input S, and H(S|R) is
the residual uncertainty about S after the value of the response R is known. Hence, the above
definition can be interpreted to mean that mutual information is the reduction in the
uncertainty about S given the value of R. Equivalently, the mutual information measures
how accurately the input value can be determined based upon the output value.

To illustrate how mutual information measures communication accuracy, consider the
simple example in which Samantha relays the result of a fair coin flip (S) over her phone to
Roy who then records the result (R). For a fair coin flip, H(S) = 1 bit since both sides are
equally probable as discussed above. In the first scenario, assume that the phone has no
static and there is never any miscommunication between Samantha and Roy. In this case, R
tells us exactly the value of S. When R is heads, S is always heads; and when R is tails, S is
always tails. Hence in this example there is no residual uncertainty about S once R is known
and H(S|R) = 0 bits. Together, the information that R provides about S is I(R;S) = 1 − 0 = 1
bit, as one would expect.

In the second scenario, imagine that the phone has static and there is sometimes
miscommunication, e.g. suppose that 25% of the time Roy records the incorrect result. Then,
knowing the value of R still leaves some uncertainty as to the value of S. Specifically, the
conditional entropy is

where both H(S|R=heads) and H(S|R=tails) correspond to the unfair coin example whose
entropy was computed to be 0.81 bits in the previous section. Together, this means that R
provides only I(R;S) = 1 − 0.81 = 0.19 bits of information about S. As expected, the mutual
information is lower compared to the case of perfect communication.

In the third scenario, consider the extreme case in which Roy cannot at all tell what
Samantha says on the phone and must guess randomly as to the result of the coin flip. It is
easy to determine that the residual uncertainty about S is quite high:

and hence I(R;S) = 1 − 1 = 0 bits. The mutual information in this case implies zero
transmission of information, matching with the expected result for this example. Together,
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these three examples help illustrate the concept that mutual information measures
communication accuracy in terms of a reduction in uncertainty.

We can extend the idea of mutual information to biochemical signaling processes, by
continuing with our previous example of entropy in cellular response distributions. The
population of cells mentioned earlier is now subject to different stimuli and seeking to
identify them. In particular, consider one strong and one weak stimuli generating
corresponding response distributions (figure 1A). If we were to randomly select a cellular
response from either distribution and then attempt to resolve which stimulus was used, it is
evident that the more the response distributions are separated the greater the accuracy in
predicting the original stimulus. Conceptually, mutual information measures this accuracy.
Thus, a large overlap between the weak and strong stimulus response distributions
confounds our ability to discern the original stimulus leading to a corresponding drop in the
mutual information between the stimulus and cellular response.

Mutual information has additional mathematical properties which are relevant to
understanding its application to biological systems. First, by substituting in the definition of
entropy, and expanding and rearranging the probabilities, we can arrive at an alternative
definition of mutual information:

[3]

The alternative definition, given by the last equation above, is symmetric with respect to R
and S. This symmetry implies that R gives as much information about S as S gives about R.
Since this implies that I(R;S) and I(S;R) are identical, we have used the conventional
semicolon notation to indicate that the order of the arguments within the parentheses is
irrelevant. Mathematically, another important consequence of the symmetry is that

[4]

This relation is critical since we usually wish to quantify the reduction in uncertainty about
the signal provided by the response (represented the former equality), but it is usually far
easier to experimentally measure the distribution of responses (represented by the latter
equality).

Next, we note that the lower bound of mutual information is zero. This lower bound is
achieved if the quantities S and R are statistically independent of each other, for then p(s, r)
= p(s)p(r) and the logarithm in Eq. 3 is always zero. Such independence might be achieved
in the case of a communication channel affected by large amount of noise (see the third
example above), and for such channels it is sensible that if there is no statistical dependence
between the input and output, the value of one cannot provide any information (reduction in
uncertainty) about the other. The converse is also true, that if their mutual information is
zero then S and R are statistically independent. A practical implication of this property is
that, outside its use in quantifying information transmission fidelity, mutual information can
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be used as a general tool for detecting whether there is any statistical dependency between
two variables of interest.

