
Primary angle-closure glaucoma (PACG) is the most 
common form of primary glaucoma in Chinese [1-3]. Several 
studies have shown that genetic factors play an important 
role in the development of PACG [4-6]. Although several 
susceptible loci and genes have been investigated for PACG, 
the precise genes underlying PACG have not been identified 
[7-12]. PACG has been shown to be associated with a shallow 
anterior chamber depth (ACD), a thick lens, and a short axial 
length (AL) of the eye [13-16]. A high heritability of ACD 
has been found in various studies [6,17-19], and ACD shares 
common genetic determinants with AL and anterior angle 
distance [20]. Thus, genes regulating the growth of the ocular 
axial length might be good candidates for PACG.

Hyperopia is a common refractive error associated with 
a shortened ocular axial length [21-24]. Infants are usually 
born hyperopic with refractions ranging from 1.0 D (±1.5 
D) to 2.5 D (±2.5 D) [25-28]. The degree and variance of 
hyperopia are decreased by emmetropization within the first 
year of life, with few changes thereafter up to at least 3 years 

of age [27,29-32]. By the age of 3 years, the average spherical 
refraction ranges from 0.38 D (±1.15 D) to 1.40 D (±1.56 D) 
[33-35]. In children of different ethnicities 36 to 47 months 
old, approximately 6.3% to 10.6% carry refractions above 
+3.00 D, while 0.8% to 1.9% are above +5 D [33-35]. People 
with high hyperopia often suffer from blurred vision, asthe-
nopia, accommodative dysfunction, binocular dysfunction, 
amblyopia, and strabismus [36,37]. There is much support 
for a genetic basis in the development of hyperopia [38-41], 
particularly for high hyperopia [42,43]. Several genes have 
been investigated with hyperopia in association studies and 
mutation studies, but the genes responsible for high hyperopia 
alone have not been identified [44-49]. Because ocular axial 
length is a critical determinant of refractive errors, genes 
regulating growth of the ocular axial length may be good 
candidates for high hyperopia [20,22,23,50].

Recently, a homozygous mutation in the serine protease 
56 (Prss56) gene has been associated with angle-closure glau-
coma and posterior microphthalmia in mice [51]. Mutations 
in PRSS56 are also responsible for some cases of autosomal 
recessive posterior microphthalmos and nanophthalmos in 
humans [51-53]. Posterior microphthalmia and nanophthalmos 
are characterized by extreme hyperopia ranging from +8.00 
D to +25.00 D due to a shortened axial length between 14 and 
20 mm (23.44 mm in normal adults [54]) [42,43,55-58].
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Thus, the aim of this study was to evaluate PRSS56 
variations in patients with PACG or high hyperopia. Eleven 
variants were detected in 14 out of 299 patients, and two 
of the 11 variants were detected in four out of 262 normal 
controls. The results suggested that PRSS56 variants may be 
implicated in PACG and high hyperopia in humans.

METHODS

Subjects: A total of 561 subjects were enrolled in this study, 
including 189 probands with PACG, 110 probands with 
high hyperopia, and 262 normal controls. Written informed 
consent conforming to the tenets of the Declaration of 
Helsinki was obtained from each participant or his or her 
guardian before clinical data and peripheral venous blood 
were collected. This study was approved by the institutional 
review board of Zhongshan Ophthalmic Center.

PACG was diagnosed according to the criteria of the 
Congress of International Society for Geographical and 
Epidemiological Ophthalmology (ISGEO) definition and 
classification of glaucoma [1]. Individuals with PACG who 
were enrolled in this study met the criteria as previously 
described [11,12]. 1) They exhibited more than two of the 
following symptoms and signs: eye pain, headache, blurred 
vision, conjunctival congestion, cornea epithelial edema, 
mild-dilated pupil with inactive response to illumination, 
and iris atrophy. 2) They had an anterior chamber angle 
closure of at least 180 degrees in gonioscopy and 3) had 
intraocular pressure (IOP) over 21 mmHg in at least one eye 
as assessed using Goldmann applanation tonometry. Patients 
with secondary glaucoma of ocular trauma, uveitis, diabetic, 
hypertension, and any other disease predisposed to glaucoma 
were excluded. Subjects with high hyperopia recruited in this 
study had bilateral cycloplegic sphere refraction ≥+5.00 D at 
or after 3 years old and no other known ocular or systemic 
diseases. Normal control subjects consisted of students 
recruited from 12 universities in Guangzhou, China, who 
met the following criteria: 1) bilateral cycloplegic sphere 
refraction between −0.50 D and +0.50 D; 2) bilateral visual 
acuity of 1.0 or better; 3) no family history of glaucoma, high 
myopia, or high hyperopia; and 4) no other ocular or systemic 
diseases.

