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Abstract
In this paper we investigate computationally the transient dynamics of an elastic capsule flowing
in a square microchannel with a rectangular constriction, and compare it with that of a droplet.
The confinement and expansion dynamics of the fluid flow results in a rich deformation behavior
for the capsule, from an elongated shape at the constriction entrance, to a flattened parachute
shape at its exit. Larger capsules are shown to take more time to pass the constriction and cause
higher additional pressure difference, owing to higher flow blocking. Our work highlights the
effects of two different mechanisms for non-tank-treading transient capsule dynamics. The capsule
deformation results from the combined effects of the surrounding and inner fluids’ normal stresses
on the soft particle’s interface, and thus when the capsule viscosity increases, its transient
deformation decreases, as for droplets. However, the capsule deformation is not able to create a
strong enough inner circulation (owing to restrictions imposed by the material membrane), and
thus the viscosity ratio does not affect much the capsule velocity and the additional pressure
difference. In addition, the weak inner circulation results in a positive additional pressure
difference ΔP+ even for low-viscosity capsules, in direct contrast to low-viscosity droplets which
create a negative ΔP+. Our findings suggest that the high cytoplasmatic viscosity, owing to the
protein hemoglobin required for oxygen transport, does not affect adversely the motion of non-
tank-trading erythrocytes in vascular capillaries.

1. INTRODUCTION
The study of the interfacial dynamics of artificial or physiological capsules (i.e. membrane-
enclosed fluid volumes) in viscous flows has seen an increased interest during the last few
decades due to their numerous engineering and biomedical applications [31, 32]. In the area
of interest of the present paper, the study of the motion and deformation of capsules and
biological cells in microfluidic channels is motivated by a wide range of applications
including drug delivery, cell sorting and cell characterization devices [1-3, 8, 11, 17, 39],
fabrication of microparticles and microcapsules with desirable properties [9, 21, 26, 37],
determination of membrane properties [25, 33], and of course its similarity to blood flow in
vascular capillaries [31].

Therefore, studying the dynamics of soft particles in confined solid ducts, such as
microfluidic channels and blood microvessels, provides useful information on the utilization
of these particles in chemical, pharmaceutical and physiological processes. For example,
understanding the stability of soft particle shapes provides helpful insight on the
hydrodynamic aggregation and the effective viscosity of suspensions [10]. The deformation
of artificial capsules in microchannels is directly associated with drug delivery, cell sorting
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and cell characterization [1, 2]. Furthermore, the deformability of red blood cells plays a
pivotal role in the oxygen and carbon dioxide exchange between the microcirculation and
the body tissues [31], and helps identifying the effects of blood disorders and diseases [3,
16, 39]. Studying the motion of capsules in micro-constrictions is further motivated by its
similarity to the erythrocyte motion over endothelial cells and adherent leukocytes in
vascular capillary vessels as well as other attached protuberances of biological nature such
as those formed during cancer cell metastasis and biofilm formation [18, 38, 44, 45].

The deformation of capsules and biological cells in solid ducts is determined by the
nonlinear coupling of the deforming hydrodynamic forces with the restoring interfacial
forces of the particle membrane. Since the latter forces depend on the type of the soft-
particle interface, this suggests that different soft particles (such as droplets, capsules,
vesicles and erythrocytes) may obtain quite different shapes as they travel in a solid vessel
[6, 10, 23, 27]. Their possible differences are further augmented by the strength of the inner
circulation, which depends on the type of the particle interface, and which affects strongly
the particle velocity and additional pressure difference. Thus, low-viscosity droplets with a
significant inner circulation cause a negative pressure difference and thus facilitate their
flow requirements; the opposite happens for high-viscosity droplets where the inner
circulation is weak [20, 24, 30]. Furthermore, the development of a four-vortex pattern on
the fluid-incompressible vesicle membrane (and the associated inner circulation) results in
an unexpected croissant shape (relatively wider in the narrowest direction of the channel) for
vesicles in rectangular microfluidic channels [10].

In this paper we investigate computationally the transient dynamics of an elastic capsule
flowing along the centerline of a square microchannel with a rectangular constriction. The
confinement and the expansion dynamics of the fluid flow results in a rich deformation
behavior for the capsule as it moves inside the microfluidic device, from an elongated shape
at the constriction entrance, to a flattened parachute shape at its exit. Larger capsules are
shown to take more time to pass the constriction and cause higher additional pressure
difference, owing to higher flow blocking.

Most important, our work highlights the effects of two different mechanisms for non-tank-
treading transient capsule dynamics. The capsule deformation results from the combined
effects of the surrounding and inner fluids’ normal stresses on the soft particle’s interface,
and thus when the capsule viscosity increases, its transient deformation decreases, as for
droplets. However, the capsule deformation is not able to create a strong enough inner
circulation (owing to restrictions imposed by the material membrane), and thus the viscosity
ratio does not affect much the capsule velocity and the additional pressure difference. In
addition, the weak inner circulation results in a positive additional pressure difference ΔP+

even for low-viscosity capsules, in direct contrast to low-viscosity droplets which create a
negative ΔP+. Our findings suggest that the high cytoplasmatic viscosity, owing to the
protein hemoglobin required for oxygen transport, does not affect adversely the velocity of
non-tank-trading erythrocytes in vascular capillaries nor impose any additional energy
requirement for the cells flow.

