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Proper lamination of the cerebral cortex requires the orchestrated motility of neurons from their place of birth to their final des-
tination. Improper neuronal migrationmay result in a wide range of diseases, including brainmalformations, such as lissencephaly,
mental retardation, schizophrenia, and autism. Ours and other studies have implicated that microtubules and microtubule-
associated proteins play an important role in the regulation of neuronal polarization and neuronal migration. Here, we will review
normal processes of brain development and neuronal migration, describe neuronal migration diseases, and will focus on the
microtubule-associated functions of LIS1 and DCX, which participate in the regulation of neuronal migration and are involved
in the human developmental brain disease, lissencephaly.

1. Introduction

Defined cell polarization is the key for the function of mul-
tiple cell types in the body, for example, the gut epithelium
and the neuroepithelium, which both display an apicobasal
orientation. Neurons, which part of them are generated from
neuroepithelial cells, are also highly polarized cells with two
distinct main structures that emerge from the cell body: usu-
ally a thin single axon, which is the key for signal transmis-
sion, and multiple shorter dendrites, which are designed for
signal reception.The basic polarity of neuronswas first recog-
nized by Ramon y Cajal, who studied and described the mor-
phology of neurons more than one hundred years ago [1]. In
the cerebral cortex, two major types of neurons were defined:
the excitatory or the glutaminergic neurons which compose
the majority of the neurons in the cerebral cortex, and the
inhibitory or the GABAergic interneurons composing the
minority of the neurons.These two types of neurons are born
in physically distinct areas of the brain, therefore, they need
tomigrate, sometimes very long distances, to reach their final
destinations (reviews [2–6]). Genetic mutations, which affect
polarity regulation and processes of neuronal migration in
the developing brain, result in awide array of humandiseases.
The range of diseases includes on the more severe end brain

malformations, such as the lissencephaly-pachygyria spec-
trum, which defines the variety of diseases that cause relative
smoothness of the brain surface and includes lissencephaly
(smooth brain surface), agyria (no gyri), and pachygyria
(broad gyri). In other cases, the brain surface may appear
normal, but neurons can be mislocalized, which will be
defined as cortical dysplasia. The position and the extent of
the heterotropic neurons will further define the type of the
brain malformation, for example; periventricular heterotopia
(close to the ventricle), subependymal heterotopia (beneath
the ependyma), subcortical heterotopia, or band heterotopia
(neurons located in the white matter beneath the cortex as
focal concentrations or a band) (reviews [7–13]). Patients
with brain malformations will usually exhibit developmental
delay, epilepsy, seizures, and intellectual disability depending
on the severity of the brain malformation. These conditions
usually can be diagnosed using brain imaging such as MRI
(magnetic resonance imaging). However, neuronalmigration
diseases are not always detected by current noninvasive
imaging techniques. Microscopic malpositioning of neurons
could have been detected inmany cases of childhood epilepsy
following surgical procedures [14, 15]. Neuronal polarity
and neuronal migration abnormalities are among the most
common underlying primary defects inmany cases of mental
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retardation or intellectual disability [16, 17]. Furthermore,
autism and schizophrenia are also part of the spectrum of
diseases involving neuronal polarity and neuronal migration
regulation [18–21]. The prevalence of either mental retarda-
tion or schizophrenia is estimated to be about 1% of the
population; the burden on society is huge since the patients
live with the impairment over decades. Collectively, it can
be appreciated that the wide range of neuronal polarity and
neuronalmigration diseases significantly impacts our society.
Therefore, the understanding of the molecular mechanisms
involved in these diseases, which also may affect therapeutic
strategies, is of wide public interest.

Here, we will review the normal process of neuronal cell
birth and migration, then will highlight the role of micro-
tubules in this process, and will describe what happens when
things go awry with special emphasis on the microtubule-
associated functions of LIS1 and DCX.

2. Birth of Neurons of the Cerebral Cortex

Themajority of neurons in the cerebral cortex, the pyramidal
or the excitatory neurons, are born either within the ventricu-
lar zone or the subventricular zone (reviews [22–26]). During
early development, neuroepithelial cells proliferate mainly to
generate additional progenitors (reviewed [22, 26]). Later,
two types of progenitors in the ventricular zone are defined;
most of them are the radial glial cells that span the entire
neocortical wall and maintain contact both at the ventricular
and pial surfaces throughoutmitotic division, and theminor-
ity of them are the short neural precursors that possess a
ventricular endfoot and a basal process of variable length that
is retracted during mitotic division [27, 28] (Figure 1). The
radial glia is the major population of neural progenitor cells
occupying the proliferative ventricular zone in the developing
mammalian neocortex [29–31]. Radial glia cells serve as
progenitors in all regions of the central nervous system [32].
Radial glia cells exhibit typical interkinetic nuclearmigration,
where the nucleus moves within the cytoplasm of elongated
neuroepithelial progenitor cells in synchronization with the
cell cycle phase [33, 34] (review [35]). The nucleus ascends
to the upper region of the proliferative zone, the ventricular
zone, during S phase and later descends to the apical part
of the ventricular zone (Figure 2). Mitosis is restricted to
the most apical regions of the ventricular zone after the
nucleus completed its descent. The variable positioning of
the nucleus within the ventricular zone is the basis for
the pseudostratified appearance of the progenitor-cell layer
known as the ventricular zone (Figure 2).