All of the subjects received routine ophthalmological 
examinations, including visual acuity, slit-lamp, and direct 
ophthalmoscopy. Visual field defects were detected using a 
static automated white on white threshold perimetry (SITA 
fast strategy, program 30–2, model 750, Humphrey Field 
Analyzer, Carl Zeiss Meditec, Dublin, CA). Refractive 
errors were measured using an auto refractometer (Topcon 
KR-8000, Paramus, NJ) after cycloplegia (Mydrin-P, Santen 

Pharmaceutical, Osaka, Japan). The ocular axial length was 
measured using an IOL master V5 (Carl Zeiss Meditec AG, 
Jena, Germany). Additional examinations, such as obtaining 
a fundus photograph, were performed in selected individuals. 
All subjects and their clinical data were collected from the 
Zhongshan Ophthalmic Center at Sun Yat-sen University.

Mutation screening: Genomic DNA was prepared from the 
venous blood of each participant as we previously described 
[59]. The coding exons and adjacent intronic regions of 
PRSS56 were amplified with polymerase chain reaction 
(PCR). Primers used to amplify the genomic fragments of 
PRSS56 have been previously described [51,52] with modi-
fications (Appendix 1). The amplicons were sequenced 
with a cycle sequencing kit (ABI BigDye Terminator Cycle 
Sequencing Kit v3.1, Applied Biosystems, Foster City, CA) 
and electrophoresed on a Genetic Analyzer (ABI 3100 Genetic 
Analyzer, Applied Biosystems). The sequencing results 
from the subjects were compared with PRSS56 consensus 
sequences (National Center for Biotechnology Information, 
NC_000002.11 Reference GRCh37.p10 Primary Assembly 
[233,385,173…233390426]). To identify sequence variations, 
the SeqMan II program of the Lasergene package (DNAStar, 
Madison, WI) was used.

Variation analysis: The variations were described according 
to the recommendations of the Human Genomic Variation 
Society. Polymorphism Phenotyping v2 (PolyPhen-2) and 
Sorting Intolerant From Tolerant (SIFT) online tools were 
used to predict the effects of missense variations. Each 
variant was initially confirmed with bidirectional sequencing 
and then evaluated in the 262 normal control subjects. The 
frequency of the variations in the patients was compared to 
that in the controls using Fisher’s exact test with α=0.05.

RESULTS

The sequencing analysis of PRSS56 coding exons and adja-
cent intronic regions was successful for all subjects. A total of 
eleven different variations involving 15 alleles were detected 
in 14 of 299 patients (five with PACG and nine with high 
hyperopia), including one known and ten novel variations 
(Table 1, Figure 1). One patient with PACG demonstrated 
homozygous variants, while the remaining 13 patients showed 
heterozygous variants. In addition, two of the 11 variants were 
detected in four of the 262 normal controls, involving four 
alleles. The frequency of the variants in the patients with high 
hyperopia (9/220=4.09%) significantly differed from that in 
the controls (4/524=0.76%, p=0.003, Table 2). Significant p 
value remained when the frequencies of the variants were 
compared between the total patients (PACG and high hyper-
opia) and the normal controls (p=0.024, Table 2). Although 
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no significant p value was obtained when the frequencies of 
the variants were compared between patients with PACG and 
normal controls (p=0.336, Table 2), four variants were found 
in patients with PACG but not in normal controls, including 
a known mutation and a homozygous variation.

The c.1066dupC (p.Gln356Profs*152) mutation, which 
has been known to cause nanophthalmos in homozygous 
individuals, was found in a heterozygous state in a patient 
with PACG and a patient with high hyperopia but was not 
observed in any of the 262 normal control subjects. The 
patient with PACG and the c.1066dupC mutation exhibited 
bilateral anterior chamber angle closure above 180 degrees 
and an ocular axial length of 23.05 mm and 22.95 mm in 
the right and left eyes, respectively. The patient with high 
hyperopia and a c.1066dupC mutation was a 4-year-old boy, 
who carried spherical refractions of +6.25 D and +6.75 D.

