
The cornea is rich in complexity and functionality. 
Corneal disorders are commonly initiated from inflam-
mation, trauma, systemic disease, as well as pathological 
changes from adjacent tissues, which could eventually result 
in impaired vision, even blindness due to vascularization 
conjunctivalization, keratinization, corneal scarring, and 
opacification. In some severe cases, corneal reconstruction is 
necessary and effective to improve the restoration of corneal 
transparency.

Corneal reconstruction is a series of techniques for 
restoring the integrity and transparency of the cornea, and 
mainly refers to surgical techniques such as cornea trans-
plantation, limbal stem cell (LSC) transplantation and amnion 
transplantation, and autologous oral mucosal epithelial trans-
plantation. Other techniques involving biologic methods that 
aim to supply or stimulate the differentiation of LSCs have 
been widely investigated. Recently, there is mostly evidence 
from in vivo or in vitro studies for using mesenchymal stem 
cells (MSCs) in corneal reconstruction. Clinical trials are 
not available at the moment, and only one case has been 
reported for MSCs in humans. Accumulated studies on the 
role of MSCs in corneal reconstruction provided amplified 
additional evidence that MSCs indeed modify the corneal 
microenvironment, though the exact mechanisms are still 
unknown. Related studies on the roles of MSCs in the cornea 
are reviewed here to summarize the possible mechanisms and 
shed additional light.

Overview of mesenchymal stem cells: MSCs are a type of 
multipotent progenitor cells [1]. Although originally identified 

in the bone marrow [2], MSCs have been found in many 
other tissues, including the adipose [3], heart [4], Wharton’s 
jelly [5], dental pulp [6], peripheral blood [7], cord blood [8], 
menstrual blood [9-11], fallopian tube [12], and limbal stroma 
of the human eye [13]. These cells have self-renewal ability as 
undifferentiated cells and could differentiate into lineages of 
mesenchymal tissues, including bone, cartilage, fat, muscle, 
and marrow stroma [14,15]. Under certain conditions, these 
cells could transdifferentiate into neurons or cardiac muscle 
cells [16-19]. Because of the low expression of major histo-
compatibility class II (MHC II) under unstimulated condi-
tions and the absence of costimulatory molecules such as 
cluster of differentiation 40 (CD40), cluster of differentiation 
40 ligand (CD40L), B71, and B72 on cell surface [20-24], 
MSCs could escape the monitoring of the immune system and 
infuse into an allogeneic host without being rejected [20,25].

MSCs can be harvested easily, especially from bone. 
There are two main ways to administer MSCs, intravenous 
injection and local administration. The latter is used more 
frequently for corneal research. MSCs can be administered 
directly to the cornea [26-31], or by carriers, such as the amni-
otic membrane [32-35] or fibrin gels [36].

For clinical applications, the regenerative/reparative 
potential and the immune-suppressive capacity of MSCs are 
the current areas of research focus. Many clinical studies on 
MSCs led to positive results, which focused on the effects 
of MSCs on regenerative medicine [37,38], preventing graft 
rejection [39,40] and controlling graft versus host disease 
(GVHD) [41,42].