The radial glia precursor stem cells undergo symmetric
and asymmetric divisions while producing large numbers of
diverse cortical cell types. However, the relative orientation
of the cleavage plane does not define whether the divisions
are symmetric or asymmetric [36, 37], but rather the relative
inheritance of the apical plasma membrane dictates whether
the daughter cell fate will be symmetric or asymmetric
[38–42]. Asymmetric divisions will result in self-renewal
of the progenitors, but will also produce more committed
daughter cells, intermediate progenitor cells (also known as
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Figure 1: Schematic presentation of progenitors in the developing
cerebral cortex. Radial glia cells (RGCs) extend their processes from
the ventricular zone (VZ) to the pial surface.These cells proliferate in
a symmetrical fashion to produce additional RGCor asymmetrically
to produce a progenitor and a multipolar cell (MPC), which may
be either a postmitotic neuron or an intermediate progenitor (IP),
which can further divide in the subventricular zone. The VZ con-
tains additional short neuronal progenitors (SNP). In the SVZ and
the outer SVZ (OSVZ), an additional type of progenitors was des-
cribed, basal radial glia (BRG), which lack the connection to the
ventricle. A bipolar migrating neuron (MN) is moving towards the
intermediate zone (IZ).

basal progenitors), outer subventricular zone progenitors, or
postmitotic neurons [43] (review [24]). During development,
there is a gradual shift from proliferative divisions to neuro-
genic divisions. This has been accompanied with progressive
lengthening of the cell cycle [44]. Further studies indicated
that artificial lengthening of the cell cycle can be sufficient to
switch neuroepithelial cells from proliferative to neurogenic
divisions [45, 46].

The second proliferative area for excitatory neurons of
the cerebral cortex is the subventricular zone. Within this
area, progenitors usually divide in a symmetrical way, and
in contrast with the radial glia, their processes do not make
contact with the apical or pial surfaces.These intermediate or
basal progenitors are daughter cells of either neuroepithelial
or radial glial cells located in the ventricular zone [43, 47–49]
(reviews [22, 24, 50]). Mitotic intermediate progenitor cells
are largely found in the subventricular zone, but it should be
noted that they can also undergo division in the ventricular
zone and the intermediate zone [51, 52]. Typical intermediate
progenitors in the developing neocortex usually undergo
one terminal symmetric division that produces two neurons,
while some cells undergo two rounds of symmetric divisions
(Figure 1).

In primates and humans, the subventricular zone is
widely expanded and they develop an additional proliferative
region known as the outer subventricular zone [53–55]. Cell-
labeling studies in primates have shown that cell divisions in
both the outer subventricular zone and the ventricular zone
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Figure 2: Schematic presentation of interkinetic nuclear move-
ments in the ventricular zone (VZ). Nuclei of RGC are found at
the upper surface of the VZ during S phase (S). The nuclei of the
cells undergoingmitosis (M phase) are located close to the ventricle,
where they complete anaphase (A) and telophase (T). Nuclei in G1
and G2 phases are found in intermediate positions.

coincide with the major wave of cortical neurogenesis, sug-
gesting that outer subventricular zone cells produce neurons
[56, 57]. The outer subventricular zone was found to contain
two types of progenitors: radial glia-like cells and interme-
diate progenitor cells [58, 59]. The outer subventricular zone
radial glia-like cells have a long basal process; however, the
contact with the ventricular surface is lacking. These cells
undergo proliferative divisions and self-renewing asymmet-
ric divisions to generate neuronal progenitor cells that can
proliferate further and can also generate neurons. Initially it
was thought that these cells exist only in primates, but similar
progenitors have also been observed in nonprimates, such as
ferrets [59] and mice [40, 60].

The inhibitory neurons, or the GABAergic neurons, are
born in a different position than that of the excitatory
neurons. Most of the GABAergic neurons are born in the
ventral part of the telencephalon, in the subpallium [61] (for
reviews see [62–64]). More specifically, themedial ganglionic
eminence (MGE) and the caudal aspect of the lateral gan-
glionic eminence (cLGE) (also known as the dorsal aspect of
the caudal ganglionic eminence (dCGE)) generatemost of the
cortical GABAergic interneurons [65]. However, additional
sources of cortical GABAergic interneurons are the rostral
LGE, the subpallial septum, and the embryonic preoptic area
(POA) [66–68] (Figure 3). Radial glia cells are progenitors
for inhibitory neurons as well as for excitatory neurons [32]
(for reviews see [69–71]). These progenitors not only share
structural similarities, but the ventral progenitors in theMGE
were shown to also undergo asymmetric cell divisions to pro-
duce neocortical interneurons [72]. Furthermore, neocortical
inhibitory interneurons were produced as spatially organized
clonal units in the developing ventral telencephalon. How-
ever, although the radial glia cells in different areas of the
cerebral cortex appear morphologically similar, they do not