2. PROBLEM DESCRIPTION
We consider a three-dimensional capsule (with a spherical undisturbed shape and an elastic
interface) flowing along the centerline of a square microchannel with a rectangular
constriction in the middle, as shown in figure 1. To facilitate our description, we imagine
that the channel is horizontal as illustrated in figure 1(a). Thus, the flow direction (i.e. the x-
axis) corresponds to the channel’s or capsule’s length, the z-direction will be referred as
height while the y-direction will be referred as width. The height of the constriction is 2ℓz
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and that of the channel is 4ℓz. Both the constriction and the channel have width 4ℓz. The
rectangular constriction has length 2ℓz while the length of the entire microfluidic device is
20ℓz. The constriction half-height ℓz serves as the length scale for the present problem while
the origin of the co-ordinate system is placed in the middle of the rectangular constriction as
shown in figure 1(a).

The capsule’s interior and exterior are Newtonian fluids, with viscosities λμ and μ, and the
same density. The capsule size a is specified by its volume V = 4πa3/3 and is comparable (or
smaller) to the constriction half-height ℓz. In addition, we consider that the capsule is
slightly over-inflated, made of a strain-hardening membrane following the Skalak et al.
constitutive law [40] (and thus called Skalak capsule in this paper) with comparable shearing
and area-dilatation resistance. This capsule description represents well bioartificial capsules
such as the capsules made of covalently linked human serum albumin (HSA) and alginate
used in the experimental study of Risso, Collé-Pailot and Zagzoule [36].

For a membrane with shearing and area-dilatation resistance considered in this work, the
surface stress is determined by the in-plane stresses, i.e. Δf = −∇s · τ which in contravariant
form gives

(1)

where the Greek indices range over 1 and 2, while Einstein notation is employed for (every
two) repeated indices. In this equation, the ταβ|α notation denotes covariant differentiation, tβ
= ∂x/∂θβ are the tangent vectors on the capsule surface described with arbitrary curvilinear
coordinates θβ, and bαβ is the surface curvature tensor [14, 32].

The in-plane stress tensor τ is described by constitutive laws that depend on the material
composition of the membrane. In this work, we employ the Skalak et al. law [40] which

relates τ’s eigenvalues (or principal elastic tensions , β = 1, 2) with the principal stretch
ratios λβ by

(2)

Note that the reference shape of the elastic tensions is the spherical quiescent shape of the

capsule while to calculate  reverse the λβ subscripts. In Eq.(2), Gs is the membrane’s
shearing modulus while the dimensionless parameter C is associated with the area-dilatation
modulus Ga of the membrane (scaled with its shearing modulus) [32, 40].

To quantify the capsule over-inflation, we define the prestress parameter αp such that all
lengths in the undeformed capsule would be scaled by (1+αp), relative to the reference shape
[22]. Since the capsule is initially spherical, its membrane is initially prestressed by an

isotropic elastic tension  which depends on the employed constitutive law and
its parameters but not on the capsule size. For example, for a Skalak capsule with C = 1 and
αp = 0.05, the undisturbed capsule size a is 5% higher than that of the reference shape and
the initial membrane tension owing to prestress is τ0/Gs ≈ 0.3401.

At time t = 0 the capsule is located at −4ℓz, the flow is turn on inside the microfluidic device
and we investigate the transient dynamics of the capsule as it enters and exits the
constriction which occupies the x-region [−ℓz, ℓz]. Far from the capsule, the flow approaches
the undisturbed flow u∞ in the square channel characterized by an average velocity . (The
exact form of the channel’s velocity field u∞ and its average velocity  are given in section
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2 of our recent paper on capsule motion in a square microchannel [22].) We assume that the
Reynolds number is small for both the surrounding and the inner flows, and thus the capsule
deformation occurs in the Stokes regime.

The numerical solution of the interfacial problem is achieved through our interfacial spectral
boundary element method for membranes, and the interested reader is referred to our earlier
papers for more details on our spectral algorithm and our recent investigation on the capsule
dynamics in square and rectangular microchannels [14, 22, 23]. To verify the accuracy of
our results, we performed convergence runs covering the entire interfacial evolution (i.e.
well past steady state) with different spacial grids for several capsules and flow rates. Our
convergence runs showed that our results for the interfacial shape, the capsule velocity and
the additional pressure difference presented in this work were determined with an accuracy
of at least 3 significant digits.