At the other extreme, the upper bound of mutual information is the smaller of H(S) and
H(R). The proof stems from the fact that entropy cannot be negative, so H(S|R) ≥ 0 thereby
implying that I(R;S) ≤ H(S), and symmetrically, I(R;S) ≤ H(R). This upper bound can be
reached, for instance, if S|R can only take on a single outcome, implying unambiguous
identification of the signal that generated the specific response. In such a case H(R|S) will
equal zero and I(R;S) will equal H(S) (see the first example provided above). Conceptually,
the upper bound is only reached when there is no “noise” in the communication channel
between S and R, such that the response leaves no residual uncertainty about the signal.
More importantly, the upper bound also implies that the range of values that the input and
output can take can limit the effectiveness of the communication channel. For instance, if we
have a signal S that can take on 1,000,000 values (an entropy as high as log2 1,000,000 ≈ 20
bits) but the output R that can only take on one of two values (entropy at most 1 bit) then the
mutual information between S and R is necessarily 1 bit or less. As a result, a
communication channel relying on a rich signal but poor output, or vice versa, can be
limited in its ability to transmit information.

Notably, in most real world examples, there is a statistical dependence between S and R but
the relationship is not “noiseless”. In such cases, the mutual information is positive but not
as large as either the entropy of S (or R). The exact amount of mutual information will
depend on the structure of the noise, that is, the particular way in which R is a noisy
representation of S. In the biological context, the noise may include both intrinsic and
extrinsic noise as all sources of noise can potentially confound accurate signaling. The effect
of noise is fully encapsulated in the joint probability distribution between S and R, which as
shown in Eq. 3, also fully determines the mutual information. Thus, to compute the mutual
information for a real world communication channel we must be able to measure the
complete joint distribution between its input and output. Indeed, we note that one of the
fundamental abstractions in information theory is that any channel can be represented by
such a joint distribution, thus enabling an information theoretic analysis to be performed
when the input-output properties of the channel are known but the underlying mechanisms
generating those properties are unknown. Thus, by carefully choosing the input and output
of interest, one can apply information theory to a broad variety of cell signaling systems,
although one must be mindful of whether the properties of the channel would change
depending on the context (e.g., whether the channel properties might be different in different
cell types, or whether it might be retroactively affected by the presence of downstream
processes, etc.).

Channel Capacity
The mutual information is the amount of information transmitted through a channel for a
particular input probability distribution, and is not purely an intrinsic property of the
channel. To see why, note that the mutual information I(R;S) is fully specified by the joint
distribution p(r, s), which can be decomposed as the product of two probabilities: p(r, s) =
p(r|s)p(s). The conditional distribution p(r|s) reflects uncertainty resulting from noise in the
communication channel and is a property of the channel itself. In comparison, the marginal
distribution p(s) reflects the range of the signals imposed on the channel which might be
different for different uses of the channel. In other words, p(s) is a property of the source of
the signal rather than a property of the channel itself.

For many real-world communication channels, it can be of interest to know the maximum
amount of information that can possibly be transmitted through the channel. For a given
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channel (i.e. for a fixed p(r|s)), this quantity is known as the channel capacity C(R;S) and is
mathematically defined as

[4]

In other words, the channel capacity is the mutual information maximized over all possible
distributions of the signal (i.e., all possible signal sources or uses). Thus, capacity is
effectively the data bandwidth and is an intrinsic property of the channel itself. The
relevance of the capacity is further bolstered by the Noisy Channel Coding Theorem, a
fundamental result in information theory. This theorem states that despite some degree of
noise in the system a message can be sent across the channel and properly discriminated
from other potential messages with an arbitrarily small amount of error, given that the
entropy of the potential messages (i.e., the information source) is below the channel
capacity. For an information source with an entropy greater than the capacity, there exists no
way to transmit it so that messages can be discriminated from each other in an errorless
manner. Thereby, the theorem ensures that capacity places a hard upper bound to how
accurately data can be transmitted through a channel. Turning back to our original example,
if Samantha would like to communicate to Roy the result of a die roll using a channel with a
binary output, the Noisy Channel Coding Theorem would confirm our beliefs that there
exists no way to do so in an errorless manner as the entropy of the die is ~2.59 bits which is
greater than the 1 bit capacity of the binary channel.