share the samemolecular identity. Radial glia cells in the ven-
tricular zone of the telencephalon express the transcription
factors Pax6 and Emx1 [73, 74]. In their absence, the cells
convert their fate to that of ventral telencephalon cells [75].
Radial glial cell in the ventral telencephalon express different
sets of transcription factor genes, for example, Gsx1/Gsx2
and Olig2 [73, 76, 77]. In addition to proliferating radial
glial cells, the ventral telencephalon contains multiple inter-
mediate progenitors, which divide symmetrically to produce
interneurons [76, 78]. These proliferating progenitors are an
important source of the interneurons since the subventricular
zone in the ventral telencephalon is larger than that in the
neocortex.

3. Migration of Neurons of
the Cerebral Cortex

As mentioned above, neurons are usually born in a position,
which differs from their terminal destination. Thus, neurons
need tomigrate from their place of birth to their final position
using several types of cellular motility (reviewed [2, 4, 6,
79–82]). The position of neurons within defined layers of
the cerebral cortex is dependent upon their birth date and
their proper movement from their place of birth to their
accurate placement. The six layers of the cerebral cortex are
composed of neurons that are born in different areas but are
subsequently organized according to their birth dates [83, 84].
Interestingly, this organization is not unique to excitatory
neurons. Many interneurons and excitatory neurons that are
born at a similar time end up occupying the same neocortical
layer; however, little is known how this amazing coordination
is achieved [85–88] (review [69]). Neurons born relatively late
during corticogenesis reside in more superficial layers on top
of the older neurons, thus composing an inside-out organi-
zation. Early in development, these cells usually move using
cellular locomotion. Later, neuronsmigrating along this route
attach to radial glia, which provide a transient scaffold for
directed migration [2–4, 89, 90]. Neurons migrating along
radial glia exhibit a bipolar structure. Once these cells reach
the pial surface or their correct position, they detach from
the radial glia and continue to move towards their correct
laminar position. A different mode of migration, known as
tangential migration, is employed by the interneurons, which
migrate tangentially across the plane of the glial fiber system
[2, 4, 80, 85, 91]. Once they reach the cerebral cortex, they
employ the radial route and migrate along radial glia to their
proper laminar position [66, 92–100] (routes of migration are
schematically shown in Figure 3).Thus, even if only the radial
route of migration is disrupted, the position of inhibitory
neurons in the cerebral cortex will be affected, since they use
both the tangential and the radial route.

Newly formed neurons in the ventricular zone undergo
an initial morphological transition to a pin-like structure
following their final mitoses [101]. These cells are still lacking
a leading edge, and their centrosomes are localized towards
the ventricular endfoot. The ventricular endfoot is then
retracted, and the cells adopt a multipolar structure where
cells extend neurites in multiple directions. Live imaging of
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Figure 3: Schematic presentation of migratory routes of excitatory and inhibitory neurons in the developing brain (adapted from a review
by Tan and Shi,WIREs Dev Biol 2012. doi: 10.1002/wdev.88). Inhibitory neurons are shown in the left side. Most of the GABAergic neurons
are born in the ventral part of the telencephalon, in the subpallium, and more specifically in the medial ganglionic eminence (MGE) and the
lateral ganglionic eminence (LGE), in the subpallial septum, and the embryonic preoptic area (POA), and they migrate in a tangential way to
the cortex. St: striatum; LP: lateral pallium; H: hippocampus.

in utero transfected cells reveals that each of the radially
migrating neurons undergoes this complex morphological
transition [4, 102, 103]. It has become apparent that this
transient morphology is particularly sensitive to genetic
manipulations, as knockdown of several genes resulted in
accumulation of stalled neuronswithmultipolarmorphology
(reviews [104, 105]). The multipolar stage is transient and is
followed by acquirement of bipolar morphology [43]. Neu-
rons redefine their polarization; they first extend an axon,
which will be the future trailing edge, orient the centrosome
in front of the nucleus, and generate a leading edge, which has
some characteristics of a dendrite [106]. In radially migrating
cerebral neurons, the centrosome moves in a very processive
manner, whereas the nucleus, which composes most of the
cell body, follows this movement in a stepwise manner [107–
110]. Failure to translocate the nucleus will translate to abnor-
malmigration andwill affect the proper laminar organization
of the developing cortex. Thus, during the normal course
of migration, the cells will change their morphology to a
bipolar one and continue to migrate along radial glia in an
ordered fashion (Figure 1). Therefore, acquisition of polarity
is imperative both for initiation and continuity of directed
motility of neurons to their targets.