In our work we assume that the flow rate Q inside the micro-device is fixed. In addition, we
consider a Skalak capsule with prestress αp = 0.05 (or τ0/Gs ≈ 0.3401) and membrane
hardness C = 1. In section 3 we study the interfacial dynamics for equiviscous capsules (i.e.
for viscosity ratio λ = 1) and different sizes or flow rates. The effects of viscosity ratio λ are
investigated in section 4. The present problem depends on two additional dimensionless
parameters: the capsule size (relatively to the constriction height) a/ℓz, and the capillary
number Ca defined as

(3)

where  is the average undisturbed velocity in the square microchannel. It is of interest to
note that the capillary number, as defined by Eq.(3), does not contain any length scale, and
thus it may be considered as a dimensionless flow rate. In this study, the velocity is scaled
with the average undisturbed velocity  and the pressure with the associated pressure scale,

, in the square channel.

The range of dimensionless parameters employed in our computational work (shown in table
1) can readily be used in experimental microfluidic systems. As an example, Leclerc et al.
[25] investigated ovalbumin microcapsules with shear modulus Gs = 0.07N/m in
microfluidic channels with a typical height ℓz = 50 μm. Using as external fluid glycerin with
viscosity μ ≈ 1 Pa s and average velocities , the authors achieved capillary
numbers in the range Ca ≈ 0.1–0.5. Considering erythrocytes with shear modulus Gs = 2.5
μN/m [13, 19] in microfluidic channels with height ℓz = O(10) μm and an external liquid
with a viscosity similar to that of water, μ ≈ 1 m Pa s, the same range of capillary numbers
can be achieved with average velocities .

3. CONSTRICTION DYNAMICS FOR EQUIVISCOUS CAPSULES
In this section we investigate the transient dynamics of a viscous capsule (with viscosity
ratio λ = 1) as it passes through the microfluidic constriction. We consider a wide range of
capsule sizes a, comparable or smaller to the constriction half-length (i.e. a/ℓz = 0.4–1) in
weak and moderate flow rates Ca. Our results, including the capsule lengths, its velocity Ux
and the additional pressure difference ΔP+ due to the capsule presence, are expressed as
functions of the capsule centroid xc.

The shape of a Skalak capsule as it flows inside the micro-device is shown in figure 2. The
bullet-like shape of the capsule obtained initially at the left-side of the square channel, e.g.
[22], becomes more pointed as the capsule approaches the constriction as shown in figure
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2(a). This is due to the strong hydrodynamic forces associated with the cross-sectional area
decrease which doubles the average fluid velocity inside the constriction since the flow rate
Q is fixed in our problem. To balance the deforming hydrodynamic forces, the capsule tries
to increase its downstream curvature and decrease its upstream curvature so that the total
restoring tension force on the membrane is increased. In essence, this capsule deformation
results from the curvature term in the membrane traction, Eq.(1), as we identified in our
earlier studies on capsule dynamics in planar extensional flows or in microfluidic channels
[14, 22, 23].

Thus as the capsule approaches the constriction, its length Lx is increased while its height Lz
is decreased considerably, as seen in figure 3(a,c). At the same time the capsule width Ly is
increased as shown in figure 3(b) and thus the capsule tries to occupy a larger area along the
less-confined width of the rectangular constriction. This deformation is consistent with the
steady-state capsule shape in rectangular channels where the capsule extends significantly in
the less-confined lateral direction of the channel cross-section owing to the development of
strong lateral tensions on the capsule membrane required for interfacial stability [23].

When the capsule is inside the constriction, i.e. its centroid is nearly xc = 0 as in figure 2(b),
the capsule has obtained a shape similar to the peddle-like shape characteristic of capsule
motion in rectangular channels [23]. This capsule shape involves elongation in the flow and
lateral directions, i.e. increased length Lx and Ly, and a significant decrease in its height Lz,
as shown in figure 3.

As the capsule moves out of the constriction seen in figure 2(c), its downstream portion lies
at the right-side of the square channel and thus it experiences the dynamics of the cross-
section expansion, i.e. the sudden drop of the average fluid velocity. Thus the downstream
portion of the capsule slows down; however, its upstream part is still inside the constriction
and moves with the faster velocity of the constriction. Both actions result in a compression
of the capsule shape and thus in a significant reduction of the capsule length Lx
accompanied with a fast increase of its height Lz, as shown in figure 3. This expansion effect
is much more pronounced as the capsule completely exits the constriction where it obtains a
very flattened three-dimensional parachute-like shape, presented in figure 2(d),
characterized by a higher height Lz compared to its length Lx. (See also the capsule lengths
in figure 3 when the capsule centroid is nearly xc = 2.) After this peak, the capsule relaxes
towards a bullet shape in the square channel far downstream of the constriction.

Therefore, the two distinct regimes associated with the microfluidic constriction, i.e.
confinement and expansion, result in two distinct interfacial shapes. In the confinement
regime, the capsule obtains an elongated bullet shape where its length Lx obtains a
maximum value and its height Lz a minimum value. The opposite happens during the
expansion dynamics where the capsule obtains a flattened parachute shape. Similar
deformation has been observed in axisymmetric constrictions where the capsule width is
identical to its height (i.e. Ly = Lz) due to the axisymmetry [35].