We note that for many biological signaling channels, p(r|s) can be readily experimentally
measured, whereas p(s) cannot be easily estimated, particularly if S corresponds to
commonly very low ligand concentrations and infrequent signaling events. Hence, the
amount of information corresponding to a particular signal source can be difficult to
evaluate. However, channel capacity can be easily inferred by determining which p(s) yields
the maximum amount of information. Typically, p(r|s) can be sampled by providing a
controlled input stimulus to the system and measuring the distribution of responses, which
can then be repeated for many different stimulus values. Such an experiment implicitly
requires imposing an artificial set of stimuli on the biological system of interest. On the
other hand, the relevant p(s) is the natural frequency at which each stimulus value would be
encountered by the system. The frequencies may be unknown or, at present, not easily
experimentally determined. Nonetheless, for biological channels the capacity may yield
insights as to the magnitude of the actual amount of information transmitted, because under
the efficient coding hypothesis, biological systems whose primary function is
communication can be expected to have evolved to be optimally matched to the information
sources that feed them [13]. For instance, in the anterior-posterior patterning system of the
embryos of the Drosophila melanogaster fruit fly, the measured mutual information between
an input morphogen signal and an output transcription factor was ~90% of the capacity of
the system [7] (see below for further discussion). Thus, examination of the maximum
capability of a biological system may shed light on its actual data throughput.

Rate Distortion Theory
Often any improvement in the capacity or quality of a communication channel comes at an
associated cost (e.g., increased energy required), or alternatively it may be that an errorless
communication channel would be impractical or unfeasible to construct. In such scenarios,
cognizance of the relationship between the increase in the amount of tolerable channel
distortion and the corresponding decrease in required channel capacity would aid in the
understanding of biological communication channels. Fortunately, Rate Distortion Theory, a
branch of information theory, provides a mathematical framework to examine the trade-off
between capacity and the acceptable error (i.e., distortion) limit D.
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Rate distortion analysis is performed in the context of a specific distortion function, which
measures the error between the sent and received message. For instance, if the sent message
is a scalar s and the received message is a scalar r, then a commonly used distortion function
d(s,r) is the square of the difference of the sent and received message, d(s, r) = (s − r)2.

The rate distortion function R(D) is then defined as the minimum amount of mutual
information required to ensure that the average level of distortion is less than or equal to D.
Mathematically, this is represented as:

We note that the choice of the distortion function is important as differing measures of
distortion will cause the minimization to often arrive at non-identical results. A major result
of rate distortion theory is that the capacity of a communication channel must be at least
R(D) in order to ensure that the average distortion is less than or equal to D. Furthermore,
R(D) is a continuous non-increasing function, thus if the acceptable level of error is
increased then the required capacity stays the same or decreases.

In a typical application of rate distortion theory, Roy and Samantha are once again are
attempting to relay the results of a coin flip over a telephone line having some degree of
static. In this scenario, they have an option of incrementally improving the communications
channel at an associated economic cost to reduce the chance of miscommunication. Rate
distortion theory helps solve the problem of determining the minimal channel quality such
that the communication error does not exceed an amount that is acceptable to both parties.

Data Processing Inequality
Finally, we discuss the data processing inequality, which essentially states that at every step
of information processing, information cannot be gained, only lost. More precisely, for a
Markov chain X → Y → Z, the data processing inequality states that I(X;Z) ≤ I(X;Y). That
is, Z contains no more information about X as Y does. Colloquially, the data processing
inequality is analogous to the children’s game of “broken telephone”. As individuals are
lined up and told to pass a message by whispering it to the next person in line, the addition
of any extra people can only serve to distort the original message but not improve upon it
hence the “broken telephone”.

The relevance of the data processing inequality is twofold. First, it places bounds on the
performance of a biological system that contains multiple communication channels in series.
For instance, consider X → Y to represent cytokine signaling to a transcription factor and
Y→ Z to represent transcription factor signaling to the concentration of an expressed
protein. Assuming no other sources of information, then the amount of information that the
expressed protein (Z) provides about the cytokine signal (X) cannot be more than the
information that the transcription factor (Y) provides about the cytokine (X). If the
information between X and Y is particularly limiting, this can place strict bounds on the
fidelity of the response Z.