4. Neuronal Microtubules and the Centrosome

The morphological changes that take place in migrating
neurons require coordinated regulation of the cytoskeleton
(review [18]). We will focus on the microtubules, which are
key components of the neuronal cytoskeleton. Microtubules
are long cellular polymers composed of subunits of alpha-
and beta-tubulin. They exhibit dynamic instability, which
can be visualized both in vitro [111, 112] and in vivo [113–
115]. Microtubules exhibit an inherit polarity, where tubulin

subunits are preferentially added to the plus ends.Themicro-
tubule cytoskeleton participates in structuring of the cell
and provides directional rails for transport of intracellular
organelles and different cargoes (review [116]). In neuronal
progenitors and in early born neurons, most of the micro-
tubules emanate from the microtubule organization center,
the centrosome, and its proper function and intracellular
localization are believed to be of great importance both in
proliferating and migrating cells (reviews [18, 35, 81, 105, 117,
118]).

In polarizing neurons, it has been proposed that the posi-
tion of the centrosome may predict the location of the future
axon [119, 120]. However, this notion has been questioned
following several findings. In neurons from the tegmental
hindbrain nuclei in zebrafish, axon outgrowth occurs at clear
distance from the centrosome [121]. Probably, an earlier
cue for polarization is the relative position of N-cadherin.
Endogenous N-cadherin was found to localize to one pole
of the newborn neuron, from where the first neurite will
emerge [122]. The Golgi and centrosome move towards this
newly formed morphological pole in a second step, which
is regulated by PI3 K (phosphoinositide 3-kinase) and the
actin/microtubule cytoskeleton.

In mature neurons, the proportion of acentrosomal
microtubules is significantly higher (review [117]). In con-
trast with migrating neurons, the axons of mature neurons
containmicrotubules that form a continuous array, extending
from the cell body into the growth cone at its distal tip
(comprehensive review [123]). It has been shown that the
centrosome loses its function as a microtubule-organizing
center in developing hippocampal neurons [124]. Most
importantly,microtubule arrays inmature neurons are highly
organized in regard to their intrinsic polarity. Early studies
have determined the orientation of microtubules in mature
neurons by electron microscopy-based techniques [125].
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Most of the microtubules in the axon are oriented with their
plus-ends facing the growth cone, while in the dendrites the
microtubules are oriented in both directions. Thin and distal
dendrites exhibit unipolar microtubule orientation similar
to the axonal ones (review [116]). Live imaging using a
fluorescently tagged plus-end tracking protein (EB3-GFP)
confirmed these findings and enhanced the capability to
rapidly evaluate the orientation of growing microtubules in
culture and in vivo [126].

5. Neuronal Migration and Brain
Developmental Deficits in Humans

Deficits in neuronal migration in humans have provided us
with insights on the regulatory mechanisms involved in this
process. Abnormal neuronal migration may result in cortical
malformations, and in extreme cases, the brain is smooth
(lissencephalic) lacking most of the normal typical brain
convolutions. Lissencephaly (i.e., smooth brain) is a severe
human neuronal migration disorder (review [127]). Based
on brain histology; two types of lissencephaly were defined:
type I or classical lissencephaly and type II or cobblestone
lissencephaly [128]. Whereas in type I the cerebral cortex
consists of four layers, in type II no discrete layers are formed.
Moreover, in type II lissencephaly, the manifestation of the
phenotype including the cerebellum and the brainstem as
well as other organs, such as eyes and muscles, has been
noted [129]. Disorganization of the cortical layers reflects
mainly migration deficits in excitatory neurons. Yet it should
be noted that the migration of inhibitory neurons is also
diminished [130]. Imbalances between excitatory neurons
and inhibitory neurons are one of the underlying causes
of epilepsy. Therefore, it is not surprising that epilepsy is a
common feature among lissencephalic patients [131].

Mutations in several genes have been associated with type
I lissencephaly, among them lissencephaly-1 (LIS1) [132], the
X-linked gene doublecortin (DCX) [133, 134], and tubulin
alpha 1A (TUBA1A) [135–137]. The phenotype is character-
ized by absent (agyria) or decreased (pachygyria) convo-
lutions, producing a smooth cerebral surface with thick-
ened cortex [138]. Some differences were noted in cases of
lissencephaly due to mutations in LIS1 versus mutations in
DCX. In case of LIS1 mutations, the brain is more affected
in the dorsal portion of the brain, whereas DCX mutations
affect the more rostral part [139, 140]. Furthermore, a limited
study of two fetal brains, one mutated in LIS1 and the other
mutated inDCX, revealed differences in the histology [141]. In
the LIS1 mutated brain, the cortical ribbon (the grey matter)
displayed a characteristic inverted organization, also called
“four-layered cortex”, while in the DCX mutated brain, the
cortex displayed a roughly ordered “six-layered” lamination.
It was suggested that additional studies, especially of DCX
mutant, brainsmay help to clarify this issue. Subcortical band
heterotopia (SBH) is a related disorder in which there are
bilateral bands of gray matter interposed in the white matter
between the cortex and the lateral ventricles. SBH (double
cortex) is very common among females with mutations in
DCX [133, 134]. SBH can also be observed in cases of somatic
or mild mutations in LIS1 [142, 143]. Lissencephaly and SBH

have been observed in different regions of the same brain,
defining an “agyria-pachygyria-band” spectrum [140]. Muta-
tions in TUBB2B have been associated with a different brain
malformation, asymmetrical bilateral polymicrogyria [144].
Polymicrogyria is characterized by a disorganized cortical
lamination and the presence of multiple small, partially fused
gyri separated by shallow sulci that produce an irregular
cortical surface [145]. A partial duplication of LIS1 has been
detected in a patient with microcephaly (reduced brain
size), neurodevelopmental delays, and profoundwhitematter
atrophy in the absence of lissencephaly [146]. All of the
protein products of the genesmentioned above, tubulin, LIS1,
and DCX are involved in formation and regulation of micro-
tubules, which play an important role in the developing brain.