The confinement dynamics are more pronounced as the capsule size a is increased as shown
in figure 3, since then the capsule occupies a larger volume and thus causes a higher flow
blocking. It is of interest to note that due to the rectangular constriction, both the
confinement and expansion dynamics are associated with an elongated capsule width Ly,
which increases monotonically with the size a, as seen in figure 3(b). Therefore, the
constriction cross-sectional asymmetry results in a highly non-axisymmetric, fully three-
dimensional capsule shape (as shown in figure 4), which cannot be described from single-
view observations as commonly happens in microfluidic experiments or based on
axisymmetric or two-dimensional computations.
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In addition, the larger capsule size a (or flow blocking) causes a monotonic decrease of the
capsule velocity velocity Ux and an increase of the additional pressure difference ΔP+ as
seen in figure 5. Observe that for the equiviscous (λ = 1) capsules studied in this section, the
additional pressure difference ΔP+ is positive (as also happens for viscous droplets [30]) and
thus the capsule presence results in higher energy requirements to maintain a constant flow
rate.

We emphasize that the effects of decreasing the flow rate Ca (for a given capsule size) are
similar to that of increasing the capsule size a (for a given flow rate), since both types of
experiments result in a higher flow blocking in the former case due to the reduced interfacial
deformation. Thus our results for the flow rate effects for a given capsule size (in particular
for Ca = 0.01–0.1 and a/ℓz = 0.7, 0.9) are omitted.

The monotonic variation of the capsule velocity Ux and the additional pressure difference
ΔP+ with the capsule size a or flow rate Ca can be understood by utilizing the scaling
behavior we developed for capsule motion in a straight channel [22]. We emphasize that our
earlier analysis was valid for steady-state capsule motion in straight solid ducts while the
current problem involve transient dynamics. However, our computational findings presented
in figure 5 clearly indicate that the transient dynamics over the entire micro-device scale as
the capsule dynamics inside the constriction (e.g. see figure 2(c)) which is similar to the
dynamics in a straight solid duct. Our conclusion for the current problem is further
reinforced by the quasi-steady nature of the Stokes flow.

Therefore, utilizing Eqs.(19) and (27) from our previous investigation, Ref.[22], for capsules
with size a comparable to the constriction size ℓz, the capsule velocity inside the constriction
should scale proportionally with the gap h between the capsule surface and the solid walls,

(4)

(where  is the average undisturbed velocity in the rectangular constriction), while the
additional pressure difference should be inversely proportional to the gap,

(5)

It is of interest to note that Eqs.(4) and (5) are formally valid for cylindrical channels, and
thus they represent only qualitatively the present problem by considering the gap h between
the capsule surface and the solid walls in the xz-plane where the strongest hydrodynamic
forces occur owing to the rectangular constriction. As the capsule size a increases (or as the
flow rate Ca decreases), the gap h between the capsule surface and the solid walls decreases,
and thus the capsule velocity decreases while the additional pressure difference ΔP+

increases, in agreement with our computational results shown in figure 5.

4. EFFECTS OF VISCOSITY RATIO
In this section we investigate the effects of viscosity ratio λ on the transient dynamics of a
capsule as it passes through the microfluidic constriction. For this, we consider a capsule
with a fixed size a/ℓz = 0.9 and capillary number Ca = 0.1, while we vary the viscosity ratio
in the range λ = 0–5, i.e. we investigate from inviscid to very viscous capsules.

Figure 6 shows that, for any viscosity ratio, the evolution of the capsule dimensions is
similar to that for an equiviscous capsule discussed in section 3. In addition, the figure
reveals that both in the confinement and the expansion area (i.e. as the capsule enters or
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exits the constriction), its deformation decreases with the viscosity ratio. However, during
the final relaxation stage towards the bullet shape in the square channel far downstream
from the constriction, it is the very viscous capsule with λ = 5 which is more deformed since
capsules with smaller viscosity ratio relax faster.

To explain the effects of the viscosity ratio on the capsule deformation, we need to consider
that the capsule is deformed owing to the combined effects of the surrounding and inner
fluids’ normal stresses on the capsule interface. Therefore, the capsule transient dynamics is
characterized by the membrane time scale necessary to reach steady state, which for a given
membrane hardness C is given by

(6)

where  is the flow time scale. (More details on this time scale are given in the
Appendix.) For low enough viscosity ratio, e.g. for λ ≤ 0.01 in our problem, the inner fluid
does not practically participate in the transient dynamics, and thus all low-viscosity capsules
show identical evolution, in agreement with our computational results shown in figure 6. For
moderate viscosity ratios, λ = O(1), both the inner and the surrounding fluids affect the
capsule deformation, while for very viscous capsules (e.g. λ = 5), it is the inner fluid which
mostly affects the capsule deformation.