Transdifferentiation effect of mesenchymal stem cells: MSCs 
are classified as multipotential progenitor cells. MSCs can 
transdifferentiate into other kinds of cells, including cardio-
myocytes and neuronal cells [16-19]. However, hypotheses 
still need further evidence to establish that MSCs play a 
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role in corneal reconstruction. Recent studies supported 
that MSCs can differentiate into corneal epithelial cells. 
Gu demonstrated that MSCs can differentiate into corneal 
epithelial-like cells in vivo and in vitro. In vivo, rabbit MSCs 
(Rb-MSCs) were suspended in fibrin gels and transplanted 
onto the surface of NaOH damaged rabbit corneas. As a 
result, the damaged corneal surface was restored after the 
Rb-MSCs were transplanted. Rb-MSCs also participated in 
the healing process of the NaOH injured corneal epithelium 
and expressed cytokeratin 3 (CK3), a corneal epithelial-
specific marker. In vitro, Rb-MSCs differentiated into cells 
with a morphological and molecular phenotype of corneal 
epithelial-like cells that were positive to CK3 [36]. Another 
in vivo study demonstrated that MSCs have the ability to 
differentiate into corneal epithelial cells in experimental 
limbal stem cell deficiency rabbits. The expression of certain 
stem cell markers, such as adenosine 5’-triphosphate-binding 
cassette member 2 (ABCG2), β1-integrin, and connexin 43, in 
the cornea epithelium after MSCs transplantation indicated 
that MSCs maintained stem cell characteristics; some MSCs 
even transdifferentiated into epithelial progenitor cells [33]. 
The in vivo study on human MSCs (hMSCs) found that 
hMSCs could survive and migrate into the cornea stroma 
after being transplanted onto the surface of the alkali-burned 
rabbit cornea. Not only did the hMSCs differentiate into 
the corneal epithelium, but also some even migrated into 
the corneal stroma and differentiated into cells other than 
epithelia [34]. Another in vivo study found that when MSCs 
were intrastromal-transplanted into keratocan-null (Kera−/−) 
mice, the cells survived in the cornea without evoking an 
immune and inflammatory response and expressed keratocan 
in the host Kera−/− mice. The investigators speculated that 
these corneal intrastromal-transplanted MSCs may be an 
effective treatment regimen for corneal diseases involving 
dysfunction of keratocytes [26]. Similarly, another in vivo 
study showed that intrastromal-transplanted umbilical MSCs 
could survive similar to a keratocyte phenotype in the mouse 
corneal stroma [30]. In an in vitro study, after coculture with 
corneal stromal cells (CSCs), the induced MSCs expressed 
positive staining for CK12 with the corneal epithelial cell 
characteristics confirmed with scanning electron micros-
copy. In addition, in vivo, the induced MSCs had remarkable 
effects on treating the corneal alkali burn and reconstructing 
the corneal surface in a rat limbal stem cell deficiency model 
[35].

In contrast, some researchers believed that MSCs could 
not transdifferentiate into corneal epithelial cells in vivo. 
An in vivo study compared the transplantation of MSCs 
with LSCs concluded that MSCs and LSCs could assist the 
reconstruction of the damaged corneal surface in a rat corneal 

chemical burn model. However, the therapeutic mechanism 
was not associated with the epithelial differentiation from 
MSCs because there was no sufficient evidence to support 
that MSCs could differentiate into corneal epithelial cells 
[32]. A later in vivo study had the same conclusion in a rat 
corneal chemical burn model. To a certain extent, the lack of 
sufficient evidence may be because keratocytes do not have 
specific markers and share many markers with MSCs [27]. 
Our in vivo study also found that subconjunctival injected 
MSCs could not migrate into the injured cornea and trans-
differentiate into corneal epithelial cells in a rat corneal 
alkali burn model [28]. This may be closely related to how 
the MSCs were administered. Therefore, it is still unclear 
whether MSCs play a role in corneal reconstruction by the 
transdifferentiation effect, and the hypothesis requires further 
investigation.

The anti-inflammatory effect of mesenchymal stem cells: The 
anti-inflammatory effect is another important function of 
MSCs. MSCs could ameliorate the inflammation in different 
damaged tissues, such as dextran sulfate sodium-induced 
colitis [43], acute kidney injury [44], and lung injury [45]. 
The anti-inflammatory effect of MSCs on the cornea was 
demonstrated on a rat corneal chemical burn model. The 
isolated hMSCs from healthy donors grew and expanded 
on the amniotic membrane, followed by transplanting the 
membrane onto rat corneas 7 days after the chemical burns. 
Four weeks after transplantation, inflammation factors such 
as cluster of differentiation 45 (CD45), interleukin 2 (IL-2), 
and matrix metalloproteinase-2 (MMP-2) decreased in the 
hMSC transplantation model detected with immunofluo-
rescent stain. These findings indicated that the therapeutic 
effect of the damaged rat cornea treated with hMSCs might 
be partially due to the inhibition of inflammation [32]. An 
in vivo study further certified the anti-inflammatory effect 
of MSCs on the cornea by detecting more inflammatory 
related factors. In this study, MSCs were applied to the cornea 
directly without using the amniotic membrane as a carrier. 
MSCs decreased the expression of IL-2 and interferon-γ 
(IFN-γ) in the rat cornea after chemical injury. However, 
increased expression of interleukin-10 (IL-10), transforming 
growth factor-β1 (TGF-β1), and interleukin-6 (IL-6) was 
also detected [27]. In our study, we investigated the effects 
of subconjunctivally injected MSCs in the acute stage of an 
alkali-burned rat cornea. After MSCs were subconjunctivally 
injected, the infiltrated CD68+ macrophages in the alkali-
burned cornea were significantly decreased. The mRNA 
expression levels of macrophage inflammatory protein-1 
alpha (MIP-1α) and tumor necrosis factor-alpha (TNF-α) 
were also downregulated. We speculate that MSCs inhibit 
macrophage infiltration by suppressing the expression of 
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macrophage chemokine MIP-1α [28,46]. In another in vivo 
study, the investigators administered hMSCs to the chemi-
cally injured rat cornea. The investigators found that hMSCs 
were effective in reducing corneal opacity and inflammation 
after either intraperitoneal or intravenous administration 
following cornea chemical injury. Regarding a specific 
mechanism, they found chemical injury to corneal epithelial 
cells could activate hMSCs to secrete TNF-α stimulated gene/
protein 6 (TSG-6) in vitro, a multipotent anti-inflammatory 
protein. In addition, in vivo, the anti-inflammatory effects 
of hMSCs were largely abrogated by knockdown of TSG-6. 
Therefore, the authors speculated that systemic administra-
tion of hMSCs reduced inflammatory damage to the chemi-
cally burned cornea primarily by secreting anti-inflammatory 
protein TSG-6 in response to injury signals from the damaged 
cornea [47]. In summary, the anti-inflammatory effects of 
MSCs on the cornea are undoubtedly apparent. However, the 
underlying mechanisms require clarification.