Second, the data processing inequality has implications for experimental measurements. For
instance, consider the chain S (signal) → R (actual response) → R′ (measured response).
Although an experimentalist might wish to quantify the mutual information between the
signal and actual response, I(S;R), she is confined to measuring I(S;R′). For I(S;R′) to be
close in value to I(S;R) the noise between R and R′ resulting from experimental error must
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be minimal. Thus, it is critical to pay close attention to the degree of experimental noise
when attempting to measure mutual information.

Considerations when experimentally measuring channel capacity
Experimental noise

As noted in the section on the data processing inequality above, experimental measurements
are imperfect assessments of biological realities. Mutual information is a quantity that
depends on the variability of responses, but this variability may be artifactually augmented
by experimental noise. Thus, the capacity of a system can be severely underestimated if
steps are not taken to minimize experimental contributions to the observed variability.

Every experimental technique and experimental apparatus can in principle add noise to the
measurements. For instance, for microscopy-based measurements, some considerations
include uniformity in sample preparation, the choice of focal plane, fluctuations in light
source intensity, image processing, etc [14]. When possible, experiments should be devised
to measure the effect of each potential source of variability on the measured response. An
example of such an experiment would be to systematically vary the focal plane and
determine quantify its effect on the image of interest.

Alternatively, one can attempt to devise an assay which measures the total experimental
contribution to variability. Such an assay would typically require simultaneous measurement
of the response of interest using two largely independent methods. In our studies of tumor
necrosis factor (TNF) signaling using immunofluorescence readouts, we employed two
methods [8]. One method was to image expressed green fluorescent protein (GFP)
molecules that are immunostained using anti-GFP antibodies. The direct fluorescence and
immunofluorescence both provide quantitative measures of GFP concentration, and absent
any experimental noise, when plotted against each other, the data will lie on a straight line.
In our system, we found that the two measurements were strongly correlated with each other
(ρ~ 0.95), indicating that just ~5% of the variability (standard deviation) of the
immunofluorescence readout could be ascribed to experimental causes. In a second assay,
we simultaneously stained for the response protein (NF-κB) using two antibodies. These
antibodies were chosen to be specific to different epitopes to prevent cross-interference.
Analysis of the correlation between the two antibody measurements confirmed that ~5% of
the observed variability was experimental in nature and the rest was likely to be true
biological variability.

Bias
After the experimental noise has been sufficiently minimized, one can proceed to
measurements of entropy and mutual information on experimental data. First, we note that
most experimental data lies on a continuous spectrum whereas the formulas outlined above
apply only for discrete data, hence the data must be binned. (There are analogous definitions
for the entropy and mutual information of continuous-valued variables, however, well-
established numerical methods based on the continuous formulae are not currently
available.) The choice of the number of bins and location of bin boundaries can be an
important consideration, but here we set this issue aside in favor of discussing a more
critical issue, that of numerical bias. We refer the reader to other sources [8, 15, 16] for
details regarding binning.

To understand the origin of the bias, recall that entropy depends on the range of values that a
random variable can realize. A finite data sample, by its nature, will not reflect the full range
of the underlying distribution and will give the perception that the distribution is thinner
than it really is. Consequently, the entropy computed on a finite data sample will be smaller
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than the true entropy, although this negative bias will diminish as the sample size increases.
Similarly, the conditional entropy H(R|S) is also negatively biased but more strongly than
H(R) since by definition the sample used to estimate H(R) is larger than the sample used to
estimate H(R|S) (the sample for R is the aggregate of all R|S samples). Thus, from the
equation I(R;S) = H(R) − H(R|S) it is evident that estimated mutual information will be
positively biased, although again this bias will diminish as the sample size increases.

Depending on the system, the bias confounding the numerical estimate can be much larger
than the true value of the mutual information (or capacity) and cannot be neglected. Because
the bias is primarily a function of the number of samples and the dimensionality of the input
and output variables, the bias problem can be combated by collecting more data and using
scalar instead of vector inputs and outputs whenever possible. For instance, in response to a
stimulus, a single neuron will generate action potential spikes over time. To quantify this
stream of data, one can count the total number of spikes within a fixed timeframe and treat
the output as a scalar value (figure 3A). An alternative is to bin the stream of data into
smaller time frames and assign a 1 if there is a spike within the bin or a 0 if it is empty to
give a series of 1’s and 0’s in a vector format. In the latter case, we can see that by
increasing the vector length it becomes proportionally more difficult to ensure that the entire
vector space is not undersampled as to introduce bias. This (asymptotic value of the) bias
can estimated a priori using Eq. 4 from [17] in order to determine the data size requirements
to achieve a given level of bias. On a practical basis, for many biochemical communication
channels involving a scalar input and scalar output, at least ~20 sample responses are needed
per distinct signal examined. If either the input or output is chosen to be a 2-dimensional
vector, however, the data requirement is approximately squared to ~400 samples.