Less noticeable deficits in neuronal migration are respon-
sible for a significant proportion of cases of mental retar-
dation and epilepsy in children [8, 14, 147]. Furthermore, it
is proposed that abnormal neuronal migration also plays a
role in schizophrenia and autism spectrum disorders (ASDs)
(reviews [148–150]). Thus, there are multiple examples indi-
cating a strong link between intellectual disability and
abnormalities in neuronal migration [2, 105]. MARK1/Par1
has been proposed as a susceptibility gene for autism
[151]. MARK (microtubule-associated protein/microtubule
affinity-regulating kinase) composes a small family of pro-
teins [152], which were first identified to regulate the dynam-
ics of microtubules [153, 154]. Increased dosage of LIS1 also
impairs processes of normal brain development and results
in delayed development,mental retardation, and autism [155–
157]. One of the reported patients with increased LIS1 dosage
exhibited epileptic seizures, which fitted the diagnosis of
classical West syndrome [131].

In addition, microdeletions of a region encompassing the
MAPT (microtubule-associated protein tau) gene, encoding
for the tau protein, result inmoderatemental retardationwith
associated dysmorphic features [158–162]. The frequency of
the microdeletion syndrome was estimated to be 1 : 13,000
to 1 : 20,000, thus suggesting it to be a common underlying
cause for mental retardation. MAPT is one of the few genes
within the microdeletion locus; it is strongly expressed in
the developing brain [163, 164], and it has been suggested to
play a role in neuronal migration. Tau is a well-studied, brain
enriched, microtubule-associated protein, which was initially
identified by virtue of its capability to enhance microtubule
polymerization in vitro [165, 166]. Tight regulation of the
dynamic instability of microtubules allowing for rapid transi-
tion between the growing and shrinking phases is essential for
proper neuronal migration. Furthermore, it should be noted
that regulation of proper microtubule dynamics and axonal
transport plays an important role in multiple neurodegener-
ative diseases; this topic has been extensively reviewed and is
not the focus of this current review (e.g., [123, 167–174]).

6. LIS1 and DCX: Microtubules and
Cellular Polarity

A tight relationship between LIS1, microtubule regulation,
and microtubule-based motor proteins has been demon-
strated in many organisms. The first functional insights on
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LIS1 and their role in regulation of microtubules and micro-
tubule-based motors came from studies conducted in a fun-
gus, Aspergillus nidulans, during a screen conducted by the
Morris lab. Fungi mutated in LIS1, designated in Aspergillus
nidulans as nudF (nuclear distribution gene F) exhibited
impairments in the ability to move nuclei alongmicrotubules
in the growing hyphae. Interestingly, a mutation in the alpha-
tubulin gene suppressed mutations in nudA (dynein heavy
chain), nudC (LIS1 interacting protein), nudG (dynein light
intermediate chain) and nudF [175].We have shown that LIS1
interacts with tubulin and modulates microtubule dynamics
in vitro [176], suggesting an evolutionary conserved LIS1
function. The role of LIS1 in preserving the normal micro-
tubule network organization in vivo has been shown both
in mammalian cells [177–179] and in cells of the simple
organism Dictyostelium [180]. LIS1-microtubule interaction
and probably other LIS1 interactions are regulated by phos-
phorylation [181]. In addition to a direct role for LIS1 in
regulating tubulin dynamics, LIS1 interacts with a plethora of
microtubule-associated proteins (MAPs).This includes inter-
actions with DCX [182], CLIP-170 [183], and MAP1b [184].
Furthermore, LIS1 may affect actin polymerization through
Cdc42 and IQGAP [185, 186].

An evolutionary conserved function of LIS1 in regula-
tion of cytoplasmic dynein was first noted in the fungus,
Aspergillus nidulans. Three of the Aspergillus nidulans nud
genes (nudA, nudI, and nudG) are subunits of cytoplasmic
dynein, a microtubule-based motor protein, and a fourth
gene, nudK, is a part of the dynein regulatory complex dyn-
actin [187–189]. Genetic interaction of LIS1 with dynein/dyn-
actin/microtubule-mediated pathwayhas also been suggested
from work on early development in Drosophila [190–192],
demonstrating that LIS1, like dynein heavy chain, is essential
for germ-line division, nuclear positioning, and oocyte dif-
ferentiation. Moreover, also in Saccharomyces cerevisiae, the
LIS1 ortholog was found to be involved in nuclear migration
[193], which is mediated by microtubules and regulated by
the dynein pathway [194]. The evolutionary conservation of
LIS1with the dynein pathway has been extended tomammals,
where it interacts with several subunits of the retrograde,
microtubule-basedmotor complex dynein/dynactin [177, 178,
195, 196]. It regulates cytoplasmic dynein activity [177] and
participates in several dynein-mediated activities, such as
intracellular transport [197, 198], organization of intracellular
organelles [199–201], and mitosis [195, 202–204].