A novel homozygous variation, c.431C>T (p.Ala144Val), 
was detected in a 61-year-old female patient with PACG. The 
ocular axial length was 15.9 mm in the right eye, but she had 
a phthisis bulbi of the left eye at the first clinical observation. 
The anterior chamber angle in the right eye was closed at 
360 degrees on gonioscopy. This variation was predicted to 
be damaging by Polyphen-2 and SIFT analysis and was not 
observed in any of the 262 normal control subjects.

Two other variants cosegregated with high hyperopia 
in two families, further supporting the association between 
variations in the PRSS56 gene and high hyperopia. The 
variant c.376G>T (p.Gly126Trp) was detected in a 36-year-old 
man and his daughter. The male patient carried refractions of 
+8.00 D and +7.00 D in the right and left eyes, respectively. 
His daughter was also hyperopic with +5.00 D and +4.00 D 
in the respective right and left eye by the age of 5 years. The 
daughter was not included in the initial screening because 
the refraction was less than +5.00 D in her left eye. However, 
because she was hyperopic and related to the proband, she was 
treated as an affected individual in the family. She was further 
screened, and the same variant as in the proband was detected. 
The mother in this family was normal without hyperopia, 
and her DNA sample was not available for further study. In 
addition, this variant was also found in a patient with PACG 
who had a bilateral anterior chamber angle closure of 360 
degrees. Another novel variation, c.1687C>T (p.Arg563Cys), 
was detected in a 22-year-old male patient and his elder sister. 
They both showed high hyperopia of +6.00D at least in one 
eye with shortened ocular axial lengths, except the sister 
showed refraction +4.75D in her left eye. Based on detection 
of the variant c.1687C>T (p.Agr563Cys) in the brother in the 
initial screening, the sister was further sequenced, and the 
same variant was detected. The DNA samples and refraction 

examinations of the parents in this family were not available. 
Neither of the two variants (c.376G>T and c.1687C>T) were 
found in 262 normal controls, and both were predicted to be 
damaging by Polyphen-2 and SIFT analyses.

The other seven variants (c.299G>A, p.Arg100Gln; 
c.656C>G, p.Pro219Arg; c.739C>A, p. Arg247Ser; 
c.746C>T, p.Pro249Leu; c.794G>A, p.Arg265His; c.827C>T, 
p.Ala276Val; and c.1019C>T, p.Ser340Phe) were detected in 
either two patients with PACG or six patients with high hyper-
opia. However, two of these variants (c.739C>A, p.Arg247Ser 
and c.1019C>T, p.Ser340Phe) were also observed in normal 
controls. The clinical data for all patients are listed in Table 
3 and Table 4.

DISCUSSION

In this study, PRSS56 was evaluated in Chinese patients with 
either PACG or high hyperopia. To the best of our knowl-
edge, this is the first analysis of PRSS56 in human subjects 
with PACG or high hyperopia. A total of 11 variations were 
detected in five patients with PACG and nine patients with 
high hyperopia, including ten novel variations and one known 
mutation, suggesting that the PRSS56 gene is a good candi-
date gene for PACG and high hyperopia.

The PRSS56 gene is classified as a member of the 
chymotrypsin family because the gene carries a catalytic 
triad consisting of Asp191-His145-Ser286 [52]. In this study, 
variations of Ala144Val, Pro219Arg, Phe249Leu, Arg265His, 
and Ala276Val were all located in the region of the catalytic 
triad (Asp191-His145-Ser280), and all of these residues were 
highly conserved. Furthermore, these variations may disrupt 
the catalytic activity of the protein. The Gln356Profs*152 and 
Arg563Cys variations were also predicted to be deleterious 
by affecting the C-terminal of the PRSS56 gene. For example, 
in the Grm4 mouse, the mutation located in the C-terminal of 
the Prss56 gene resulted in increased expression of the Prss56 
gene and a phenotype of angle-closure glaucoma [51].

A known mutation, c.1066dupC (p.Gln356Profs*152), 
was found to be a heterozygous mutation in a patient with 
PACG and in a patient with high hyperopia but not in 262 
normal controls. However, this mutation was previously 
found to be a homozygous mutation in patients with posterior 
microphthalmia and nanophthalmos [51-53]. Previous studies 
have also reported that heterozygous and homozygous muta-
tions in the membrane frizzled-related protein (MFRP) gene 
have resulted in nanophthalmos [60]. Heterozygotes showed 
less severe phenotypes compared to homozygotes but were 
significantly different from the general population [58]. In 
this study, in the patient with PACG and the heterozygous 
mutation c.1066dupC, the ocular axial length was 23.05 mm 

http://www.molvis.org/molvis/v19/2217


Molecular Vision 2013; 19:2217-2226 <http://www.molvis.org/molvis/v19/2217> © 2013 Molecular Vision 

2220

Ta
b

l
e
 1

. V
a

r
ia

t
io

n
s i

n
 P

RSS


56
 d

et
e

c
t

e
d

 in
 1

89
 p

r
o

b
a

n
d

s w
it

h
 P

AC


G
 a

n
d

 1
10

 p
r

o
b

a
n

d
s w

it
h

 h
ig

h
 h

y
pe

r
o

pi
a

.