Fortunately, provided a sufficient amount of data, there are methods to estimate and correct
for the bias [17]. One method [15] relies on the observation that the bias is a function of the
sample size, and it tends toward zero as the sample size tends towards infinity. This
relationship can be conveniently written as a series expansion with terms of inverse sample
size:

[6]

where Ibiased is the biased estimate of the mutual information, I∞ is the estimate of the
mutual information in the infinite sample size case, ai (i = 1, 2, …) are coefficients that are
particular to the signal and response distributions, and N is the total number of samples. For
sufficiently large N, all terms above the first order are rendered negligible, and the biased
estimate is linearly related to the inverse sample size. Furthermore, this linear relationship
can be estimated by bootstrapping, i.e. by computing the mutual information on subsets of
the data of different sizes. By plotting the biased estimate versus inverse sample size, fitting
a line, and extrapolating to 1/N → 0 (corresponding to N → ∞), one can obtain an unbiased
estimate of the mutual information.

Numerical computation of capacity
To calculate the capacity of a given system, a method is needed to determine the maximal
value of the mutual information under all possible probability distributions of the signal,
p(s), given the experimentally determined input-output relationship. At first, this may appear
to be intractable; however, there are efficient algorithms to accomplish the task. These
algorithms exist because mutual information is a smooth and strictly concave function of
p(s). Hence, there is a single global maximum that can be identified by standard
optimization methods akin to gradient ascent or by alternating maximization methods such
as the easy-to-implement Blahut-Arimoto algorithm [9]. Additionally, the concave property
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allows the numerically determined solution to be independently verified, using the well-
known Karush-Kuhn-Tucker conditions [9].

As part of these optimization routines, one can obtain not only the maximum value of the
mutual information but also the signal distribution, p(s), that maximizes it. We caution,
however, in attempting to interpret the biological significance of the maximizing signal
distribution. Mutual information tends to be a non-steep function of the signal distribution
and many signal distributions will yield mutual information close to the capacity. Hence,
small fluctuations in the data, especially at the tails of the response distribution where
sampling is the weakest, can change the specific distribution that yields the mathematical
maximum without substantially affecting the capacity (maximum value) itself. Exploring
and interpreting the space of signal distributions requires the use of constraints to
compensate for small perturbations resulting from experimental noise, and their efficient
numerical implementation is an active area of research [8, 18].

Applications of Information Theory in Biology
A major advantage of the information theoretic framework described above is that it can be
easily implemented in a wide range of scenarios absent of any knowledge of the internal
mechanisms or complexity of the system. The key to conducting such an analysis is to
identify the boundaries of the communication channel and thus specify its input and output.
As such, many applications of information theory to biology have been to characterize the
information transmission capacity of specific signaling systems or network structures. One
early example can be found in the application of information theory to the neural coding
problem in neuroscience [19–21]. To acquire information about the outside world, a
sensation is processed by a sensory organ into a stream of electrical impulses, called action
potentials, which travel along a highway of neurons to the brain. The brain receives the
neural signals and then proceeds to decode the information to recreate the original sensation.
However, what is not immediately evident is how neurons encode such vivid depictions of
the environment into a simple series of electrical pulses that can be decoded with remarkable
fidelity.

One simple way to represent sensory information is to encode it into the rate of neuronal
firing, which can be easily measured by counting the number of spikes within a timeframe
and then averaging over time. Alternatively, information might be represented in the relative
position of the spikes, referred to as a temporal coding scheme. As mentioned previously,
experimentally measuring such a temporal code involves discretizing a time interval into
bins and then assessing if a spike is present in each bin, designating a 1 to represent a full
bin or 0 to indicate an empty one to generate a fixed length series of binary digits (figure
3A). This block of binary digits would then represent a code that a neuron would send. The
capacity provides a way to evaluate rate coding, temporal coding, or any other hypothesized
information coding mechanism based upon the ability to carry information. For example,
information theory was used in the early analysis of neural codes to determine that temporal
codes offer a greater potential to transmit information than simple rate codes [22].