In contrast to other known proteins interacting with
dynein, LIS1 binds to dynein motor domain [205] (review
[206]). LIS1 was found to strengthen the dynein-microtubule
interaction [205, 207] (reviewed in [208]). In addition, it
has been proposed that LIS1 may have a role in initiating
dynein-drivenmotility [209]. Single-molecule laser bead trap
analysis revealed that LIS1 substantially prolonged dynein
stalls under load [207].With LIS1 bound, dynein is arrested in
a stronglymicrotubule-bound state, althoughATP hydrolysis
can still go on [205].

LIS1 and cytoplasmic dynein play an important role in
the regulation of the polarity of microtubules. As mentioned
above, axonal microtubules are normally oriented uniformly

plus-end-distal; however, without dynein or LIS1, axons con-
tained both plus- and minus-end-distal microtubules [210].
Probably this mixed polarity of the microtubules allowed for
the entry of dendritic organelles and proteins to the axon
[210].

LIS1 itself has been shown to be a cargo for the antero-
grademotor Kinesin-1[211, 212]. Kinesin-1 interactedwith the
NUDEL (nuclear distribution protein nudE-like 1)/LIS1/14-3-
3epsilon complex throughDISC1 (disrupted in schizophrenia
1), and interference with the complex affected protein local-
ization and axonal outgrowth.

DCX was characterized as a microtubule-associated pro-
tein (MAP) [213–215] shortly following its discovery as a gene
mutated in cases of X-linked lissencephaly [133, 134]. DCX
promotes nucleation and the assembly, and stability of 13-
protofilament microtubules [216, 217]. DCX interacts with
the sides of the lattice of microtubules and stabilizes the 13-
protofilament structure through a cooperative interaction,
wherein DCX molecules decrease the dissociation rate of
their neighbors [218]. DCX is part of a small superfamily
of proteins, characterized by the existence of one or two
conserved DCX domains [219, 220]. Interestingly, most
mutations that are found in lissencephaly patients cluster in
the well-defined DCX domains [221, 222]. We have shown
a physical interaction between LIS1 and DCX, and in vitro
both proteins enhance tubulin polymerization in an additive
manner [182]. A genetic interaction between LIS1, DCX, and
cytoplasmic dynein has also been suggested [223]. DCX is
also involved in the regulation of the actin cytoskeleton, in
a direct and indirect way [224–226]. Additional interactions
have been observed between DCX and mu subunits of
clathrin adaptor complexes [227]. In developing cultured
neurons, DCX modulated endocytosis and thereby the sur-
face distribution of neurofascin. Interestingly, this activity has
been shown to be independent of DCX’s interaction with the
microtubules [228].

The interaction between DCX and microtubules is regu-
lated, at least in part, by phosphorylation. DCX is phosphory-
lated by at least four different kinases: JNK [229], Cdk5 [230,
231], protein kinase A (PKA) and/or theMARK/PAR-1 family
of protein kinases [232], and GSK3𝛽 [233]. Protein phos-
phatase 1 (PP1) has been shown to dephosphorylate some
of the sites [234, 235]. In vitro analysis indicated that DCX’s
phosphorylation by Cdk5, PKA, and MARK reduced the
affinity of DCX to microtubules [230, 232]. Phosphorylation
of DCX by different kinases yielded different outputs; Cdk5-
mediated phosphorylation inhibited the ability of DCX to
promote microtubule bundling and suppressed axon branch-
ing [230, 234], while GSK3𝛽-induced phosphorylation of
DCX promoted the function of DCX in the regulation of
axon branching and self-contact [233]. The effect of DCX
on branching may be associated also with its interaction
with the actin cytoskeleton. DCX depletion significantly
delayed collateral branching in hippocampal neurons and
also significantly lowered the frequency of actin-rich patches
along hippocampal axons [236]. DCX not only affects the
development of the axon but also the dendritic arborization
[237].
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Microtubules stabilized by DCX are preferred substrates
for kinesins [238]. Furthermore, DCX has been recently
found to associate with a member of the kinesin superfamily,
namely Kif1a, which is a Kinesin-3 molecular motor protein
that traffics synaptic vesicles [239]. Neurons lacking Dcx
and/or its closed family member, doublecortin-like kinase
1 (Dclk1), showed impaired Kif1a-mediated transport of
Vamp2, a cargo of Kif1a [239]. The same study demonstrated
that DCX specifically enhanced binding of the ADP-bound
Kif1a motor domain to microtubules.