Mesenchymal stem cells modulate corneal angiogenesis: 
Many studies found that MSCs were good activators for 
angiogenesis, and MSCs could secrete vascular endothelial 
growth factor (VEGF) in an ischemia or tumor model [48-52]. 
However, MSCs seemed to have an opposite effect on corneal 
angiogenesis. Some in vivo studies found that applying 
MSCs on the cornea could effectively inhibit inflammation-
related angiogenesis after chemical injury [27,28,32]. MSCs 
upregulated the expression of thrombospondin-1 (TSP-1), 
a powerful antiangiogenic factor. Meanwhile, MMP-2, an 
inflammation-related proangiogenic factor, was significantly 
downregulated after MSCs treatment. However, the level of 
VEGF was similar between the control and MSC-treated 
cases in an in vivo study of a rat corneal chemical burn model 
[27]. In our in vivo study, we found that the level of VEGF 
was downregulated after the MSC subconjunctival injection 
in the acute stage of rat alkali-burned corneas [28]. In vitro, 
the coculture of human corneal epithelial cells (hCECs) and 
hMSCs upregulated the level of VEGF. Furthermore, the 
hMSCs constitutively expressed MMP-2 and TSP-1. At the 
same time, hMSCs significantly suppressed the secretion of 
MMP-9 from hCECs [53]. VEGF, MMP-2, and MMP-9 are 
proangiogenic factors in the cornea, and TSP-1 is an antiangi-
genic factor, which could inhibit VEGF-induced angiogenesis 
by CD36 activation [54-56]. Therefore, TSP-1 appears to be 
an antiangiogenic factor, which opposes the proangiogenic 
effect of VEGF on the cornea in vivo.

Mesenchymal stem cells and solid-organ transplantation: 
Accumulated several studies proved that MSCs are efficient 
in reversing ongoing GVHD [41,42,57,58]. Similarly, MSCs 
could also play a role in host versus graft disease (HVGD) 

[59-61]. A study on skin transplantation found that applying 
MSCs could prolong baboon skin graft survival in vivo [60]. 
In an in vivo study, MSCs were efficient in heart transplan-
tation by prolonging semiallogeneic heart graft survival, 
rather than a fully MHC-mismatched heart graft in a heart 
transplant mouse model. This study described a time depen-
dency characteristic of MSCs that the infusion of MSCs was 
effective in prolonging graft survival when being used before 
transplantation, and partially effective during transplantation, 
but inefficient merely one day after transplantation [61].