N
um

be
r

E
xo

n
Va

ri
at

io
n

E
ff

ec
t

St
at

us
*P

ro
ba

nd
s

C
on

tr
ol

s
Po

ly
ph

en
-2

 (s
co

re
s)

SI
FT

 (s
co

re
s)

R
em

ar
ks

1
E4

c.
29

9G
>A

p.
A

rg
10

0G
ln

he
te

ro
G

10
6,

 G
16

5
0/

26
2 

N
C

be
ni

gn
(0

.0
88

)
to

le
ra

nt
(0

.75
)

no
ve

l

2
E4

c.
37

6G
>T

p.
G

ly
12

6T
rp

he
te

ro
Q

T9
00

; 
G

22
8

0/
26

2 
N

C
pr

ob
ab

ly
 

da
m

ag
in

g(
0.

97
8)

in
to

le
ra

nt
 (0

.0
1)

no
ve

l

3
E4

c.
43

1C
>T

p.
A

la
14

4V
al

ho
m

o
G

20
7

0/
26

2 
N

C
po

ss
ib

ly
 

da
m

ag
in

g(
0.

75
4)

in
to

le
ra

nt
(0

.0
0)

no
ve

l

4
E6

c.
65

6C
>G

p.
Pr

o2
19

A
rg

he
te

ro
Q

T4
88

0/
26

2 
N

C
po

ss
bi

ly
 

da
m

ag
in

g(
0.

71
9)

to
le

ra
nt

 (0
.3

5)
no

ve
l

5
E7

c.7
39

C
>A

p.
A

rg
24

7S
er

he
te

ro
Q

T6
16

1/
26

2 
N

C
be

ni
gn

(0
.5

88
)

to
le

ra
nt

 (0
.2

7)
no

ve
l

6
E7

c.7
46

C
>T

p.
Pr

o2
49

Le
u

he
te

ro
Q

T9
22

0/
26

2 
N

C
po

ss
bi

ly
 

da
m

ag
in

g(
0.

94
4)

in
to

le
ra

nt
 (0

.0
1)

no
ve

l

7
E7

c.7
94

G
>A

p.
A

rg
26

5H
is

he
te

ro
Q

T2
97

0/
26

2 
N

C
be

ni
gn

(0
.0

12
)

to
le

ra
nt

 (0
.2

4)
no

ve
l

8
E7

c.
82

7C
>T

p.
A

la
27

6V
al

he
te

ro
Q

T4
90

0/
26

2 
N

C
po

ss
bi

ly
 

da
m

ag
in

g(
0.

57
2)

to
le

ra
nt

 (0
.10

)
no

ve
l

9
E9

c.1
01

9C
>T

p.
Se

r3
40

Ph
e

he
te

ro
Q

T9
68

3/
26

2 
N

C
po

ss
bi

ly
 

da
m

ag
in

g(
0.

71
9)

to
le

ra
nt

 (0
.7

0)
no

ve
l

10
E9

c.1
06

6d
up

C
p.

G
ln

35
6P

ro
fs

*1
52

he
te

ro
Q

T3
16

, G
18

2
0/

26
2 

N
C

/
/

K
no

w
n 

[5
1-

53
]

11
E1

3
c.1

68
7C

>T
p.

