Table 2.
SARIMA regression of number of HFRS in Heilongjiang Province, China*
| Model | β | SE | t | P | 95% CI |
|---|---|---|---|---|---|
| Constant | 5.290 | 0.502 | 10.532 | 0.0001 | 4.306–6.274 |
| Autoregression, lag 1 | 0.748 | 0.070 | 10.624 | 0.0001 | 0.611–0.885 |
| Seasonal autoregression, lag 12 | 0.887 | 0.037 | 24.087 | 0.0001 | 0.814–0.960 |
| Relative humidity (%), 1-month lag | −0.010 | 0.003 | −3.266 | 0.002 | –0.016 to –0.004 |
| Relative humidity (%), 3-month lag | 0.008 | 0.003 | 2.426 | 0.017 | 0.002–0.014 |
| Curt root (MaxT), 2-month lag | 0.082 | 0.028 | 2.917 | 0.004 | 0.027–0.137 |
| Curt root (SOI), 2-month lag | −0.048 | 0.019 | −2.602 | 0.011 | –0.085 to –0.011 |
SARIMA = seasonal autoregressive integrated moving average model; HFRS = hemorrhagic fever with renal syndrome; CI = confidence interval; MaxT = monthly maximum temperature; SOI: southern oscillation index.