In the case of corneal transplantation, one of the most 
common causes of corneal allograft failure is irreversible 
rejection. In an in vivo study, the immunomodulatory effects 
of MSCs were investigated with orthotopically transplanted 
pig corneas in rats. Allogeneic rat MSCs were applied for 2 h 
topically to the transplanted corneas immediately after opera-
tion. Unfortunately, the survival of the corneal grafts was not 
significantly prolonged, though the IL-6 and IL-10 levels were 
significantly increased in the rejected grafts after the MSCs 
were applied. This research proved that topical application 
of allogeneic rat MSCs does not prolong corneal xenograft 
survival effectively in a pig-to-rat model [29]. However, in 
a following in vivo study, the researchers performed ortho-
topic corneal allotransplantation using C57BL/6 mice (H-2b) 
as donors and BALB/c (H-2d) as recipients. The researchers 
demonstrated that preoperative intravenous injection of 
hMSCs decreased early surgically induced inflammation and 
reduced the activation of antigen-presenting cells (APCs) in 
the cornea and draining lymph nodes (DLNs). Subsequently, 
immune rejection was decreased, and allograft survival was 
prolonged. These results suggested that hMSCs improved 
the survival of corneal allografts without engraftment and 
primarily by secreting TSG-6 that acts by aborting early 
inflammatory responses [62]. Moreover, in another in vivo 
study of the rat corneal allograft rejection model, which was 
established by using Wistar rats as donors and Lewis rats 
as recipients, postoperative intravenous injection of MSCs, 
rather than preoperative intravenous injection, prolonged 
graft survival time. The authors also found that injecting 
MSCs reduced Th1 proinflammatory cytokines and elevated 
the secretion of IL-4 from T lymphocytes. In addition, 
Tregs were upregulated by MSC treatment [63]. Therefore, 
we speculate that suppressing corneal transplantation rejec-
tion by injecting MSCs depends on the timing and route of 
administration.

Mesenchymal stem cells and corneal wound healing: Corneal 
scarring is the main complication of corneal wound healing. 
Corneal fibroblasts (activated stromal keratocytes) are thought 
to be the key underlying mediator of this sight-compromising 
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response [64]. Fibroblast development is modulated by 
various cytokines and growth factors [64,65]. Studies were 
designed to investigate whether factors derived from MSCs 
could influence corneal healing. The conditional medium 
from MSCs (MSCs-CM) inhibited the wound healing activi-
ties of corneal fibroblasts in vitro. Fibroblast migration and 
relaxation contraction were significantly inhibited by MSCs-
CM. Therefore, certain factors secreted by MSCs appear to 
have therapeutic value in corneal repair [66].

Intravenously injected MSCs engrafted to the injured 
cornea and promoted wound healing, by differentiation, 
proliferation, and synergy with hematopoietic stem cells in 
an in vivo study of the rabbit alkali burn model. The MSCs 
homed in on local sites and then differentiated into myofi-
broblasts due to the local tissue microenvironment [67]. In 
another in vivo study, corneal injury in mice was induced with 
thermal cauterization, and then the MSCs were systematically 
administered. The authors found that the MSCs homed in on 
the injured cornea and survived there whereas homing toward 
the normal cornea did not occur. In the setting of corneal 
injury, MSCs administration elicited significant and rapid 
corneal epithelial regeneration [68]. Our study showed that 
subconjunctival injection of MSCs significantly accelerated 
corneal wound healing in alkali-burned corneas. This may 
be related to the anti-inflammatory effects of MSCs [28]. 
Another study showed that hMSCs acted as a source of feeder 
cells in vitro for cultivating transplantable corneal epithelial 
cell sheets. In this study, hMSCs expressed keratinocyte 
growth factor (KGF) and hepatocyte growth factor (HGF), 
soluble growth factors required for epithelial cell prolifera-
tion [69]. Recently, a case report demonstrated, for the first 
time, a patient with post-traumatic persistent sterile corneal 
epithelial defect treated with topical application of autologous 
adipose-derived MSCs. The MSCs were transferred into the 
bottom of the ulcer using an insulin syringe with a 27-G 
needle attached. One month later, complete corneal epithelial 
healing was observed. Nevertheless, the mechanisms were 
still unclear [31]. An in vitro study tried to determine whether 
MSCs could be induced to transdifferentiate into hCECs. 
This was done by evaluating whether MSCs could be injected 
and home in to a corneal endothelial injury site. In this study, 
this effect was obtained [70]. This study along with those 
involving the corneal epithelium showed that MSCs have 
potential therapeutic value in treating corneal epithelial and 
endothelial injuries. Their homing capability depended on the 
administration route.

Conclusion: MSCs have potential therapeutic value in 
corneal reconstruction since they have anti-inflammatory and 
modulatory effects on corneal angiogenesis based on results 

obtained with several animal models. Furthermore, MSCs are 
useful in suppressing corneal transplantation rejection and 
facilitating corneal wound healing. Additional animal model 
research is needed to address questions regarding how to 
transdifferentiate MSCs into corneal epithelial cells, the most 
appropriate route and time for applying MSCs for different 
kinds of corneal reconstruction, the specific mechanisms, and 
so on. Before MSCs can be tested in a clinical setting, these 
uncertainties must be resolved, and additional insight gained 
into how their use elicits such beneficial effects.
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