7. The Roles of LIS1 and DCX in Processes of
Brain Development

7.1. Neurogenesis in the Developing Brain. LIS1 levels affect
cell proliferation in the developing brain at multiple stages
[108, 155, 240–245]. Neuronal progenitors knocked down for
LIS1 failed to proliferate [108]. In addition, mosaic analysis
demonstrated the requirement of LIS1 for the proliferation of
all neuronal lineages and astrocytes [246]. At the initiation
of mitosis, 𝐿𝑖𝑠1+/− neuroblasts exhibited impaired prophase
nuclear envelope invagination. This process, which occurs at
prophase, is dynein-dependent and facilitates nuclear enve-
lope breakdown [245]. Abnormal interkinetic motility was
observed in knockdown, knockout, and increased dosage of
LIS1 [108, 155, 241]. LIS1 was found to be essential for precise
control of mitotic spindle orientation in both neuroepithelial
stem cells and radial glial progenitor cells [247]. Conditional
gene knockout of Lis1, specifically in neuroepithelial stem
cells, resulted in rapid motility of the spindle followed
by cell death. Radial glial progenitors were somewhat less
affected [247]. Proliferating cells in the ventricular zone with
increased LIS1 dosage lost most of their polarity markers and
exhibited abnormal adherens junctions [155]. LIS1 genetically
interacts with Nde1 in proliferating cells in the ventricular
zone; mice with an allelic series of Lis1 and Nde1 double
mutations displayed a striking dose-dependent size reduction
and delamination of the cerebral cortex [248].

DCX participates in the regulation of proliferating neu-
rons in the developing brain in coordination with LIS1.
𝐷𝑐𝑥−/− radial glia cells displayed spindle orientation abnor-
malities similar to 𝐿𝑖𝑠1+/− cells that in turn lead to moderate
proliferation defects both in vivo and in vitro. Thus, a
functional genetic interaction of the two genes has been
demonstrated in vivo, where the combined effects of Lis1
haploinsufficiency and Dcx knockout leading to more severe
neuronal migration and proliferation phenotypes compared
with the single mutants, resulting in cortical disorganization
and depletion of the progenitor pool [241]. These results
were also confirmed when gene expression was examined.
Differential expression analysis indicated that LIS1 and DCX
mutants at E14 displayed a repression for cell-cycle processes
and networks, while in wild-type embryos these processes are
activated [240].

7.2. Neuronal Migration in the Developing Brain. Multiple
evidence link LIS1 to the regulation of neuronal migration in
the developing brain. Abnormal radial migration was noted

in an hypomorph allele of Lis1 (Lis1/sLis1) [249], in 𝐿𝑖𝑠1−/+
[250], as well as with further reduction of LIS1 using a floxed
allele [250], or by knockdown of the gene using in utero
electroporation [107, 108, 251]. Mosaic analysis also led to
the conclusion that LIS1 regulates the migration efficiency
in a cell-autonomous manner [246]. In migrating neurons
with reduced LIS1 levels, the centrosome and the nucleus
were less tightly coupled [223, 251]. Lis1 shRNA inhibited
somal movement but not process extension [107]. In radi-
ally migrating granule cells in mouse cerebellar slices, LIS1
inhibition resulted in slightly different effects; it specifically
blocked nuclear migration without affecting the coupling
of the centrosome and microtubules in the leading process
[252]. LIS1 also affects the migration of inhibitory neurons. It
was demonstrated that LIS1 is required for proper tangential
migration in 𝐿𝑖𝑠1−/+ [253] and also in case of increased LIS1
dosage [155]. The effects of LIS1 mutation are not limited to
the cortex. Abnormal tangential migration was noted in a
subset of neurons in the spinal cord [254].

The neuronal migration phenotype was not so obvious in
case of Dcxmutant mice [255]. Mutant mice showed neocor-
tical lamination that was largely indistinguishable from wild
type. Nevertheless, the hippocampus of both heterozygous
females and hemizygous males shows disrupted lamination
that is most severe in the CA3 region. It has been speculated
that the relativelymild phenotypemay be due to genetic com-
pensation (review [256]). Supporting this notion, knockdown
of Dcx using in utero electroporation inhibited migration
of cortical excitatory neurons both in rat and in mouse
brains [4, 54]. Using the same system, it was also possible
to demonstrate the genetic interactions between DCX and
one of its phosphorylating kinases, MARK2/Par-1 [110]. It
is postulated that whereas in case of the knockout there is
plenty of time for developmental redundancy mechanisms
to become operative, the knockdown involves an acute gene
reduction, which may not allow sufficient time for redun-
dancy mechanisms to evolve.This notion received additional
support following findings that the knockout of Dclk1 did
not result in an observable phenotype in the migration of
pyramidal neurons in the developing brain [39, 55]. Similar to
Dcx, the knockdown ofDclk1 impaired themigration of pyra-
midal neurons [55].Nevertheless, the double knockout ofDcx
and Dclk1 had a clear effect on cortical development. More
specifically, the double mutant mice demonstrated perinatal
lethality, disorganized neocortical layering, and profound
cytoarchitectural defects of the hippocampus caused by the
disruption of radial neuronal migration. The possibility of
gene redundancy was investigated in Dcx mutant mice,
where the expression of transcripts and proteins, which are
products of the Dclk1 and Dclk2 gene, was analyzed [46].
A minor change in the expression of one of the DCLK1
proteins was detected in this study. In addition, more severe
phenotypes were noted in the combination of mutant alleles
for Dcx and Dclk2 [47]. In particular, in the absence of Dcx
and Dclk2, there was a dosage-dependent phenotype in the
hippocampus, where hippocampal lamination was disrupted
and it was accompanied with simplification of pyramidal
dendritic arborizations. Studies in primary hippocampal
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neuronsrevealed that DCX supported the development of
dendritic arbors [237].