Similar analyses can be used to evaluate how neural information transfer evolves over time.
Since neural networks have the ability to learn, it may be possible for them to adapt to
different sources of information. For example, the infomax principle [23], when applied to
neurological sensing, posits that the brain can dynamically adjust to different inputs in order
to maximize the amount of information provided by a sensory organ. Indeed, it has been
shown that neural spikes display neural codes that adapt as the stimulus to the sensory organ
changes to ensure that the amount of information transmitted is maximized [24, 25].
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Another example of the importance of the fidelity of information transfer is found in the
development of the embryo of the fruit fly, Drosphila melanogaster. In early developmental
stages, the embryo consists of an undifferentiated collection of nuclei embedded in the
common cytoplasm forming a so-called syncytium. Each nucleus must accurately determine
its physical position within the embryo in order to adopt the appropriate developmental fate.
To communicate information about position, a morphogen, a biochemical signal with a
spatially graded distribution, typically encodes positional information via concentration.
Any error in this process can lead to a fruit fly with body parts in the wrong locations or of
the wrong sizes, which is often lethal.

Accuracy in the systems that communicate between the morphogen and fate decision
processes is of paramount importance, thus we would expect to see sufficient information
communicated from the morphogen to the molecular mechanisms involved in cell-decision
making. For instance, a morphogen essential in patterning the anterior-posterior (A-P)
embryonic axis is the bicoid transcription factor. Bicoid, in turn, induces expression of
hunchback protein in a concentration dependent manner. Interestingly, bicoid concentration
decreases steadily from the anterior to the posterior end of the embryo, whereas hunchback
concentration falls off sharply in the middle of the embryo in a “switch-like” fashion (figure
3B). This observation has led to the hypothesis that bicoid concentration encodes positional
information that is transmitted to hunchback, thereby enabling a cell to determine whether it
is located in the anterior or posterior half of the embryo. Until recently however, it was
unclear whether this long-standing hypothesis could withstand quantitative scrutiny, as gene
expression in individual cells is an inherently noisy process [26], which along with other
sources of cell-to-cell or embryo-to-embryo variability could interfere with transmission of
the positional information. To examine the capacity of the bicoid-hunchback communication
channel in the presence of such noise, Tkacik et al. [7] used data collected by Gregor et al.
[14] that simultaneously quantified bicoid and hunchback concentrations throughout many
embryos, yielding a sample of their joint distribution. From this data, Tkacik et al. estimated
that the mutual information between bicoid and hunchback and found experimentally that
there was 1.5 ± 0.2 bits of positional information transmitted. Because 1 bit is the minimum
needed to perfectly specify the A-P boundary (a binary outcome), it was concluded that the
capacity of the bicoid-hunchback channel was sufficient for each cell to accurately
determine whether they are located in the front or back half of the embryo. These
measurements have been recently extended to show that multiple morphogens in
combination are sufficient for each cell to uniquely determine its location along the A-P axis
[27].

Recently, we extended information theory concepts to analyzing biochemical signaling
networks, whose information transfer capacities were previously generally unknown [8].
Among several model systems, we focused on the network activated by tumor necrosis
factor (TNF), a well-characterized potent activator of the cellular inflammatory response.
Similar to many other signaling networks, it is generally believed that the concentration of
TNF encodes biologically relevant information, such as the magnitude of infectious danger,
and that this information is transmitted through the network to downstream transcription
factors, such as NF-κB or ATF-2 (figure 3C). By measuring the NF-κB and ATF-2
responses (e.g., nuclear concentration after 30 min. stimulus) of many individual cells to
various concentrations of TNF, we determined that the capacities of TNF-α NF-κB and
TNF-ATF-2 pathways were each only ~0.9 bits of information [8]. This was a surprising
result since these pathways were believed to be able to accurately specify much more than
binary outcomes.