A
rg

56
3C

ys
he

te
ro

Q
T7

03
0/

26
2 

N
C

pr
ob

ab
ly

 
da

m
ag

in
g(

0.
93

0)
in

to
le

ra
nt

 (0
.0

0)
no

ve
l

* 
Pr

ob
an

ds
 w

ith
 P

A
C

G
: G

10
6,

 G
16

5,
 G

22
8,

 G
20

7,
 G

95
, G

16
8,

 a
nd

 G
26

1.
 P

ro
ba

nd
s w

ith
 h

ig
h 

hy
pe

ro
pi

a:
 Q

T9
00

, Q
T4

88
, Q

T6
16

, Q
T9

22
, Q

T2
97

, Q
T4

90
, Q

T9
68

, Q
T3

16
, a

nd
 

Q
T7

03
. N

C
=n

or
m

al
 c

on
tro

ls
.

http://www.molvis.org/molvis/v19/2217


Molecular Vision 2013; 19:2217-2226 <http://www.molvis.org/molvis/v19/2217> © 2013 Molecular Vision 

2221

and 22.95 mm in the right and left eye, respectively, and 
the patient with high hyperopia and heterozygous mutation 
c.1066dupC had spherical refractions of +6.25 D in the right 
eye and +6.75D in the left eye. These features were similar to 
but less severe than the findings in posterior microphthalmia 
and nanophthalmos, in which the refractive errors ranged 

from +10 D to +18 D and the ocular axial length varied from 
14 mm to 20 mm [51,52,56]. The patient with PACG who 
carried a homozygous mutation (c.431C>T, p.Ala144Val) in 
the PRSS56 gene also presented a more severe phenotype of 
PACG, with an ocular axial length of 15.9 mm. Furthermore, 
the frequency of the variations in the patients with high 

Figure 1. Eleven variations were detected in patients with high hyperopia or primary angle-closure glaucoma. From left to right, the columns 
represent the names of the variations, the sequences with variations, the corresponding normal sequences, and the protein sequence alignment 
of seven PRSS56 orthologs at the regions with variants. All of the variants were novel except c.1066dupC.
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hyperopia significantly differed from that in the controls 
(p=0.003). A significant p value was also obtained when the 
total patients (PACG and high hyperopia) and the normal 
controls were compared (p=0.024).

Taken together, our results suggest that heterozygous 
and homozygous mutations in PRSS56 may be implicated 
in PACG and high hyperopia, as homozygous mutations 
observed in mice with angle-closure glaucoma or in humans 
with posterior microphthalmia or anophthalmia. Further 
studies are required to confirm the association of our 
findings.

APPENDIX 1. PRIMERS USED FOR 
AMPLIFICATION AND SEQUENCING OF THE 
PRSS56 GENE.

To access the data, click or select the words “Appendix 1.” 
Note: The # and * marks indicate that the primers were the 
same as those in previous studies [51,52].
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Table 2. Comparison of PRSS56 variations between probands and control subjects. 

Samples Total 
alleles

Variant 
alleles

Normal 
alleles

Frequency of 
variants P

189 PACG 378 6 372 1.59 0.336
262 NC 524 4 520 0.76
110 HH 220 9 211 4.09 0.003
262 NC 524 4 520 0.76

189 PACG and 110 HH 598 15 583 2.51 0.034

262 NC 524 4 520 0.76

PACG: primary angle-closure glaucoma; HH: high hyperopia; and NC: normal control. Comparisons were 
performed using Fishers’ exact test, α=0.05.

Table 3. Clinical data of probands and affected family members with high hyperopia and PRSS56 variations. 

Patient Variation Gender
Age* Best visual acuity Refraction 

(diopters)
AL 

(mm)
(years) OD OS OD OS OD OS

QT900 c.[376G>T];[=] M 36 0.05 0.8 8 7 20.12 20.17
QT900D# c.[376G>T];[=] F 5 1.00- 1.00- 5 4 20.87 21.21

QT488 c.[656C>G];[=] M 7 0.4 0.1 9.5 9.75 N/A N/A
QT616 c.[739C>A];[=] M 23 0.4 0.5 10.5 10.25 20.5 20.41
QT922 c.[746C>T];[=] F 3 FVS FVS 6.5 6 18.98 18.92
QT297 c.[794G>A];[=] M 9 0.6 0.3 9.25 9.25 N/A N/A
QT490 c.[827C>T];[=] M 7 0.1 1 8 7 N/A N/A
QT968 c.[1019C>T];[=] M 4 0.3 0.3 13 13 16.97 17.11
QT316 c.[1066dupC];[=] M 4 1 0.8 6.25 6.75 N/A N/A
QT703 c.[1687C>T];[=] M 22 0.05 1 6 6 21.61 21.7

QT703S# c.[1687C>T];[=] F 27 0.5 0.4 6.25 4.75 20.06 20.41

*Age at diagnosis #QT900D is the daughter of QT900; QT703S is the sister of QT703. FVS=follow the visual stimulus; AL=axial length; 
N/A=not available.
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