As the viscosity ratio λ increases, the time necessary for the capsule to react to the flow
changes imposed by the constriction (i.e. the time scale τm) is increased. This makes the
deformation rate slower and thus the capsule’s transient deformation decreases with the
viscosity ratio as seen in figure 6. For the same reason, during the final relaxation stage
towards the bullet shape far downstream from the constriction, the very viscous capsule with
λ = 5 needs a significant time (or channel length) to reach equilibrium while the capsules
with smaller viscosity ratio relax faster, in agreement with Eq.(6) and our computational
findings shown in figure 6.

In contrast to the viscosity effects on the capsule deformation, the capsule velocity Ux is
practically not affected by λ, and thus all capsules show the same increase in Ux as they pass
through the constriction, as seen in figure 7(a). Similarly, the viscosity ratio has very weak
effects on the additional pressure difference ΔP+ which is positive for all viscosity ratios
(even for inviscid capsules with λ << 1), as shown in figure 7(b).

A. Comparison with droplet dynamics
Owing to the rather unexpected behavior of the capsule velocity Ux and the additional
pressure difference ΔP+ not to be affected much by the viscosity ratio, we proceed now by
investigating the corresponding effects on the droplet deformation. A droplet is also a
deformable object but, in contrast to a capsule, its surface tension γ remains constant. Thus,
our goal here is to clarify the similarities and differences of droplet and capsule transient
dynamics as they pass through the microfluidic constriction. To determine the droplet
dynamics, we utilized our fully-implicit time-integration spectral algorithm for droplets [12]
as well as our membrane spectral boundary element algorithm by imposing surface-tension
interfacial conditions, which is identical to our explicit time-integration spectral algorithm
for droplets [46]. In this case, the capillary number is defined as  where γ is the
droplet’s surface tension.

A comparison of the deformation of droplets and capsules, as in figures 8 and 6, reveals that
the droplet’s length Lx and height Lz deform similarly to those for a capsule, as both soft
particles pass through the microfluidic constriction. It is of interest to note that similar
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interfacial deformation was also found, both computationally and experimentally, for nearly-
spherical vesicles in microchannels with oscillating height [6, 29]. In essence, the
deformation of the particle’s length and height is a pure hydrodynamic effect due to the
significant changes in the flow caused by the constriction.

On the other hand, the droplet’s lateral dimension (i.e. its width Ly) shows a smaller
deformation than that for a capsule. Furthermore, the width Ly of the droplet increases only
during the confinement area where the droplet enters the constriction, and decreases during
the expansion area where the droplet exits the constriction, while the capsule remains
laterally elongated over the entire constriction. The different evolution of the width of the
two soft particles in the rectangular constriction is similar to the difference in the steady-
state shapes of droplets and capsules in rectangular channels identified in our recent work
[23]. In particular, in asymmetric channel flows, a capsule extends significantly along the
less-confined lateral direction of the channel cross-section (i.e. the channel width) to
facilitate the development of strong lateral tensions required for interfacial stability. Such
deformation is not required for a droplet owing to its a constant surface tension, and thus in
the present problem, the droplet width, after the initial increase in the confinement area,
reduces in the expansion area to facilitate the flattened parachute shape as the droplet exits
the constriction.

The major differences in the motion of the two soft particles involve the velocity Ux and the
additional pressure difference ΔP+, which in the case of a droplet are affected significantly
by the viscosity ratio λ as shown in figure 9. In contrast to the practically insensitive
capsules, the velocity of a droplet decreases with the viscosity ratio. The same is true for its
additional pressure difference ΔP+ which for a droplet is negative for low enough viscosity
ratios. It is of interest to note that the evolution of the velocity Ux and the additional pressure
difference ΔP+ for a very viscous droplet (e.g. λ = 5) is very similar to that for the capsule
(at any viscosity ratio). Therefore, even under the transient conditions imposed by the
microfluidic constriction, capsules with any viscosity ratio correspond better to very viscous
droplets, as we identified for steady-state capsule motion in solid ducts [22].

B. Reasoning for the transient dynamics of droplets and capsules
To explain the different effects of the viscosity ratio on the transient velocity Ux and the
additional pressure difference ΔP+ of droplets and capsules over the constriction, we need to
consider the fluid circulation inside the soft particles.

For the case of droplets, where the interface is just a separation of two fluid phases with no
material, there may be a significant inner circulation (with respect to the translation motion)
owing to the continuity of the interfacial shear stresses from the surrounding and inner
fluids. Thus, complex streamline patterns have been found for steady-state droplet motion in
solid ducts; for example, see figure 3 in Ref.[20] and figure 3(a) in Ref.[24]. The same is
true for unsteady droplet motion such as its passing through the microfluidic constriction
studied in this work. For low-viscosity ratio, the inner circulation is as significant as the
droplet translation velocity Ux. This is shown for λ ≤ 0.1 in table 2, where we calculated the
maximum and average of the absolute value of the interfacial shear velocity (with respect to
the droplet translation velocity Ux) as the capsule passes through the constriction. Note that
the magnitude of the interfacial shear velocity represents very well the strength of the inner
circulation. As the viscosity ratio increases, the inner circulation becomes weaker, e.g. its
representative velocity is reduced compared to the droplet translation velocity Ux, as seen in
table 2 for λ = 1, 2. For very viscous droplets, the inner circulation becomes negligible (as
shown in table 2 for λ = 5), and eventually for λ → ∞ the droplet solidifies, the inner
circulation becomes zero and the entire droplet moves with its translation velocity Ux only.
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For the case of capsule motion in solid ducts, at steady state there is no flow inside the
capsule owing to the specific symmetry of the channel flow and the material interface, i.e.
the elastic-solid membrane [22, 32]. Thus, the steady-state capsule motion in duct flows
corresponds better to the dynamics of high-viscosity (λ >> 1) droplets since at steady state
both soft particles translate in the duct flow as solids with zero inner velocity, as discussed
in our earlier papers [22, 23].