We also considered the capacity of the network as a whole, i.e. the pathways in combination,
finding that the capacity of signaling from TNF to NF-κB and ATF-2 simultaneously was
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only ~1.0 bit. Stated another way, knowing only the NF-κB or only the ATF-2 response
yields at most ~0.9 bits of information about the TNF concentration, whereas knowing both
the NF-κB and ATF-2 responses yields at most ~1.0 bit of information. The marginal
increase from ~0.9 to ~1.0 bit was due to the overlap (dependency) between the NF-κB and
ATF-2 pathways at the level of the TNF receptor. Further analysis indicated that the
capacity of TNF signaling through the TNF receptor-level complex, i.e., very early in the
signaling pathway, was already quite limiting, ~1.25 bits, and therefore constituted an early
information bottleneck in the network. Since all pathways within the TNF network rely on
the same receptor, the data processing inequality (see above) implies that the maximum
capacity of the TNF network is ~1.25 bits regardless of the number of downstream pathways
or their fidelity. Similar bottlenecks can constrain alternative strategies for improved
information transmission, such as using negative feedback, temporal averaging, or multiple
cells to combat noise which for TNF signaling yield capacities of at most ~1–2 bits [8].

Up to this point, we discussed how channel capacity can be used to measure the maximum
information flow through a communications channel, but we made no assumption about the
amount of information that may be needed to make adequate decisions. One way to
approach this problem is to assume that the decision can be made based on imperfect
information as long as the associated error can be tolerated by the system. To
mathematically articulate this possibility and to quantitatively estimate how the information
required is related to error tolerance, rate distortion theory, a major branch of information
theory, can be utilized. More specifically, this theory provides an analytical framework to
determine the minimum channel capacity required to transmit information at a given rate of
error (distortion). This lower bound on the information needed is of interest as, presumably,
it is less resource intensive and thus preferable to construct a channel with a lower capacity
than would be available, in principle, given a perfect biochemical signaling network.
Conveniently, biology provides many interesting situations where such distortion analysis
can be undertaken and where it can yield useful results.

One example is provided by the remarkable chemotactic ability of the amoebae
Dictyostelium discoideum, known more commonly as the slime mold. During its unicellular
life cycle, D. discoideum cells feed upon bacteria until the supply is exhausted at which
point the cells begin to starve and release the chemoattractant cyclic adenosine
monophosphate (cAMP). Individual amoebae cells will then migrate up a concentration
gradient of this chemoattractant and combine to form a large multicellular aggregate to
cooperatively search for more food or form spores. It is evident that during aggregation each
cell must be able to acquire information about the local cAMP concentration gradient,
otherwise not enough cells would converge to form the aggregate. Additionally, the
chemotaxis signaling system of D. discoideum exhibits directional biasing such that a cell is
more inclined to maintain the same direction of motility, even after the local concentration
gradient fluctuates. This result raises the question of whether a properly biased cell may
require less information to accurately assess the concentration gradient than an unbiased
one.

To address this question, Andrews et al. [28] used rate distortion theory in tandem with the
local-excitation, global-inhibition (LEGI) chemotaxis model [29, 30] to construct a
distortion constrained model of D. discoideum chemotaxis. By setting the distortion to be a
function of the angle mismatch between cAMP gradient direction and cellular migration
direction, the model demonstrated that cells whose directional movement bias becomes
aligned with the direction of the gradient do indeed require less information than unbiased
cells to migrate efficiently up the gradient. Furthermore, the study suggested that for
unbiased cells the LEGI model achieved the lowest mutual information required for any
given distortion. The relevance of this conclusion is that it suggests that the information of
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the gradient direction in the chemotaxis signaling network is the object of optimization
presumably at the cost of cellular energy.

A common theme throughout the prior examples is that information can be thought of as a
distinct quantity that cellular systems necessarily require for survival whether it is for
describing the inflammatory cues surrounding a cell or morphogen gradients directing
embryogenesis. The examined studies provide support for the premise that cells seek to
acquire information sufficient only to ensure continued existence and that any additional
capacity can be acquired but presumably at a higher energetic cost to the cell. By placing
physical upper limits to the transfer of information in biological systems, information theory
can direct a novel line of inquiry in well-established systems. For example, after discovering
that the TNF-NF-κB signaling network holds a capacity of ~1 bit with information theory,
we can now ask why such a system is limited to only a binary choice or where in the
signaling pathway the bottleneck of information occurs. Similarly in the fruit fly D.
melanogaster, we can quantify to what degree each molecular mechanism contributes to
create such complex patterns of morphogen gradients that ultimately lead to the
differentiation of the adult fruit fly.