Dcx knockout had a more pronounced effect on the
migration of interneurons. Branching and nucleokinesis pro-
blems were observed in interneurons derived from Dcx
mutant mouse brains [257]. In utero electroporation of Dcx
shRNA impaired tangential migration [258]. In addition,
these type of experiments also indicated the LIS1 and DCX
work in the same genetic pathway in inhibitory neurons
migrating through the lateral cortical stream, which supplies
neurons to structures in the ventral telencephalon including
the amygdala and piriform cortex [259]. DCX also plays an
important role in migration of neurons in the adult mouse
to the olfactory bulb using the rostral migratory stream [56].
Dcx RNAi reduced SVZ cell migration in vitro, both cell
autonomously and noncell autonomously [260].

7.3. Postnatal Effects. The effects of LIS1 mutations are not
confined to embryonic stages. Lis1 mutant mice develop
spontaneous seizures and enhanced excitation [261]. Several
abnormalities were noted in the hippocampus: abnormal
inhibitory inputs [262] and dysfunctional synaptic integra-
tion of granule cells generated in the developing and adult
dentate gyrus [263]. In addition, postnatally the Lis1/sLis1
mutantmouse exhibited alterations of the inhibitory synaptic
responses recorded from cortical pyramidal neurons [264].
LIS1 has been shown to be critical for determining the synap-
tic distribution on interneuron dendrites [265]. Therefore, it
is possible to speculate that in addition to migration deficits,
LIS1-dependent regulation of synaptic mobility may promote
epilepsy by disrupting excitatory inputs onto GABAergic
interneurons.

The lamination defects in the hippocampus of Dcx
mutant mice result in the development of epilepsy in these
animals [266–268]. Furthermore, also in utero electropora-
tion of Dcx shRNA revealed abnormalities in the hippocam-
pal network [269] and spontaneous epileptic seizures [270].

7.4. Possible Reversal of the Developmental Phenotype. LIS1
protein degradation was shown to be mediated, at least in
part, by the protein protease, calpain [271]. Therefore, the
possibility that interference with this pathway may relieve
at least part of the phenotype was tested [271, 272] (review
[273]). Treatment with calpain inhibitors or knockdown
of calpain expression by siRNA improved the abnormal
cellular phenotype caused by heterozygous loss of Lis1 in
cell culture. Calpain inhibitors were also administered to
pregnant 𝐿𝑖𝑠1+/− mice during embryonic corticogenesis.
Remarkably, both inhibition by drugs or knockdown of
calpain in vivo rescued defective neuronal migration and
abnormal cortical and hippocampal layering in heterozygous
mutant pups born to treated mothers. Furthermore, these
mutant pups also exhibited improved motor function. The
therapeutic potential of a calpain inhibitor was also tested on
postnatal lissencephalic cells [274]. Interestingly, application
of the calpain inhibitor restored spontaneous and miniature
EPSC (excitatory postsynaptic current) frequencies to wild-
type levels without affecting inhibitory postsynaptic synaptic

current. However, western blot analysis of protein expression,
including proteins involved in excitatory synaptic transmis-
sion, demonstrated that the cleavage of the calpain substrate
alpha II-spectrin was blocked, but the levels of the LIS1
protein were not restored, suggesting the possibility that the
rescue was through an indirect route, which did not involve
LIS1 levels.

Delayed reexpression ofDcx in already formed SBH after
birth led to SBH regression [275] (review [273]). More-
over, the reexpression of Dcx corrected the sensitivity to
convulsant-inducing drugs. Reduction of the SBH demon-
strated a restricted time window and was limited to early
postnatal ages. An additional avenue, which was not inves-
tigated at the postnatal stage, was the demonstrated genetic
interaction between DCX and Par-1/MARK2. The combined
knockdown of Par-1/MARK2 and DCX significantly rescued
the neuronal migration deficit and the subcellular proces-
sivity of centrosomal motility [110]. Therefore, the above-
mentioned studies raise the possibility that neuronal migra-
tion disorders may be eventually treatable by molecular or
pharmacological interventions.
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N. Kessaris, and O. Maŕın, “The embryonic preoptic area is a
novel source of cortical GABAergic interneurons,” Journal of
Neuroscience, vol. 29, no. 29, pp. 9380–9389, 2009.

[69] X. Tan and S. H. Shi, “Neocortical neurogenesis and neuronal
migration,”Wiley Interdisciplinary Reviews, 2012.
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