During transient, non-tank-treading capsule motion, as in the current problem, the
deformation of the capsule should create some inner circulation. To determine how
significant this inner motion is, in table 2 we also include information on the magnitude of
the interfacial shear velocity (with respect to the translation velocity Ux) for capsules inside
the constriction with several viscosity ratios. In contrast to droplets, the circulation inside a
capsule passing through the constriction remains always small (compared to its translation
velocity Ux), even at low viscosity ratios.

Therefore, owing to restrictions imposed by the material membrane, the transient, non-tank-
treading capsule deformation is always accompanied with a weak inner circulation, and thus
the viscosity ratio does not affect much the capsule velocity Ux and the additional pressure
difference ΔP+, as shown earlier in figure 7. In addition, the weak inner circulation results in
a positive additional pressure difference ΔP+ even for low-viscosity capsules with λ << 1, in
direct contrast to low-viscosity droplets which create a negative ΔP+. In essence, owing to
the weak inner circulation, during transient, non-tank-treading motion, capsules at any
viscosity ratio still correspond to high-viscosity (λ >> 1) droplets, as at steady state [22, 23].

It is of interest to note that low-viscosity capsules are more deformed than very viscous
capsules as discussed earlier around Eq.(6), and thus they show a more flattened parachute
shape as they exit the constriction, characterized by a higher height Lz as seen in figure 6(c)
for xc/ℓz ≈ 2. The larger flow blocking of the more deformed shapes causes a higher peak in
the positive additional pressure difference ΔP+ of low-viscosity capsules in the expansion
area, shown in figure 9(b) for xc/ℓz ≈ 2.

5. CONCLUSIONS
In this paper we have investigated computationally the transient dynamics of an elastic
capsule flowing along the centerline of a square microchannel with a rectangular
constriction in the middle. In particular, we have considered a slightly over-inflated elastic
capsule made of a strain-hardening membrane (following the Skalak et al. constitutive law)
with comparable shearing and areadilatation resistance. Our investigation involves low-to-
moderate flow rates with capillary number Ca = O(0.1) and capsule sizes a comparable or
smaller to the constriction narrowest direction (height). This study is motivated by a wide
range of applications including drug delivery, cell sorting and cell characterization devices,
microcapsule fabrication, determination of membrane properties, and of course its similarity
to blood flow in vascular capillaries.

Our computational investigation reveals that the capsule shows a rich deformation behavior
as it moves inside the microfluidic device. In particular, the two distinct regimes associated
with the microfluidic constriction, i.e. confinement and expansion, result in two distinct
interfacial shapes. In the confinement regime, the capsule obtains an elongated shape with a
maximum length and a minimum height. The opposite happens during the expansion
dynamics where the capsule obtains a flattened parachute shape. The deformation of the
capsule’s length and height is a pure hydrodynamic effect due to the significant changes in
the flow caused by the constriction, and thus it is similar to that for a droplet or a vesicle [6,
29]. However, over the entire passing through the rectangular constriction, the capsule
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shows an elongated width owing to the development of strong lateral tensions on the capsule
membrane required for interfacial stability in asymmetric channels as discussed in our recent
work [23]. Therefore, the transient capsule motion is associated with a highly non-
axisymmetric, fully three-dimensional capsule shape which cannot be described from single-
view observations as commonly happens in microfluidic experiments or based on
axisymmetric or two-dimensional computations.

As the capsule size increases (or as the flow rate decreases), the gap between the capsule
surface and the solid walls decreases, and thus the capsule velocity decreases while the
additional pressure difference increases. Thus, larger capsules take more time to pass the
constriction and cause higher additional pressure difference, owing to higher flow blocking.

Our work highlights the effects of two different mechanisms for capsule’s non-tank-treading
transient dynamics. The capsule deformation results from the combined effects of the
surrounding and inner fluids’ normal stresses on the soft particle’s interface, and thus when
the capsule viscosity increases, its transient deformation decreases, as for droplets. However,
the capsule deformation is not able to create a strong enough inner circulation (owing to
restrictions imposed by the material membrane), and thus the viscosity ratio does not affect
much the capsule velocity and the additional pressure difference. In addition, the weak inner
circulation results in a positive additional pressure difference even for low-viscosity
capsules. This is in direct contrast to low-viscosity droplets where the continuity of the
interfacial shear stresses from the surrounding and inner fluids creates a strong inner
circulation and a negative additional pressure difference. In essence, owing to the weak
inner circulation, during transient non-tank-treading motion, capsules at any viscosity ratio λ
correspond to high-viscosity (λ >> 1) droplets, as at steady state where there is no flow
inside the capsules [22, 23].