Conclusion
Information theory provides suitable mathematical tools to rigorously evaluate models for
how information is encoded, transmitted, and decoded in biological systems. In particular,
channel capacity can measure the ability of a biological signaling system to transduce
information and test hypotheses for how information is efficiently processed. Additionally,
rate distortion theory can elucidate the tradeoff between error and performance to aid in the
understanding of the design of biological systems. Here we emphasize again that the major
strength of information theory is that initial analyses can be performed without detailed
knowledge of the underlying complexity of the system, which provide useful insights into
what a signaling process can or cannot achieve.

Signaling pathways and networks have evolved to inform the cell about changes in the
environmental conditions, including the presence and current function of the neighboring
cells. As a result, these networks are specialized in the processing and transmission of
information in order to confine the decision space of phenotypic responses and to enable
appropriate reactions to a dynamic environment. Many diseases, including multiple forms of
cancer, may emerge and progress if this information processing capability is impaired or if
information leads to an inappropriate match between environmental cues and such cell
responses as proliferation and apoptosis. Thus, this information based analysis may provide
a useful ground for discussion of how signaling and cell decision processes are controlled in
health and disease, and how they can be affected by mainstream treatment modalities.

We envision that information theory will become as widespread in analyzing cell signaling
systems as it is for analyzing man-made communications channels. With the hopes of
encouraging more biologists to use information theory as a method of analysis, we have
provided this brief primer and anticipate that further work in this field will aid in
understanding how cells convey signals and process information effectively despite relying
on often very imprecise molecular means to do so.
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Figure 1. (A) Noise can limit the amount of information a cell can obtain about a stimulus
The magnitude of noise is evidenced in the breadth of the probability distribution of the
response to a given stimulus. For sufficiently large noise, a cell which can encounter strong
or weak stimuli cannot use its response to discern which stimulus was encountered with
absolute precision. Consequently, from the cell’s perspective, noise leads to a loss of
information about the input. The amount of mutual information between the stimulus and
cellular response also suffers such that the greater the overlap between distributions, the less
mutual information is communicated. (B) Entropy can be understood as a measure of
dispersion. A wider probability distribution corresponds to an increase in the uncertainty of
the cellular response and consequently, entropy.
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Figure 2. (A) Schematic of a communication channel
A basic communication channel can be described by an input random variable S connected
by a channel to a random variable output R such that the outcome of R is dependent on S
subject to the distorting influence of noise. In information theory the complexity of the
channel can be represented as a “black box”, since the internal details are fully captured by
the joint distribution between R and S. (B) Entropy as a function of a Bernoulli random
variable with probability p. This concave down graph illustrates that entropy is at its
maximum when all outcomes are equally probable (p = 0.5) and at a minimum when the
outcome is predetermined (p = 0 or 1).
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Figure 3. (A) Quantifying a neural spike train as a scalar or vector
Neural activity consists of intermittent spikes known as action potentials. A series of spikes
is known as a neural spike train. data spike train can be quantified as the total number of
spikes over a given time period giving a scalar output. Alternatively, time can be divided
into small time intervals such that the number of spikes occurring in each time interval is 1
or 0, enabling the spike train to be quantified as a binary vector output. As the total time
frame is made longer, the vector becomes longer, and it becomes increasingly harder to
adequately sample all possibilities in the entire vector space. (B) Bicoid and hunchback
gradient in the Drosophila melanogaster embryo. In the developing embryo of Drosophila
melanogaster, pre-deposited bicoid maternal mRNA is translated into a bicoid protein
gradient along the anterior-posterior axis. Because bicoid is a cooperative transcriptional
activator of hunchback, the smooth bicoid gradient leads to expression of hunchback in a
much sharper concentration gradient which delineates the anterior and posterior halves of
the embryo. (C) Schematic of the TNF signaling network. Individually, the capacities of
the TNF-ATF-2 and the TNF-α NF-κB pathways are only ~0.9 bits of information.
Combined, the network of pathways has only a marginally increased capacity of ~1.05 bits.
Further investigation found that the capacity was limited at the receptor level at ~1.25 bits
implying that the maximum capacity of the TNF network is ~1.25 bits regardless of the
number of pathways or branch fidelity.
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