It is of interest to note that our conclusions are not restricted to artificial capsules but should
also represent physiological capsules, such as erythrocytes, for the same physical reasons.
The erythrocyte membrane consists of an outer lipid bilayer (which is essentially a two-
dimensional incompressible fluid with no shearing resistance as in vesicles) and an
underlying spectrin skeleton (which exhibits shearing and area-dilatation resistance like the
elastic membrane of common artificial capsules) [41]. Under different flow conditions, the
spectrin cytoskeleton dominates the erythrocyte dynamics and the cell behaves like a non-
spherical capsule [15, 42]. The erythrocyte is responsible for exchanging oxygen and carbon
dioxide with the tissues in the vascular capillaries [31]. The cell’s interior is a concentrated
solution of the protein hemoglobin which binds oxygen in the pulmonary system, and
releases it to the tissues throughout the systemic circulation. Because of hemoglobin, the
cytoplasm viscosity is several times higher than the plasma viscosity resulting in a viscosity
ratio λ ≈ 5 at the human body temperature of 37° [28, 41]. Our work suggests that the much
higher cytoplasmatic viscosity does not affect adversely the velocity of non-tank-trading
erythrocytes in vascular capillaries nor impose any additional energy requirement for the
cells flow since it does not affect much the additional pressure difference.
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Appendix: Time scale analysis for the interfacial dynamics of capsules
The dynamics of elastic capsules with shearing and area-dilatation resistance evolves on the
membrane tension time scale, which at the small deformation regime was found to be
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(7)

(where Es is the membrane’s Young modulus), by the analytical investigations of Brunn [7]
and of Barthès-Biesel and Rallison [5]. Note that the analytical investigations showed that
the dynamics of a capsule with a thin elastic membrane should be affected by two time
scales (differed by a factor of O(10)) owing to the two associated deformation modes, i.e.
overall shape and in-surface stretching. In evolution or relaxation experiments, after the very

early times, only the larger time scale  (i.e. the one with the minus in the denominator)
affects the dynamics, being the dominant one in the transient process [5, 7].

The viscosity ratio term shown in Eq.(7) appears to be complicated but for both time scales,
it can be represented very well by a simple linear increase with λ, e.g.

(8)

(where the relative error of the linear approximation is less than 10−2). We emphasize that
the membrane time scale τm in this equation is similar to the droplet time scale

(9)

found by the early analytical investigation of Taylor [43]. (See also section 4 in the review
article by Rallison [34].)

This reveals that both time scales result from the common physics of the two-phase
interfacial dynamics, i.e. the combined effects of the surrounding and inner hydrodynamics
on the soft particles’ interface, as shown at the interfacial stress condition Eq.(1). Note that
in this equation, the surface stress vector (or hydrostatic traction) Δf is defined from the
stress tensor σ and the interfacial unit normal n pointing into the surrounding fluid, i.e.

(10)

where the subscripts 1 and 2 represent the particle’s inner and surrounding fluids,
respectively. Observe that in Eq.(10) the minus sign shows in reality additive contribution of
the surrounding and inner fluids’ stresses on the interface owing to the stress definition to
represent the force from the upper to the lower fluid layer along the direction of the
surface’s normal vector.

For a strain-hardening Skalak capsule, the Young modulus is related to the membrane’s
shear and area-dilatation moduli by Es = 2 Gs (1 + 2C)/(1 + C) [32], and thus for the Skalak
C = 1 capsules studied in this work, Es = 3 Gs. Utilizing the dimensionless parameters valid
for the current work, the membrane time scale becomes

(11)

where  is the flow time scale and the capillary number  contains the
membrane’s shear modulus Gs. Therefore, excluding the numerical coefficients associated
with the viscosity ratio, which are of O(1), the membrane time scale for microfluidic flows
can be expressed as
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(12)

For non-small capsule deformations in microfluidic flows, such as the ones studied in the
present paper or in our earlier investigations for capsule motion in square or rectangular
microchannels [22, 23], our computational results show that the capsule dynamics is well
represented by the membrane time scale given by Eq.(12).
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FIG. 1.
(a) Illustration of an elastic capsule flowing at the centerline of a square microchannel with a
rectangular constriction. (b) Spectral boundary element discretization of the microfluidic
geometry.
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FIG. 2.
The shape of a Skalak capsule with C = 1, a/ℓz = 1, λ = 1 and Ca = 0.1 moving inside the
microfluidic constriction. The capsule’s centroid xc/ℓz is (a) −1.51, (b) −0.1, (c) 0.81, and (d)
2.05. The three-dimensional capsule views were derived from the actual spectral grid using
orthographic projection in plotting.
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FIG. 3.
Evolution of the capsule lengths as a function of the centroid xc, for a Skalak capsule with C
= 1, Ca = 0.1 and λ = 1, for size a/ℓz = 0.4, 0.6, 0.8, 0.9, 1. (a) Length Lx, (b) width Ly, and
(c) height Lz (scaled with the length 2a of the undisturbed spherical shape). These lengths
are determined as the maximum distance of the interface in the x, y and z directions.
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FIG. 4.
The shape of a Skalak capsule with C = 1, a/ℓz = 1, λ = 1 and Ca = 0.1 moving inside the
microfluidic constriction for capsule’s centroid (a) xc/ℓz = −1.51 and (b) xc/ℓz = 2.05. The
capsule shape is plotted as seen slightly askew from the positive z-axis to reveal its fully
three-dimensional conformation.
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FIG. 5.
Evolution of (a) the capsule velocity Ux, and (b) the additional pressure difference ΔP+, as a
function of the centroid xc, for a Skalak capsule with C = 1, Ca = 0.1 and λ = 1, for size a/ℓz
= 0.4, 0.6, 0.8, 0.9, 1.
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FIG. 6.
Evolution of the capsule lengths as a function of the centroid xc, for a Skalak capsule with C
= 1, a/ℓz = 0.9 and Ca = 0.1, for viscosity ratio λ = 0.01, 0.1, 1, 2, 5. (a) Length Lx, (b) width
Ly, and (c) height Lz (scaled with the length 2a of the undisturbed spherical shape). Our
results for λ = 0.01 are identical for lower viscosity ratios, e.g. λ = 0.001, 0, and thus
represent the low-viscosity limit λ << 1.
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FIG. 7.
Evolution of (a) the capsule velocity Ux, and (b) the additional pressure difference ΔP+, as a
function of the centroid xc, for a Skalak capsule with C = 1, a/ℓz = 0.9 and Ca = 0.1, for
viscosity ratio λ = 0.01, 0.1, 1, 2, 5.
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FIG. 8.
Evolution of the droplet lengths as a function of the centroid xc, for a droplet with a/ℓz = 0.9,
Ca = 0.1 and viscosity ratio λ = 0.01, 0.1, 1, 2, 5. (a) Length Lx, (b) width Ly, and (c) height
Lz (scaled with the length 2a of the undisturbed spherical shape). Our results for λ = 0.01 are
identical for lower viscosity ratios, e.g. λ = 0.001, 0, and thus represent the low-viscosity
limit λ << 1.
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FIG. 9.
Evolution of (a) the velocity Ux, and (b) the additional pressure difference ΔP+, as a function
of the centroid xc, for a droplet with a/ℓz = 0.9, Ca = 0.1 and viscosity ratio λ = 0.01, 0.1, 1,
2, 5.

Park and Dimitrakopoulos Page 23

Soft Matter. Author manuscript; available in PMC 2014 October 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Park and Dimitrakopoulos Page 24

TABLE 1

Range of parameters studied in this work. The capsule hardness is C = 1 and its prestress αp = 0.05 (or τ0/Gs
≈ 0.3401).

Varying parameter Fixed parameters

a/ℓz = 0.4–1 Ca = 0.1, λ = 1

Ca = 0.01–0.1 a/ℓz = 0.7, 1, λ = 1

λ = 0.01-5 a/ℓz = 0.7, 0.9, Ca = 0.1
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TABLE 2

Maximum and average of the absolute value of the shear velocity on the surface of a droplet or capsule (in the
reference frame moving with the soft particle), when the particle is in the middle of the constriction (i.e. xc ≈
0), for a/ℓz = 0.9, Ca = 0.1 and several viscosity ratios λ. Also included is the particle velocity Ux for
comparison reasons. (The velocity scale is the average undisturbed velocity  in the square channel.) Similar
results we obtain when the capsule enters or exits the constriction.

Maximum interfacial shear velocity

Particle λ Ux |ux|max |uy|max |uz|max

0.01 3.968 3.264 0.476 0.943

0.1 3.852 2.952 0.408 0.860

Droplet 1 3.411 1.620 0.177 0.454

2 3.291 1.129 0.194 0.301

5 3.181 0.660 0.156 0.177

0.01 3.175 0.197 0.160 0.262

0.1 3.175 0.192 0.156 0.253

Capsule 1 3.167 0.152 0.123 0.201

2 3.165 0.140 0.100 0.160

5 3.138 0.102 0.068 0.101

Average interfacial shear velocity

Particle λ Ux |ux|ave |uy|ave |Uz|ave

0.01 3.968 1.335 0.294 0.336

0.1 3.852 1.161 0.237 0.302

Droplet 1 3.411 0.516 0.070 0.150

2 3.291 0.344 0.046 0.102

5 3.181 0.185 0.028 0.059

0.01 3.175 0.108 0.034 0.084

0.1 3.175 0.106 0.033 0.082

Capsule 1 3.167 0.093 0.027 0.070

2 3.165 0.083 0.022 0.059

5 3.138 0.060 0.015 0.041
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